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Abstract. The Lazutkin parameter for curves which are invariant under the billiard
ball map is viewed symplectically in a way which makes it analogous to the sum
of the values of a generating function over a closed orbit. This leads to relations
among lengths of closed geodesies, lengths of invariant curves for the billiard map,
rotation numbers, and the Lazutkin parameter. These relations establish the Birkhoff
invariant and the expansion for the lengths of invariant curves in terms of the Lazutkin
parameter as symplectic and spectral invariants (for the Dirichlet spectrum) and
provide invariants which characterize a family of ellipses among smooth curves with
positive curvature.
Geodesic flow on a bounded planar region gives rise to several geometric objects
among which are closed reflected geodesies and invariant curves - closed curves whose
tangents are invariant under reflection at the boundary. On a bounded domain, the map
that assigns to each geodesic segment its successor after reflection at the boundary is
called the billiard ball map and its dual (in the cotangent bundle for the boundary) is
called the boundary map.

As shown by Guillemin and Melrose in [9], the lengths of closed geodesies are
symplectic invariants associated with a generating function for the boundary map.
Moreover, in a convex planar domain Marvizi and Melrose defined the wave invariants
(see [12]), obtained via the interpolating hamiltonian of [14] which takes account of
the singularity of the boundary map at the boundary. These wave invariants are
symplectic and spectral invariants when viewed as functions of the rotation number
associated to closed geodesies, but they do not have, as a whole, direct dynamical or
geometric interpretations.

In this paper a new set of invariants, the caustics' invariants, are introduced. They
are the lengths of invariant curves viewed as functions of the Lazutkin parameter of
[11]. The Lazutkin parameter has a dynamical interpretation obtained by modifying
a generating function for the boundary map.

Using these symplectic invariants one can isolate ellipses among planar domains
whose curvature is strictly positive. In Sect. 6 it is shown that the caustics' invariants
can be obtained from the wave invariants and the lengths of closed geodesies, and
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that thus the caustics' invariants are also spectral invariants for the Dirichlet problem
in the domain.

Functions with a dynamical nature defined in Sect. 4 on closed invariant curves
supply the necessary connection with the symplectic setting described in the first
two sections. The third section describes the caustics' invariants, and the fifth section
shows that ellipses can be isolated using these invariants.

The author thanks John Sylvester for helpful conversations, especially regarding
Sect. 5.

1. The Boundary Map and its Invariant Curves

A geodesic in a bounded domain is a continuous curve consisting of line segments
which meet at the boundary and obey the law of optic reflection there (successive
segments make equal angles with the normal to the boundary).

Consider the circle bundle over the boundary, that is, M = SdΩR2 C TdΩR2.
The billiard ball map, /3, is a map on the portion of M pointing towards Ω taking
(x, u) to (y, v), where x and y lie on the line generated by u, and υ is u translated
to y and reflected w.r.t. the normal direction. Identifying the inward pointing portion
of SdΩR2 (which we will denote SdΩΩ) with B*dΩ the billiard ball map becomes
the boundary map, δ, on B*dΩ. It is well known that the boundary map preserves
the natural 2-form on B*dΩ (e.g. [4]).

An invariant section for δ is a smooth section ξ : dΩ —• B*dΩ with δ o ξ(dΩ) C
ξ(dΩ). It defines a collection of lines in the plane; for x E dΩ, (x,w) = ξ(x) defines
the line through x along w. When dΩ is smooth and convex and the invariant curve
is near dΩ, these lines are the envelope of a smooth convex planar curve whose
tangents remain invariant under optic reflection at dΩ. (See, for example, [1].)

A planar curve, C, whose tangents are invariant under reflection at the boundary
is called a caustic. It is clear that a line segment tangent to C is part of a geodesic
whose every segment is tangent to C and thus that near dΩ there is a one-to-one
correspondence of smooth convex caustics and invariant sections for the boundary
map.

