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Abstract. This paper suggests a direct approach to define the Laplacian, the spectral
dimension of nested fractals and the pre-Sierpinski carpet conductivity. We find a
geometric construction of the harmonic functions on the gasket and therefore can
describe effectively the dense set of functions having finite energy. The paper is
mostly aimed at the homogenization on the pre-Sierpinski gasket, whose horizontal
and nonhorizontal bonds have different conductivities: α and b respectively. We prove
the Γ-convergence of the rescaled energies on the pre-Sierpinski gasket to σ(α, 6)ε,
where ε is the standard energy on the gasket with uniform conductivities. We also
find an explicit expression for the effective conductivity σ(α, b) and deduce that its
set of singularities turns out to be the Julia set of a certain rational function. A
special section is devoted to the problem of the pre-Sierpinski carpet conductivity
asymptotic behavior; for this problem a new proof of Barlow-Bass inequalities with
sharper constants is given.

1. Introduction

The fractals, the first example of which was given by Sierpinski [1] at the beginning
of the century as an example of the set with the bizzare geometrical properties, were
proposed more recently as models for different physical phenomena by Mandelbrot
[2]. Then the Laplacian on the fractals and their spectral dimension which first
appeared in the physical literature [2,3], see review [4]) as the tools of the
investigation of the percolation effects and various transport processes, in classical
as well as in quantum mechanics became the subject of intensive mathematical
research [5-9]. Even in the case of fractals with uniform properties, and all the
quoted papers devoted to that case, this subject is related to the theory of certain
inhomogeneous media and has something in common with homogenization theory.
At the same time the main assumption of that theory (which is in the most general
case statistical translation invariance) is violated in the fractal case. In this paper we
go further and, probably, for the first time, at least in the mathematical literature,
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discuss also the fractals with locally nonuniform properties. Fractal inhomogeneous
geometry discussed here presents a new very interesting type of geometry where even
the simplest disorder does not have the translation invariance property. However, this
research was based on homogenization theory. Here we use such notions of this theory
as Γ-convergence, harmonic coordinates and interchange duality [10-16]. Physically
this approach means that we consider the pre-Sierpinski gasket as a resistor network
of equal (Sect. 2) or two different types (Sect. 3) of resistors.

The purpose of Sect. 2 is to present a new, direct construction of the Laplacian
on the Sierpinski gasket and a simple definition of its spectral dimension. It is a
difficult task to describe the harmonic functions on the gasket . To that end in this
section we also introduce a harmonic mapping of the Sierpinski gasket. This mapping
allows us to give the geometric interpretation of the harmonic functions. The image
of the Sierpinski gasket under this transformation is also a fractal; its geometrical
construction is very simple, but involves two rescaling parameters. On that new
fractal harmonic functions are simply linear functions, so we call the procedure
harmonization of the fractal. After that the wellknown rescaling property of the
energies on the pre-gaskets become a theorem from the elementary geometry. It
should be pointed out that for the particular case of the Sierpinski gasket one can
find the spectrum explicitly (see [3]) but in Sect. 2 an approach is presented which
is applicable to all the objects of that nature. They are the so-called finitely ramified
fractals. The difference is that instead of the natural resistor network and the explicit
rescaling factor 5/3 for the Sierpinski gasket one should admit connections with some
conductivities between all the vertices of the elementary cell of such a gasket, provided
selfsimilarity for the energy with a certain rescaling parameter ρ. Generically those
conductivities cannot be found explicitly, but the existence of this distribution of
conductivities of the elementary cell of such a type of gasket was proved in [8].
We remark that the uniqueness of such a distribution of the conductivities is not
established but that the number ρ is obviously uniquely defined thanks to uniform
ellipticity arguments (this assertion is missing in [8]).

In Sect. 3 we consider the inhomogeneous pre-Sierpinski gasket. Now its bonds are
equipped with two different conductivities: horizontal with α, others with b. In contrast
with the previous case (α = b) there is no reasonable pointwise (with respect to a set of
admissible potentials) convergence of the pre-gasket energies. However, we relax the
definition of the convergence and prove /^-convergence of the energies, rescaled in the
same manner as above. (See [11] for the general definition of Γ-convergence; in Sect.
3 it is given in our particular case.) We show that the Γ-limit is equal to σ(α, 6)ε, where
ε is the standard energy, as in Sect. 2, and σ(α, 6) is some number. We call σ(α, 6)
the effective conductivity of the inhomogeneous gasket, according to its physical
sense. The main theorem includes explicit representation of σ(α, b) in terms of the
successive iterations of a given rational function. This representation shows that σ(α, b)
is invariant under a certain algebraic transformation, and enables us to investigate the
analytic properties of the effective conductivity, as well as its asymptotics. We remark,
for instance, that the set of σ(α, b) essential singular points coincides with the Julia
set [17] of that rational function mentioned above. That set is known to be the set
on the line of some fractional Haussdorff dimension. It is reasonable to compare the
structure of the singularities of σ(α, 6) with the analytic properties of the effective
conductivity of two phase composites typical for homogenization theory geometry.
In standard homogenisation theory the poles of such effective conductivity σ(α, 6),
which are physically the electric resonances, are identical with the eigenvalues of the
Bergman's spectral problem [14] (see [15] and also [16] for the explicit formulation
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of that problem). So in the case of the inhomogeneous Sierpinski gasket Bergman's
problem has Kantor spectra. In standard homogenisation theory only discrete (e.g.
dispersive periodic inclusions) and absolutely continuous (e.g. checkerboard structure)
types of spectra were observed.

