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Abstract. We investigate stability of periodic and quasiperiodic solutions of linear
wave and Schrédinger equations under non-linear perturbations. We show in the case
of the wave equations that such solutions are unstable for generic perturbations. For
the Schrodinger equations periodic solutions are stable while the quasiperiodic ones
are not. We extend these results to periodic solutions of non-linear equations.

1. Introduction

It is well known that the world is non-linear. However, most of our knowledge about it
is derived from analysis of its linear approximations. Though non-linear perturbations
are usually extremely weak, they can alter the linear behaviour qualitatively. Thus it
is important to understand how the most elementary and fundamental properties of
linear systems are affected by non-linear perturbations.

Consider problems concerning the time evolution. Once existence of solutions
is established the next goal here is classification of the orbits (= solutions) w.r. to
their localization in the configuration space of the system in question, namely, into
bounded and unbounded. In the case of linear Schrodinger and wave equations the
Ruelle theorem allows us to identify bounded orbits with periodic and quasiperiodic (in
time) ones, produced by eigenfunctions of the Schrodinger or wave operator involved,
and their linear combinations. Thus the problem: investigate stability of the (quasi)
periodic solutions of the linear equations under non-linear perturbations. This problem
was posed by J. Frohlich and T. Spencer several years ago and is the subject of the
present paper.

In this paper we show that periodic and quasiperiodic solutions of the linear wave
equation are unstable under generic non-linear perturbations. For the Schrddinger
equation some of the periodic solutions are stable while the others as well as certain
quasiperiodic solutions are not.

* Partially supported by NSERC under Grant NA7901
** 1.W. Killam Research Fellow
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Now we explain the term generic used here. Our theorems contain spectral
condition on the linear problem which guarantees instability. It is satisfied for an
open set of the linear problems and non-linearities in a certain explicit metric. We
expect the latter set to be dense and moreover its complement to be meager in some
reasonable measure. However, we cannot prove this and leave it as an open problem.
Instead we verify the condition in some simple cases.

Finally we also establish a condition for instability of periodic and quasiperiodic
solutions of non-linear wave equation. Though this condition is expressed in terms of
a linear problem it is harder to verify than in the cases listed above. Nevertheless we
believe it can be done for simple equations such as the sine-Gordon equation.

In a sequel paper we address the question of what happens to those periodic and
quasiperiodic solutions which disappear under non-linear perturbation. To answer it
we develop the theory of resonances for non-linear wave equations. We show that the
above mentioned solutions turn, under non-linear perturbations, into resonances. We
estimate the life-time of the corresponding solutions.

The paper is organized as follows. In Sect. 2 we state the problem, formulate the
main result and present its discussion for the case of wave equation. In Sect. 3 we
discuss the genericity of the condition of our main theorem. In Sect. 4 we analyze
an example (a square well potential well known in Quantum Mechanics) in which
this condition is verified. In Sect. 5 we prove the main theorem modulo technical
statements demonstrated in Sects. 6-8. Our main tools here are the Mourre estimate
and the Fermi Golden Rule for non-elliptic and non-linear equations. In Sect. 9 we
show instability of certain quasiperiodic solutions of the linear wave equations, in
Sect. 10, periodic solutions of non-linear wave equations, and in Sect. 11, certain
periodic and quasiperiodic solutions of linear Schrédinger equations.

2. Statement of the Problem and Results

In this section we consider a family of non-linear wave equations of the form

0*u
where u: R x R™ — R is an unknown function, H is a real, symmetric differential
operator on R™ and f.: R — R is a family of 3 times continuously differentiable
non-linear functions, once continuously differentiable in € and obeying

£.(0)=0. 2.2)

We assume that all derivatives of f, are continuous in . In all sections, except of
Sect. 10, we assume that

Jolw) =0. (2.3)
We suggest thinking about H as a self-adjoint Schrodinger operator
H=-A+V(x)
on L*(R™), but it could be also the operator,
H = ez’ o@)Vo(@) ™'V + V(z) Q.4
on L?czg)—l ,2(R™) arising in the wave propagation, etc. The conditions we impose are

rather general. In what follows we consider H on L*(R™).
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By a periodic solution to (2.1) we understand a function u, periodic in ¢ and
belonging to H,(0,T) ® D(H), where H, is the Sobolev space of order 2 and T is
the period of u, which solves (2.1). The linear, (¢ = 0)-problem has periodic solutions
of the form