When it exists, the rotation number of the billiard ball map associated to C is the
average of the angle between successive line segments of a geodesic tangent to C,
divided by 2π (see also Sect. 4). For completeness we include

Lemma 1 [15]. Every geodesic tangent to a caustic has a unique rotation number and
this rotation number is the same for all geodesies tangent to a fixed caustic.

Proof. Let α, b e C be two points on an oriented caustic. Let p, q e dΩ be such that
the forward tangents to C at a and b intersect dΩ at p and q respectively. Since C
and dΩ are strictly convex, we can order a & b and p & q by their tangent angles.
Since C and dΩ are convex, p -< q iff a -< b. Conversely, if c, d £ C are such that
the forward rays from p, q e dΩ are tangent to C at c and d respectively, then c< d
iff p -< q. That is, the billiard ball map induces a monotone rotation on C.

Pick a geodesic, g, tangent to C. By the monotonicity of the rotation induced
on C, the rotation number of g is defined. Furthermore, if g and h are two distinct
geodesies tangent to C, then every point of intersection of h, say, with C lies between
two points of intersection of g with C, and thus by monotonicity the rotation number
of h is the same as the rotation number of g. D
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For C C Ω a strictly convex curve and a point q G dΩ, there are precisely two
points α1 ? α2 G C so that the tangent lines to C at ax and α2 go through q (see the
figure in Sect. 3). We denote the lengths of the line segments between ax and q and
between q and α2 by r and /, and the arclength along C between aι and α2 by 5, and
define the Lazutkin parameter, V, of C and <9Ώ at tj (or alternatively at ax) by

V(C, dΩ,q) = r + l-s.

Lemma 2 [11]. A strictly convex closed planar curve C C Ω is a caustic iff ί/*e
Lazutkin parameter of C and dΩ at p G <9i? /s independent of the point p. In fact,

—— ( n ) = c o s 0 , ( H ) — c o s θ ( u ) ,
du "*"

where u denotes arclength along dΩ and θ+(u) and θ_(u) are the angles formed at u
with the tangent to dΩ by the outgoing and incoming geodesic segments.

This characterization of caustics will be used in what follows, and is central to our
view of the billiard ball map and the boundary map.

2. Generating Functions and Invariant Curves

Here we follow the use of generating functions (see, for example, [3] p. 258) as in [9]
to show that certain quantities are invariant under symplectic changes of coordinates.
Let ω denote the symplectic form on B*dΩ, let q denote the coordinate dual to
arclength along dΩ, p denote the orthogonal canonical coordinate (ω = dpΛ dq), and
let δ : B*dΩ —• B*dΩ denote the boundary map.

On B*dΩ there is a one form a with da = ω and there is a function G such that

<5*α - a = dG,

with G (normalized to be) zero on the boundary, S*dΩ. Since B*dΩ corresponds
to line segments in Ω, G can also be viewed as a function on dΩ x dΩ.

While the generating function depends on the choice of α, the sum over a closed
orbit for δ does not; when (x0, xx,..., xk) satisfy δ(xj) = xJ+x, j < k and δ(xk) = x0

the sum

3=0

is a symplectic invariant (see [9] p. 673). In our canonical coordinates as above
G(qvq) = \sx — s\ with s and sι denoting the corresponding points on dΩ and
distance computed in Ω C R2. Thus L(x) is the length of the closed geodesic ([9] p.
676).

In terms of dΩ x dΩ,

„ -— = cos#,(s), and — — — — = — cosθ_(s]), (2.1)
as ^ ds{

where θ+(s) and θ_(sx) are the angles formed by the line segment between s and sx

with dΩ at s and at sx (in these coordinates p(q) — cos0+(s)).
Now let us return to an invariant curve C. This curve defines a section of

dΩ x dΩ and also a section of B*dΩ. We denote the first by C2 : s ^ t, where
(s, t) G dΩ x dΩ, with s -̂  t in the orientation of 9i7, corresponds to a line segment
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tangent to C, and we denote the second by Cx : s f—> p(s). Let π : B*dΩ —»> <9i? be
the natural projection and define CB : θi? —>• B*dΩ by C β = C^ o C2.