Another consequence of this invariance discussed above of σ(α, b) under rational
transformation is the logarithmic asymptotics of σ(α, b) as b/a — * oo, and both the
gasket dimensions appear in that limit. We find in that limit

loe-
σ(a,b) ~ axbl~x ,

(compare with x = 1/2 for the case of statistically equivalent phases in the
homogenization theory).

We conclude the paper with a new proof of the Barlow-Bass [18] inequalities with
the improved values of the constants concerning the limiting behavior of the pre-
Sierpinski carpet conductivity. This structure is obtained according to the following
recurrent procedure: we take the unit square and paint it white, then we divide it into
nine equal squares and paint the middle square black. We proceed making the same
division and painting with all the rest eight white squares. Assume that the white
set on the nth stage of this construction is filled with a conductor of conductivity
one and the black set is dielectric. Then for the effective conductivity Cn of this
inhomogeneous structure for any n the estimate holds true:

c~V <Cn <cρn

for some fixed ρ, 0 < ρ < 1 with c = 4 (see [18]). We remark that the explicit
value of Cj was found in [19]. Here it will be shown that those inequalities are true
for c = 3/2. This improvement was mainly achieved thanks to the application of
2D interchange duality, and to the introduction of the relevant auxiliary networks,
which better take into account inhomogeneity of this structure and in particular the
singularities of the solution at the corners of each black square. The proof cannot
be immediately generalized to the 3D Sierpinski carpet and we do not know if the
constant 3/2 is optimal or not.

2. Laplacian and Spectral Dimension of Gaskets

Here we explain how to construct the Laplacian and define the spectral dimension of
the Sierpinski gasket.

Let us first recall the definition of the Sierpinski gasket. Pose aλ = (0,0),

α2 = (1,0), and α3 — (1/2, A/3/2), let V0 = {aQ,al,a2} be the vertices of an
equilateral triangle of side one. Define inductively

Vn+ι = VnU(2~na2 + Vn)U(2-na3 + Vn) .

(Here, and throughout the paper we use the notation x + A = {x + y,y G ̂ 4}). Now
let

n=0

and V = V* (closure of V^) be the Sierpinski gasket.
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Let μn denote the measure which assigns mass 3~n to each point in Vn. It is

wellknown that {μn} converges in vague topology to the Hausdorff xdf -measure μ
on V and dj = log 3/ log 2. Thus V has Hausdorff dimension dj and μ(Tn) = 3~n

for any equilateral triangle Tn whose vertices are one of the possible translations of
2-"%.

Let's assign conductivity one to each nearest neighbor bond in Vm, and consider
pre-Sierpinski gasket as the resistor network. Then for the Joule heat we have the
expression

where f : V % — » R is any function (given the potential of the vertices Vm). Suppose
we fix potentials only on VQ, then the energy is

4(yO = inf{4(/):/:Vm -» RJ\VQ = φ} , φ = (φ^φ^φj. (2.2)

Simple calculation based on the symmetries and the similarity shows that

4ιM = (I Γ((Ψι - Ψ2? + (Ψ2 ~ Ψi? + (Ψι ~ <ft)2) (2-3)

Indeed, thanks to 120° -rotation symmetry and obvious independence of the energy on
the simultaneous shift of the potentials to the same constant, the energy is proportional
to the energy of the initial triangle with unit conductivities, which is given by the
expression (2.1) for m = 1. We call that factor of proportionality the effective
conductivity of the standard pre-Sierpinski gasket. By induction it suffices to prove
(2.3) for m = 1. In that case we consider antisymmetric distribution of the potential:
(0, 1, —1), which leads to one equation for one unknown variable on Vj. Solving this
equation and computing the energy of Vl9 we get (2.3). So this means that effective
conductivity of the Vm -resistor network is equal to (3/5)m, and we have to introduce
the rescaled energy

εm(/) = (f )"Vm(/) (2.4)

in order to have something finite in the limit.