9o(t, ©) = x(x) sinwyt, 2.5)

where w? and x are an eigenvalue of H and the corresponding eigenfunction
Hyx = w(z, X-

We do not normalize x. Because of the ¢-translational invariance of (2.1), all the
statements below extend immediately to x(z)sin(wyt + o) for any «. The period

. 2m L .
of g, is — =T,,. Note that such periodic solutions are stable under reasonable
W,

0
linear perturbations (see e.g. [Kato]). Our main task is to investigate stability of
such solutions under non-linear perturbations. Before proceeding note that the Froese-
Herbst theory and Harnak inequality imply under conditions on H formulated below

Ix(x)| < Ce b=l (2.6)

for some b > 0 (see [CFKS]).
Denote by D the class of functions u: S' x R® — C obeying

sup|(z - V) "u| < co
for n = 0, 1,2. Equipped with the norm |[||u| = max Iz - V) "ull . D becomes a
n=u,l1,

Banach space.
We introduce the functions

W () = f.(w)/u 2.7

and
U, (u) = W_(u)/e. (2.8)

Due to the restrictions of f., U_(1) is twice continuously differentiable in ® and,
together with its derivatives, continuous in €.

Definition 2.1 A periodic solution, g,, of the (¢ = 0) problem is said to be stable
under a perturbation f. if for an infinite sequence of € # 0 converging to 0, Eq. (2.1)
has a periodic solution g, of a period 27 /w, s.t. as € — 0,

(i) w, — wy, where 27 /w, is the period of g,

t t
(i) g, (w—’ x> — go(w—,ac> in eblIL°° for some sufficiently small b and weakly

€ 0

in L?,
(iii) g, is uniformly (in €) bounded in D.

Now we formulate our technical restriction on H. Instead of isolating an explicit
class of operators we constrain H by imposing some estimates known to be satisfied
for various classes of operators. First we distinguish a compact subset of cont spec
H of measure zero, which we call the threshold set of H. For a Schrodinger operator
for which V(oo) = wgngo V() exists, this is {V(co)}. It is a standard practice in the

theory of Schrodinger and related operators to avoid this set.
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The next condition allows us to apply the powerful Mourre method to study
embedded eigenvalues. Let

11 _1
A=H+1) 2E(Jc-p-l-p~oc)(15’+1) 2, (2.9
where p = —grad,,. We say that the Mourre estimate holds for H in an interval A if

EA(H)ilH, AJEA(H) > 0E,(H) + K, (2.10)

where 6 > 0 and K is a compact self-adjoint operator. We say that the Mourre estimate
holds for H if it holds for any compact interval A C cont spec H\ thresholds of H.
The Mourre estimate is proven for a large class of Schrodinger and related operators
[Mou, PSS, FHel, FHi, FS]. Self-adjoint Schrodinger operators with potentials V (z)
obeying

(- V)"V(z) is A-compact 2.11)

for n = 0, 1 form such a class. There 6 is any number satisfying
0 < dist(A, thresholds of H on the left from A).
Moreover, K can be chosen there so as to obey
K < C(H + 1)~° for some § > 0. (2.12)

We assume in this paper that
(o) ad’j(H) are bounded for n = 1,2 (on L2(R™)),
(B) the Mourre estimate with K obeying (2.12) holds for H. Moreover, there is
E, > 0 s.t. § > 0 can be chosen to be independent of A, provided A C [E, 0o).
Consider the function f,(x(x)sint), where

0
fl(u) = b—sfg(u) Igz()E U()(U)U-

Since it is periodic of the period 27 it is entirely determined by its Fourier coefficients

2T
[ (@) = / fi(x(x) sint)e ™ dt. (2.13)
0

The main result of this paper is the following

Theorem 2.2. Let H have a positive, isolated eigenvalue w% s.t. for anyn > 1,

nzwé ¢ disc spec H U thresholds H. (2.14)
27 .
Let f, = [ fi(x(z)sint)e ™ dt. If there is n > 1 s5.t. f. obeys
0

(6(H — *wi) f, [) # 0, (2.15)

then the periodic solution g, = X sinwyt of the linear, ¢ = 0, problem is unstable
under non-linear perturbation f,.