With t = C2(s) e dΩ as before,

ds~\
cos 6>, (t) - cos ΘAs)— \dt = O

dt\

because, over the closed boundary, the two parts of the integral are the same. It
follows that there is an fc : dΩ —> R with

^ - cosθ+(t) - cos#+(s) J . (2.2)

What we have shown can be said invariantly; if a satisfies da = ω as above, then
a restricts to a 1-form on C via the inclusion of C in B*dΩ, and / c is a function
on C with

dfc = α l c ~ CB^IC (2 3)

Clearly, we can choose fc so as to depend smoothly on C, and satisfy / a i 7 = 0.
Finally, setting gc(t) = G(ί, 5) + / c ( ί ) we obtain from (2.1) and (2.2) that

-τ^(ί) = cosθAt) - cosθ_(t). (2.4)
at "•"

In other words, ^ a ( t ) has a critical point at t iff the segment from C^it) to t remains
tangent to C after reflection at t.

As with the generating function, the sum of the values of fc over any closed orbit
of C2 is invariant under symplectic coordinate changes.

When C is a caustic, a closed orbit tangent to C is an orbit of C2 and of δ, and
thus the sum of the values of fc and of G, and hence of gc, over the orbit is a
symplectic invariant. That is,

Theorem 3. When (x o ,x l 5 . . . ,xk) satisfy δ{xj) = Xj+\, j < k, δ{xk) = x0, and the
segments π(x J )π(x J + 1 ) are tangent to C, the sum

j=0

is invariant under symplectic changes of coordinates.

From Lemma 2 it follows that the Lazutkin parameter defined at the end of the
previous section satisfies (2.4). Clearly, if a closed geodesic tangent to a caustic C
has period n then the value of the sum in Theorem 3 is nV(C, dΩ), where V is
the Lazutkin parameter of Sect. 1. We examine the consequences of this relation in
Sect. 4.

3. Caustics' Invariants

Since dΩ has positive curvature, it can be parameterized by tangent angle. Choosing
the counterclockwise orientation and the (1,0) direction as the reference for measuring
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the tangent angle, there is a 1-1 correspondence between smooth strictly convex
bounded regions and curvature functions, functions k > 0 with period 2π and

2π 2τr

k~L(θ)cosθdθ = / k~\θ)sinθdθ = O.

o o

Let w be the curvature of dΩ as a function of the tangent angle, φ.
Let C be a caustic for the billiard ball map on dΩ, given by its curvature k > 0,

and with Lazutkin parameter V. We define the evolution operator,

E : C°°(R/2πZ) x R + -> C°°(R/2πZ),

by £(fc, V) = w.
A point a on C, corresponding to tangent angle <9, is given by

X 0 0 7

A point # in <9i? is given by

qr(̂ ) = αίfl^ + Kcosfl^sinflj) = α(02) - /(cos^2, sin^2),

for some <91? r, (92, and i, and the Lazutkin parameter V is

where s is the arclength along C, 5((9) = / k~ι(t)dt. (See the figure.)

q(Φ)

Fig. 1. 5i7 is the evolute of ('

Since C corresponds to an invariant curve for the billiard ball map on dΩ,

φ(θι + θ2)/2.

A calculation of r + I shows that

Δ A

V =
1

coszl
u-i/

-Δ

. — / k ι(φ + u) dtij

-Δ

where A — B2-φ~φ — θx.
We have (see [1])
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Proposition 4. E(V, k) is a differential operator in k which is smooth in V2!3 for
sufficiently small V.