Proposition 1. For any f :V* — > R the energy εn(/) is nondecreasing on n.

Proof. Let's denote by /^+1 harmonic continuation of /m — f\Vm to Vm+l, which
can be defined as a solution of the variational problem

> R,g\Vrn = fm}. (2.5)

Then by definition of /^+1 and rescaling property we get

as required.
We also need the following.

Proposition 2. For any f : V*

where a = (log 5/3) / log 4.
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We skip the proof which is a bit long but follows directly from the definition of
the energy (compare with the much more delicate result from [6]).

According to Proposition 1 we can introduce for given f'.V* —* R the limiting
energy as, probably infinite limit

ε(/) = lim εn(/) . (2.7)
n— κx>

Pose now
Hl = {f:V*^R:ε(f)«x>}.

Then thanks to Proposition 2 each / e if1 has continuation to V, which belongs to
a standard Holder space with the norm given by l.h.s. of (2.6) - Ca(V). Let's define
CQ(V) = {/ € C(V):f\Vo = 0}, and introduce the norm

The functional space CQ(V) Π Hl is then a Hubert space, and we denote it if1.
o

Obviously the space L2 = L2(V, dμ) contains if1, which is dense in L2 (see Lemma
1 below). In that case for given v E L2 we have the linear functional

(v,u) = I vudμ

V

o

which is continuous on if1. Then the expression

defines the pre-norm on L2, and we denote by if"1 the closure of L2 with respect to
o

this pre-norm. Now we have three Hubert spaces if"1, L2> Hl and the embeddings

Hl C L2 C H~l .

o

Denote ε(/, g) the scalar product of /, g e if l.
Then relation

( Δ f , g ) = ε ( f , g )

defines uniquely the isomoφhism

and we call this operator the Laplacian. We also use the same name and notation for
o

the unbounded operator Δ : L2 — » L2, which has the domain D(Δ) = {/ G if 1 : Δf e
L2}.

Remark that this way of introduction of the Laplacian permits us to prove in the
usual manner, via the Hubert space formulation the existence and uniqueness of the
solution to the problem Δu = 0, u = φ on VQ. So here the role of the boundary
is played by three points of the initial triangle, consequently the dimension of the
space of the harmonic functions is equal to three. Thanks to Proposition 1 harmonic
functions are of the class Ca and take limiting values in the classical sense. Explicit
expression for the Laplacian of an arbitrary function is not known, but for a function
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gn which is harmonic inside each triangle Tn the image of the Laplacian over 5n is
the function, which is identically zero on V\Vn and at the point x G Vn equals to the
arithmetic mean of the nearest neighbors values minus gn(x).

Proposition 3. The operator Δ:L2 — > L2 is self adjoint and has discrete spectra {\k}
0 < A! < λ2 < . . . < \k < . . . -» oc.

Proof. Δ is selfadjoint in L2 by definition and the rest of the required statement
follows immediately from Proposition 2, as far as imbedding L2 D Ca is compact
for a > 0.

Now we are ready to define the spectral dimension of the Sierpinski gasket. Denote

fc < λ} ,

the Weyl distribution function of the Laplacian's spectrum.

Lemma 1. There exist Cl,C2 > 0 such that

c2Λ^/2 (2,8)

for λ > 0. In (1.8) ds = log 9/ log 5 and is called spectral dimension.

Proof. In order to obtain estimate (2.8) below we get the upper bound of the pre-
gasket energy. Let's denote by Hn the subspace of L2 whose elements are harmonic
inside each triangle Tn and equal to zero on V0. Then by simple calculation of the
number of the points in Vn dim.£fn = 3(3n — l)/2 and

o c ̂  c . . . c ffn C . . . UHn = L2 .

By definition of L2 the set of the continuous functions is dense in L2 and according
to Proposition 1 each continuous function can be approximated uniformly on V by
the function from Hn for sufficiently large n.

Now for any / £ Hn we have

ε(f) = εn(f) = ( ) (/(z)-/(2/))2<16 5l/ | | 2 . (2.9)

Let us define the operator Λv in L2 by its invariant subspaces {Hn} and eigenvalues
16 5n. (Each such eigenvalue is taken with the multiplicity equal to the dimension
of the orthogonal complement to Hn in Hn+l.) Estimate (2.9) now means Δ < Δl

in the operator sense, hence N(λ) > N l ( X ) , where N l ( X ) is a Δ1 Weyl distribution
function. Then (2.8) and the lower bound can be handled by explicit evaluation of
the Δ1 spectrum distribution.

To get (2.8) upper bound, we consider the same sequence of spaces {Hn} but in
o o

the Hubert space Hl. Denote H^ the orthogonal complement to Hn in H[. Then for
any / £ H^ΠHn+l we get by direct calculation f\Vn =0 thanks to the orthogonality
to H and
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*Henceforth, posing / = Δ~l//2g, from the last inequality we obtain

Now we define operator Δ2

l in L2 by its eigenspaces {Δl/2(H^- Π Hn+l)}^Ll and
eigenvalues 5~n. The previous estimate yields the operator inequality Δ > Δ2. The
upper bound (2.8) follows as above.

Now we are going to construct the harmonic functions on the Sierpinski gasket
geometrically. There are three linearly independent harmonic functions on V and one
of them is identically constant. That means we can choose three vectors yλ , y2, y3 G R2

such that triangle G with vertices (y\,y2, 2/3) is nontrivial, and pose vector boundary
conditions for the harmonic vector function Z

where i = 1, 2, 3. Denote y = (y1? y2, y3), and introduce the new triple of .R2 -vectors
as follows

g(y) = (2(yι + y2) + y3,2(yl + j/3) + y2, 2(% + %) + ̂ ) . (2.10)
That new triple has the sense of the values of Z on Vj\yo, and that is easy to check
solving the equations for Z. Let us define three triangles Gi9 i — 1,2,3 with the
vertices (yl,gl(y),g2(y)\ (y »92(y)ι9ι(y)\ (y^9ι(y)>9\(y)) respectively (see Fig. 1).
Now we describe the map g geometrically. Starting from the triangle Ty(yl,y2,y3)
triangle Tg(g^(y)^g2(y)^g^(y)) can be found via the following simple procedure. We
divide each side of Ty onto five equal segments, then join the respective points of
the adjacent sides and find Tg as the central of that triangulation (see Fig. 2). Energy
of the potential distribution Z, which dissipates on the bond of the initial pre-gasket
now is nothing else but the squared length of the bond of the new pre-gasket obtained
via transformation g. So the energy rescaling property now means the following.

Theorem 1. Summing up squared sides of arbitrary triangle G we get five thirds times
the sum of squared sides of all the triangles G^G2,G4.

Geometrically map g is shown on Fig. 1. We can proceed in the same manner
applying the map g to each of the triangles G1,G2,G3 and this is also shown on
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Fig. 2

Fig. 1. That gives the values of Z on V2\Vl and so on. Doing this way we obtain
the map g: V* —» G. One can easily check that the continuation of g to all V gives a
homeomorphism g: V ~ GV, where GV is the closure of gV* in G.

Remark 1. We can induce the energy, the Laplacian, and the Hausdorff measure from
V. Then by definition linear functions will be harmonic and the spectral dimension
is equal to ds. Unfortunately, we are not able to calculate the Hausdorff dimension
of GV, but covering gVm primitive triangles by 3n balls of diameter 5~n we obtain
the estimate dH(GV) < ds. The natural hypothesis is: dH(GV) = ds. Geometric
construction of GV presented above involves obviously two rescaling parameters
1/5, 3/5 and that yields to the difficulties in the GV Hausdorff dimension evaluation.

Remark 2. With the help of harmonic coordinates we can describe explicitly the dense
set in Hl that is:

{f(Z):feCl(G)}.

Remark. The same results as here hold true for other nested fractals as far as
the rescaling property of the energy is fulfilled. Existence of the unique rescaling
parameter follows from [8] and standard ellipticity arguments, but one should consider
a more general type of energy (not only nearest neighbors are connected).

With respect to these observations it is natural to call any gasket on which linear
functions are harmonic, harmonic gasket, and call GV harmonization of the gasket
V. The next hypothesis is that the Laplacian on the harmonic gaskets is a second
order differential operator with the usual partial derivatives but with coefficients of
very special and irregular type.

3. Homogenization on the Sierpίnski Gasket

Here we consider inhomogeneous pre-gasket, which sides have two different con-
ductivities. Let's denote by Ϊ1 ? 12, l^ the sides of the triangle T0, joining the vertices
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{α1,α2}, {^2^3}' {α3>αιl respectively. For given α, b > 0 we introduce local con-
ductivity

!';1 e"/2 (3-D

(here || means being parallel) and e is any side of any triangle Tn. Let's define the
energy as

n

χ,y£Vn

\χ-y\=2~n

- y) (f(x) - f ( y ) ) 2 , (3.2)

where / e Hl.
We need an important notion of Γ-convergence (or equivalent epi-convergence)

from nonlinear analysis (see [11]). Let us recall it in the current situation. Sequence
{εn}^=1 of the functionals on Hl is said to be Γ-convergent on Hl to a functional ε
(notion Γ-lim εn = ε) iff
(i) for any weakly in Hl convergent sequence fn^fwe have

liminfεn(/n)>έ(/),
n— >oo

(iί) there exists a sequence {/^j^, f% G Hl such that /° —> f in Hl weakly and

We remark that the sequence of the energies {εn} from Sect. 2 /""-converges to
ε = || ( I f which follows from the definition, but generically G-convergence is weaker
than the pointwise convergence which we have in this example.