The parameter Δ above is, essentially, the rotation number, η (whose existence on
C follows from Lemma 1). More precisely,

2π

_L Λ
2π J

o
and

2τr

η2 ~ (12)2/3G(w)V2/3 + O(V4/3), G(w) = / w2/3(</>) # .

0

Our variant of Birkhoff's invariant, which we call the scaling invariant, is G(w).
After inversion and integration, we obtain a formal power series at V = 0 for

L(C), the length of a caustic, in terms of V2!3. The coefficients of this series are the
desired caustics' invariants. That is, with w and k denoting the curvatures of dΩ
and of C,

3=0

and E0(k) — k, so (formally) there are M with

and for the length of C
2J

L(C)= / k-\φ)dφ~ΣJ3V23/3> ( 3 1 }

o ^=°
where

2π

Jά = J3{w) = ί M3(w)(φ) dφ (3.2)

o
are the caustics' invariants. These invariants are easy to calculate from (3.1) and
the geometry (see [1] where the E- are calculated). We will only need the first two
caustics' invariant which are used in Sect. 5. Calculations give

2τr 2π

Jo = jv~\φ)dφ = LφΩ), Jx = -{lΫ/3-2l*v-ι/\φ)dφ,
o 0

and
2τr

= ίk(l)Φ J
Note that Lazutkin proved, using KAM theory and his parameter V, that there

are uncountably many caustics in a sufficiently smooth convex planar domain, and
that these caustics accumulate on the boundary, so that the expansions above can be
obtained from the lengths of actual caustics.
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4. Relations Arising From the Dynamics on a Caustic

Consider a geodesic 7 (which we will view as a bi-infinite sequence in SdΩΩ) and a
distinguished starting point ξ in 7. Let Z.(βn(ξ), βn~ι(O) denote the angle (in TR 2)
between the successive segments of the geodesic, and let |, | denote distance in R2.
Set

and

ΐϊl
n = l

where π is the projection (to dΩ).
On a caustic C, A m and ηm are related to V and L(C):

Proposition 5. For a caustic C', 7 a closed geodesic of period m tangent to C, and

mV(C,dΩ) = mAm(7,ξ) - mηJnΛ)' L(O,

where L(C) is the length of C.

Proof This follows immediately from the definition of the Lazutkin parameter, V,
after noticing that (with Δ as in Sect. 3)

Proposition 6. For a geodesic 7 tangent to a fixed caustic C,

77(7) : = lim 77m(7,ξ)
772—> OO

is well defined. In fact, η is independent of the choice of η tangent to C.

Proof. By Lemma 1 the billiard ball map restricted to C has a well defined rotation
number so the limit above converges for any ξ and is independent of ξ. By Lemma
1, this limit is also independent of 7.

Corollary 7. For a geodesic 7 tangent to a caustic C,

,4(7):= lim 4 m ( 7 , 0
m—>oo

z's1 well defined and independent of η. Moreover,

C, dΩ) = A(Ί) - ry(7)L(C). (4.1)

Theorem 8. The caustics invariants are invariant under symplectic changes of
coordinates.

Proof. F i x a c a u s t i c C a n d a g e o d e s i c 7 t a n g e n t t o it. F o r a n y £ 6 7 a n d p o s i t i v e
i n t e g e r p , t h e l e a s t p o s i t i v e n w i t h

n

Σ
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is unchanged by symplectic coordinate changes because a symplectic map preserves
the boundary and the ordering of points on the boundary. Thus the rotation number,
77(7), is a symplectic invariant.

Similarly, A(η) can be approximated by the averaged lengths of closed geodesies.
Since the lengths of these geodesies are invariant under symplectic coordinate changes,
and since the period of each geodesic is a symplectic invariant as noted in the previous
paragraph, A(j) is a symplectic invariant.