Now let's discuss the inhomogeneous case.

Theorem 2. For any α,6 > 0 sequence {εn(α,6; )} ι̂ defined in (3.1), (3.2) Γ-
converges

Γ- lim εn(α, b\ •) = σ(α, t) || - \\\\ t = b a

and for the number σ(α, t) we have the representation

.

- ί, ̂ (ί) = 4 6 , , -Rfc = Λι(Λfc'_ι(ί)), (3.4)

and the product in (3.3) converges for any t > 0.
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We call σ(α, t) the effective conductivity of the inhomogeneous Sierpinski gasket.
It is interesting to remark that the obvious anisotropy of the inhomogeneous resistor
network disappears in the limit, since all the process of conductivity could be
characterized by one number-conductivity of the side of one triangle. To explain this
at-first-sight strange fact we can mention that nevertheless it is reasonable, because
for any path going in some direction we can find a path going in another prescribed
direction such that the density of α— and 6— on those paths is asymptotically the
same. Let us pose σ(t) = σ(l,£), R = Rl for the sake of shortness and establish
several properties of σ(t). The first follows directly from (3.3).

Corollary 1. The function σ(t) has the extension which is analytic away from
([— oo,— 3/2]) and satisfies the relation

*m»=Hwt*(t} (3 5)

Remark 4. From the representation (3.3) one can easily deduce also the structure
of singularities of σ. In fact σ has a countable set of poles which are the zeros
of denominators in the representation (3.3) and consequently is the set of all R-
predecessors of —2/3. All limiting points of that set form the set of essential
singularities of σ. The last is the Julia set of the rational function R (see [17]). In
our case the Julia set coincides with the closure of all the predecessors of —1 -unique
repulsive fixed point of R.

Corollary 2. For σ(t) takes place the limiting relation

log

t->oo logt log I

Later on we show that (3.6) is a consequence of the invariance property (3.5).
Let us start now with the proof of Theorem 2. First we investigate transformation

of conductivities:

ε£(α, 6) = inf{εn(α, ί>; /) : / G Hl , f\dv = φ] . (3.7)

Taking into account that the isosceles property is preserved thanks to the symmetry of
the problem with respect to the median, and this means simply that we can consider
ε^(α, 6) as the energy ε^(αn,6n) for some αn,6n, by a long, but direct calculation,
we get the following.

Proposition 4. For any n > 0,

ε^+1(α,6) = εJS(α 1,& 1), (3.8)

where
α + 26 _ (α + 2fr)(α2 + 3fr2 + 6αfr)

α ι ~ α ' l~ ' ( '

In variables α, t = b/a transformations (3.9) mean

1+2* 3t2 + 6t+l
α, = α - tλ = - . (3.10)1 l
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Proposition 5. There exists the limit

(3.11)

where Rk is defined as in (3.4) and ε0(φ) in (1.1). The product in (3.11) converges for
any t > 0.

Proof. Rational mapping t — > R(t) has only one attractive fixed point t — 1, hence
analyzing the graph of Λ(ί) we see that for any t > 0\RK(t) — 1| < Cte~@K with
some Ct > 0, β > 0 where Ct probably depends on t. Then for any fixed t > 0
the infinite product in (3.11) converges, and it remains to remark that its nth partial
product coincides with ε£(α,δ) according to (3.10).

To prove the theorem, now, it suffices to establish Γ-convergence of εn(α, 6; /)
to σ(α, ί)ε(/). Let's verify the first requirement of the definition. Assume we have a
sequence {/n} and fn — » / in if1 weakly. We denote by fn the function /n : V2n — > Λ
which minimizes the problem

inf{ε2>Λ0):0-/Jvn =0}. (3.12)

Then according to this definition we have

£2>, 6; /2n) > ^2>, ft; /n) = £nK, ̂  /J > (3'13>

where on, 6n are the nth iterations of (3.9). Proposition 5 yields for f% = fn\vn>

£>n,
 bn> /J > (σ(α, t) - δn)ε(/«) , (3.14)

where <Sn — > 0, n — > oo. Let's denote by /^ harmonic inside each Tn-triangle

continuation of /^ onto V. Then we have /^ — > /, in Hl weakly since max \f^ — f\ — >

0 as n — > oo and the sequence {/^} is bounded in if1. Hence, we get

lim ε(/°) = lim ε(f^) > ε(f)
n-^ oo n^ oo

thanks to the nondecreasing of the norm of weakly convergent sequence. Finally we
get the desired property

lim inf εn(α, 6; /n) > σ(α, t)ε(f) (3.15)
n— > oo

for an arbitrary weakly convergent sequence {/n}.
Now to verify (ii) we construct the sequence {/^} in the following way. We assign

fn to be the minimizant of the variational problem

and continue it harmonically inside each Tn-triangle. Then, as above, /n — > / in Hl

when n — * oo, and

where again <5n -̂  0, n — > oo. So in view of (1.7) we have

Γ-limεn(α,6;-)

as desired. The theorem is proved.
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Let us prove Corollary 2. To that end, for any ε > 0 we shall introduce two
functions σε

± such that for sufficiently large ί,

cεta-ε <σε_< σ(t) <σε

+< cε

2t
a+£ , (3.16)

where a — (log 10/9)/(log4/3). In order to construct σε_ we choose Tε so large that

Λ(0 < (f + ε~)t for t > Tε. Pose

σl - inf [σ(tγTε < t < (\ + ε)Tε] = σ(T£)

and define σε_(t) as a stepwise function

σl(ί) = σi(f) f c for t:Tε(\ + ε)k < t < (f +ε)fc+1Tε ,

k = 0,1, Then the lower bound (3.16) follows from Corollary 1 and estimate
(5 + 10ί)/(6 + 9ί) > 10/9. Similarly, setting

σ\ = sup{σ(t):τε < t < (f -ε)τε} = σ((\ -ε)rε) ,

where τε is chosen such that

5 + Wt 10

-6T9t<-9+e fθΓ ί>T-

We introduce

<(0=(f+ε) f c for ί :r .(f) f c <t<( |)* f l r β >

and taking into account the obvious estimate R(t) > |ί we finish with the upper
bound in (3.16).

Effective Conductivity of the Sierpinski Carpet

Let's recall the construction of the Sierpinski carpet. We denote by F0 = [0,1]2 the
unit square; divide it into nine equal squares, and paint the central black, others white.
So Fl = F0\(l/3,2/3)2 is the white set. Then we repeat the same operation for each
of remaining white squares, painting the central squares of each of them black and
keeping the rest white. Proceeding this way we denote by Fn the white set on the nth

stage of this construction. The set Fn consists then of 8n white squares of side 3~n.
Now we introduce local conductivity

where 0 < δ < oo. The effective conductivity of this structure can be defined as
follows:

(4.1)

where Hl(F0) is a Sobolev space of functions, having square integrable gradients.
The well known interchange equality [10] (for general setup see [13]) says that

Cn(δ) = C-\δ-1). (4.2)
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Fig. 3. -

We use 0 < δ < oo in order to have the solution of (4.1) to be defined all over F0,
for such δ the solution of (4.1) is of the class C^(-F0), where the Holder exponent β
is strictly positive. The effective conductivity is continuous function with respect to
0 < δ < oo (see for example [11]) and for the sake of shortness we pose Cn = Cn(0).

Theorem 1. There exists ρ such that

2/3ρn <Cn< 3/2ρn . (4.3)

To prove this theorem it suffices to establish the inequalities

2/3CnCm < Cn+m < 3/2CnCm (4.4)

(see [20] problem 99). In order to do that we denote by Z™ the solution of (4.1)
and by 7.r^(xl,x2) — Z^(x2,Xj) assuming 0 < δ < oo. Pose Zn = (Z™,Z2), then
transformation Zn: F0 —> F0 has two basic properties:
(i) Z preserves the sides and the diagonals of the square F0.

r r
(ii) / a ( χ ' , <5)VZ™VZ™ dx = 4 / αn(x; tfJVZ^VZ? da; = CL&.
N ' / '«• *• J 1 11^ ' ' L J ft' tj

J J

i i — 1 ?• fc — 1 46,J — 1,^? Γυ — 1, . . . , t ,

where Tfc is one of the four triangles bounded by the sides and the diagonals of the
square F0, and δ^ is Kroneckers delta. Now we make standard triangulation of F0 with

the vertices at the lattice 3~mZ2 drawing the diagonals inside elementary square of
side 3~m. Let's denote the vertices of this triangulation (i.e. FQr\3~mZ2 and centers
of elementary squares) by Lm (see Fig. 3). Then for any nesh function φ:Lm —> R
we can construct a piecewise linear continuous function /* e Hl, f*\L — φ, which is

inside each triangle a linear combination of three functions {1, x1 ? x2} But, as it was
pointed out in [18] the remarkable property (i) enables us to do the same with three
basis functions {IjZ^Z^}. Doing this way we get continuous function fφ e Hl

such that fφL = φ. Let's pose

ε^(ψ'9δ) = ίan(x;δ)\Vf*\2dx (4.5)
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and