By Theorem 3, the calculation following it, and the invariance of the period, V(C)
is a symplectic invariant. It follows from (4.1) that L(C) is a symplectic invariant
and then that the coefficients in the expansion of L(C) in powers of V(C)2//3 are
symplectic invariants. D

5. Extrema and Ellipses

In this section we wish to investigate the relations of the invariants

2τr 2π

L(k) 0

0 0

and
2τr

2τr 2π

= J0= [k-\θ)dθ, Jx{k) = f k~ι/3(θ)dθ,

G(k)= ίk2/3(θ)dθ),

where k > 0 is the curvature of the boundary of a planar domain given as a function
of tangent angle θ. (The invariants J o and Jx are also wave invariants as defined in
[12].)

Since k represents a closed curve it satisfies

2 π 2-τr

ί cos(θ)k~ι(θ)dθ = ί ύn(θ)k-\θ)dθ = 0.

0 0

Consider those smooth closed curves with positive curvature and with a fixed
length, L. We will examine such curves which are critical points for G.

It is clear that G is non-negative (since k > 0), and Holder's inequality, with
1 = ft2/5 . /c~2/5, gives

(5.1)

which shows that G is positive with an absolute minimum only when k is constant
(and the region is a disk).

Let us, nonetheless, consider a variant of G. First set r = fc"1, and then note that,
since the integral of an exact derivative is zero,

2π

(r-5/3r// _ |r-8/3(r/) _ 6r-2'3)(θ)dθ = -6G(r).

0

2π

ί
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Letting εu be a small smooth periodic variation in r (with ε —> 0), r is critical for
—6G with L fixed only if for any u

ίu(θ)dθ = 0 =» ί ( r ^ V - f r~8/V)2 - 6r~2/> = 0. (5.2)

Since u is periodic, the first of these equations reduces to u — df/dθ, for some
smooth periodic /. The condition (5.2) becomes

for any smooth periodic /. Hence r must satisfy

3

The solutions to this equation are precisely ellipses and their rotations.
The condition (5.3) is not sufficient to determine a critical point of -6G. The

radius of curvature of an ellipse with major axis 2α and minor axis 2b is

e(0) = (ab)2[a2 (cos θf + 62(sin(9)2Γ3 / 2, (5.4)

and then
G(e) = τr(α6Γ4 / 3(α2 + b2). (5.5)

Thus, an ellipse maximizes — 6G among variations which fix the length (L) and are
also transversal to ellipses, but only circles are an absolute minimum among the
family of ellipses with length L.

Using (5.4) one can check directly that the conditions on a family of ellipses for
fixing L and for fixing Jx are different. In fact, L is fixed only if

2τr

^- = - - / ( 2 δ 2 sin2(<9) - a2 cos2(<9))[α2 cos2(<9) + b2 sin2 (<9)Γ 5 / 2 dθ
da a J

o
2-τr

-f- / ( 2 α 2 cos2(<9) - b2 sin2(<9))[α2 cos2(6>) -f- b2 sin 2(6>)Γ 5 / 2 dθ,
j

o
while Jλ is fixed only if

2τr

- ^ = - - / (26 2 sin2(<9) - α 2 cos2(6>))[α2 cos2(6>) 4- b2 sin2(6>)]-3/2 dθ
da a J

o
2τr

+ ί(2a2 cos2(6>) - b2 sin2(6>))[α2 cos2(<9) + b2 sin2(6>)]~3/2 dθ.

o

Thus each ellipse maximizes — 6G among curves with a fixed value of L and J 1 ?

that is

Theorem 9. Assume that a planar curve is smooth, closed, has strictly positive
curvature, has fixed first wave or caustics' invariant (the length L) and second wave or
caustics' invariant (Jj), and maximizes —6G, where G is the scaling invariant. Then
the curve is an ellipse.