Ofl = inf{εm(^;<S):^(0,x2) - 0,^(1, x2) = 1} . (4.6)

This number has the sense of an effective conductive of the respective inhomogeneous
nesh with conductivities of white bonds equal to 1 and black to δ (a bond has the
same colour as the cell). Denote this network by Lm. With the help of the solution
φ of the problem (4.6) we construct the test function for the problem (4.1) of the
order n + ra. Assume the structure Fn tesselates Z2 -periodically all the R2, or in
the other words the function αn(#, δ) is continued to R2 Z2 -periodically. Then the
vector-function Zn(x) could be considered as the function on R2 such that Zn(x) — x
is Z2 -periodic. Let us consider the rescaled function

Zn'm(z) - 3~mZn(3mz) .

According to (i) the map Zn'm : Λ2 — > R2

Z preserves triangulation L* i.e. the image
of each triangle on the β2 -plane lies in the same triangle of the nrz -plane and the
image of its boundary is the boundary. That means we can substitute to the piecewise
linear functions fφ(x) the mapping Zn'm(x) and introduce the test functions

which inside each triangle of L^ is the linear combination of (l,Z™'n(α;),Z™'n(;r))
with the same coefficients as fφ(x) is a combination of (I,x1,x2) Then according
to (ii) we have the relation

αn(3™z; δ) \Vfφ(x)\2dx = Cn(δ) j \Vf*(x)\2dx (4.7)
<Ύ^ΎΠ rj-ιγn

for any triangle T™p of our triangulation. Pose now Fm = \J Fk m, where k = (kl , k2)
k

is such that k + 3~mZ2 G F0, 0 < kl9 k2 < 1, and Ffc?m = k + 3~mF0,

αm(fc, δ)=l if Ffc>m is white ,

αm(M) = δ, if ί1^ is black.

Then by definition
an+rn(x;δ2)<an(3mx;δ)arn(x;δ)

for δ < 1, hence assuming φ to be the solution of (4.6) we get, thanks to (ii), (4.7)
and the construction of the function gφ(x):

Cn+m(δ2) < an(3™x; δ) am(x; δ) \Vfφ(x)\2dx

F0

= ̂ αm(M) / an(3mx;δ)\Vfφ(x)\2dx
k *

bk,m

= Cn(δ) j am(x; δ) \Vf;(x)\2dx = Cn(δ)C^(δ) . (4.8)

FO

The same arguments and the relation

an+m(x;δ)<an(3mχ δ)am(x,δ)
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for 6 > I yields

Cn+m(S)<Cn(δ)C^(.S). (4-9)

Let us now use duality arguments (see [10, 13]) in order to get from (4.9) the bound

from below. To that end introduce the shifted network Lm (see Fig. 3) which is

obtained from L^ as the union of all the perpendiculars to the centers to all the bonds

of L^, and lies inside F0. Assign conductivity δ to all the bonds of L^ lying in the
black set and one otherwise. Denote by C^(<5), C^(6) the effective conductivities of

the networks L^, L^ respectively, omitting the argument if it is equal to zero. The
claim is that

C£(oo)<3/2C^(oo). (4.10)

With (4.10) we can rewrite (4.9) as

Cn+rn(oo)<3/2Cn(oo)C°m(oc),

and by duality together with (4.9) we have

* <Cn+m<CnC^, (4.11)

since L^ is dual to LJ^. Then the conductivities are inverse: C^(oo) = (C^)"1,
Ck(oo) = (Ck)~l . As it was remarked above the Dirichlet and Neumann boundary
conditions on the respective parts of the boundary are equivalent, thanks to the
symmetry of the periodicity conditions of(u—x]) in (4.1). The effective conductivities
are inverse (for the continuous problem see [10], and absolutely the same reasoning
is applicable to the dual networks). In particular from (4.11) we have C^ < 3/2Cm

and (4.4) follows.
Now let us prove (4.10). To that end introduce the third network

L+ =F0n3-

with the standard bonds of Z2 -connectedness and consider each such bond as two
conductivities in the series divided by the center of the bond, which we call demi-site
in order to distinguish those points from the original sites of the Lm -centers of the
elementary — 3~mF0 squares. We assign conductivity two to each half bond if it lies
in the white set and infinity if it is in the black set. Then we'll get an inequality

C+(cx>)< C^oo), (4.12)

where C^(oo) is the effective conductivity of LJ^ which is understood in the same
manner as the effective conductivity of L^ with the same boundary conditions at the
left and the right side of the initial square FQ. By the definition of the network L^
the energy is a quadratic form defined on the nesh-functions on the set of all sites
and demisites. To prove the desired inequality (4.12) it suffices to prescribe the test
potential for the variational problem for the effective conductivity of L^ to be equal
at the center of each bond, i.e. at all the demi-sites except the boundary to the solution

of the Analogous variational problem for L^ and define the test potential on the sites
as the arithmetic mean of its values on the demi-sites - nearest neighbours
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Fig. 4.