108 E.Y. Amiran

6. Spectral Invariance

We return to the setting of Sect. 2
Marvizi and Melrose (see [12]) showed that their wave invariants (recalled below)

can be obtained from the spectrum of the Laplacian in Ω with Dirichlet (or Neumann
or Robin) boundary conditions. Through the use of the interpolating hamiltonian
they calculate the one-form a and consequently determine an expression, which
involves the wave invariants, for the generating function, G. They show that the length
spectrum (the collection of sums of G over closed orbits) is spectrally invariant, and
finally, that the power series resulting for the wave invariants can be recovered from
the spectrum.

The coordinates introduced in [12] are suitable for analyzing the expression in Eq.
(2.3), and so we use their construction.

Let ω denote the symplectic form on B*dΩ, s denote arclength, and let δ :
B*dΩ -* B*dΩ denote the boundary map. Then there is a function

C € C°°(B*dΩ) with δ = exp(-C 1 / 2 # c ) + Ψ, (6.1)

where Hζ is the Hamiltonian vector field of ζ9 and φ is a smooth symplectic map

which fixes the boundary component S+dΩ of B*dΩ to all orders. This determines

the Taylor series for ζ at S+dΩ. (The hamiltonian above is called the interpolating

hamiltonian - see [14].) One can choose ζ so that dζ φ 0 on all of B*dΩ and so that

ζ = 2 on the boundary component S*cλl?.
The one-form dz is defined on the curve {ζ = c] via dz(H^) = 1 and z(s = 0) = 0,

and the function

I(c)= ί dz

is C°° in c near 0, with a Taylor series at c = 0 which is independent of the choice
of ζ. The wave invariants are the coefficients in this Taylor series, namely

Ik+ι = - 7 ^ ( 0 ) , fc = 0 , 1 , 2 , . . . .

Subsequently, [12] shows that

δ*z = z — ζ1/2, <5*ζ* = C, and ω = dζΛdz,

where equivalence is in the sense of Taylor series at ζ = 0. They now set

C

F(O = / I(u) du, and a = F(ζ)d(z/I(ζ)) + ds. (6.2)

o

Then a is a 1-form on B*dΩ with da = ω.
Further calculations show that

where h vanishes to all orders at S+dΩ. This determines the generating function, G,
explicitly.
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Marvizi and Melrose then observe that on a simple closed geodesic with period n,

7(0 ΞΞ nC 1 / 2 , (6.3)

and thus the length of ηλ n is

They now conclude that ζ and 7(ζ), computed for closed simple geodesies, have
asymptotic expansions in terms of the rotation number squared, that is 1/n2 for ryι n.

Differentiating (6.4) and (6.3) (implicitly), one concludes that the power series for
ζ and 7(0 as functions of the rotation number (squared) are determined by the length
spectrum.

Under the non-coincidence assumption (see p. 490 of [12]), that for sufficiently
large periods the length of no closed non-simple geodesic coincide with the infimum
(or sumpremum) of the lengths of simple closed geodesies with each fixed period,
the length spectrum is determined by the spectrum for the Laplacian with Dirichlet
or Neumann or Robin boundary conditions (see [9] and [12]); the asymptotics above
are spectral invariants.

But on a caustic, C, ζ is constant, so dζ\c = 0 and

a\c — = d(s —

Consequently

The expansions, in terms of the rotation number, for ζ and 7(0 are determined by the
spectrum and F(ζ) is defined in terms of these-by (6.2). Therefore, the expansion for
V(C, dΩ) is determined by the spectrum, and it follows immediately from Proposition
5 (in Sect. 4) that

Theorem 10. The caustics invariants defined by (3.1) are determined by the spectrum
of the Laplacian in a planar domain that satisfies the non-coincidence condition.

Corollary 11. Ellipses are determined by the spectrum of the Laplacian among smooth
planar domain whose boundary has strictly positive curvatures and which satisfy the
non-coincidence condition.

Remark. The first heat invariant, which is spectrally determined, is the area. Thus the
parameters for an ellipse can be calculated directly from this invariant, (πab) for the
ellipse with axes 2a and 26, and the scaling invariant (5.5).
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