Type4
Type 2

Fig. 5. .; L+

(see Fig. 4). Now to get the inequality (4.12) explicitly, denote by E+(f) the energy
for the network L^ of the arbitrary function / given on the set of sites and demi-sites.
Then we have because of the restriction

CM = inf£+ < inf{E+(f):f - such that its value at each site

is equal to the arithmetic mean of values

at the four neighbouring demi-sites} .

Let us compute the value of E+ with the restriction above at the r.h.s. for the solution
of the L^-conductivity problem, using for each cell of LQ

m containing a vertex
inequality

which is true for Λ + /? + /3 + /4 = 0, where /-, i = 1, . . . , 4 denotes the values of
the potential on the vertices of some cell of L^ and the l.h.s. exhibits the compound
of the energy of L^ while the r.h.s. is for L^ energy item. From here we get (4.12).

Now let us compare the energies of the resistor networks L^, L^ introduced above,
which we will compute assuming the distribution of the potential to be equal to
the solution of the L^-effective conductivity problem, filling in the missing Lm values
by arithmetic mean of four nearest neighbours. According to Fig. 5 we must
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Fig. 6a,b Fig. 7a, b. — - conductivity 2;
conductivity 1

distinguish four types of the cells of L^. Look for the equivalent images presented

at the Figs. 6-9a),b)forL+,L*
maximum λ such that

respectively. In each of those cases we seek for the

where E+,E* are the energies of the considered parts of L^
computed on the same potential function /. In other words λ

L^ respectively
is the minimum

eigenvalue of E+ when E defines the scalar product. We remark also that due to
S = oo the potential is the same at the vertices connected with the black bond, so in
the gometric representation we can reduce them to one point.
1) White cells, that means cells of L^ which are entirely in the white set (see
Fig. 6). For the energies of such cells we have

respectively. Then

E+ I(/)>2E*'1(/)

2) Ensembles of four cells around the black square of the side 3 m (see Fig. 7).
We consider those cells together, so we must compare two quadratic forms of nine
variables. But we can restrict the value at the center to be equal to the mean of its
nearest neighbours in L^, which is certainly true for the solution of the L^ -effective
conductivity problem. To find the desired eigenvalue λ remark that the forms and
the restriction for the ninth variable under consideration are invariant with respect
to 90° rotation. This means that the respective eigenfunction has the same type of
symmetry, hence we can assume f2i = α, i = 1, . . . , 4; /2^+ι — b, i — 0, . . . , 3, and
for the energies of the conglomerates of those cells which are

*'2E*'(/) /9)
2 - /9)

2 ,
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Fig. 8a, b. conductivity 2;
conductivity 1

Fig. 9a, b. conductivity 2;
conductivity 1

we have then the inequality:

E+'2(/)>2E*'2(/)

3) Cells which are half black (see Fig. 8). Here

E+>3(/) = (Λ - /2)
2 + 2{(/2 - /3)

2

and we have the same inequality as in case 2).
4) Cells at the corners of the black squares of the side bigger than 3~m (see Fig. 9).
Here we have forms of three variables one of which is standard,

2(/f

E*'4(/) =

and we get

Now to prove (4.10) we sum up the energies of all of those types, as far as each bond
of L^ takes part in two types of cells and never participates in two cells of the fourth
type, we have computing the energy of the solution of the LJ^-effective conductivity
problem:

3/2(7+ = 3/2E+(/) > E^(/) > C7* (oo).

The theorem is proved.

Remark 5. Resume all the inequalities obtained above for δ = 0:

2/3C* <C°m<Cm<C^<3/2C°m.

Hence
<C* <9/4ρm,

< ρ < (3/2C^)l/m.

The last inequality can be usefull for numeric evaluation of ρ.
We point out also that the lack of property (ii) for the network L^ doesn't permit

us to get subadditivity of C^ the same way. From the proof we can see that the forms
E+,E* differ mostly at the corner points of type 4) and those points limit further
progress in the evaluation of Cm by this method. This is also clear from the fact that
piecewise linear test functions cannot take into account properly the singular behavior
of the gradient of the solution to the continuous problem at the corner points.
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