Discussion 2.3. (i) The restriction that w% is an isolated eigenvalue is not necessary
but this is the most interesting case.
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(i) The necessary condition for (2.15) to hold is
n*wi € cont spec H for some n > 1. (2.16)

This relation states that “w,-photons” connect the eigenvalue w} to the continuous
spectrum so that the corresponding transition (“ionization”) is possible. This condition
is obviously satisfied if H has a continuous spectrum in a neighbourhood of +o0.
(iii) Clearly, the restriction

n? wo ¢ disc spec H for every n > 1 2.17)

can fail only in exceptional cases. The result extends to those cases if / is replaced by
HQ,, and f, by Q,, f,,, where @), is the orthogonal projection onto (Null(H nwd))*.
(iv) Due to assumption (2.17) the non-negative operator 6(H —n’w?) is well defined
forn > 1 (see e.g. [CFKS, FS]). The finiteness of the Lh.s. of (2.15) w1ll be established
later, in the course of the proof of the theorem.

(v) In case when

f, =0 forall n>1s.t win® € cont spec H,

there is a refinement of (2.15) involving Fourier coefficients of more complicated
functions (higher order perturbation theory).

(vi) The instability described in the theorem is due to the coupling of disc spec H
with cont spec H, not with cont spec §?/0t. The same phenomenon would persist if ¢
were confined to a finite interval so that §?/0t*> would have purely discrete spectrum.
On the other hand, if the resonance condition fails, i.e. if

win* ¢ cont spec H for all n > 1,

then periodic solutions to the linear problem are expected to be stable under non-linear
perturbations.

Example. f.(u) = eu’. Using that

1 1
sin’ @ = ~1 sina — 1 sin 3q, (2.16)
we obtain
1 1
fxsint) = _ZXS sint — Zx3 sin 3t. (2.17)

Thus we obtain

Corollary 2.4. Let x be an eigenfunction of H with an eigenvalue w&. If

(6(H —9wi)x*, X) # 0, (2.18)
then for ¢ sufficiently small the non-linear equation

o*u ;
—WzHu-i—au (2.19)
has no periodic solutions generated by the periodic solutions x sinw,t of the corre-
sponding linear problem in the sense of Definition 2.1.
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3. Genericity

To verify condition (2.15), one has to compute the spectral projector or the Green
function of the linear operator H at the points n*w3, n > 1. Below we check this
condition in special cases. We expect it to be satisfied for generic non-linearities f,
and for generic Schrodinger operators H with continuous components in their spectra.

We define the topological space .# of non-linearities f as follows: f € C3,
f(0) =0 and f(u)/u maps bounded subsets into bounded subsets with the topology
determined by the seminorms

£l = sup [f(w)/ul. (3.1
lul<L

Denote by & the class of operators H obeying condition () of Sect. 2 with A defined
in (2.9) and with the norm defined accordingly.

Theorem 3.1 For given n and H € &, either (2.15) holds for an open and dense set
of fi’s in F or it fails for all f|’s in F . For given n and f, € &, (2.15) holds for
an open set of H’s in 9.

Proof. By Eq. (2.6) and Theorem 7.1 of Sect. 7, the Lh.s. of (2.15) is continuous in
H € & and in f; € % . Hence the set of all H’s in & for which (2.15) holds for
fixed n and f; € ¥ and the set of all f;’s in % for which (2.15) holds for fixed n
and H € & are open. Now we claim that, given n and H € &, if there is fl €7
for which (2.15) holds, then (2.15) holds for a dense set of f,’s. Indeed, let (2.15)
fail for f,. Introduce f; 5 = f; + (5}; € % . Then by the linearity in f;, (2.15) holds
forall fj; withé#0and f;; — fyin¥ asé6—0. O

[AHS] show that for a wide class of Schrodinger operators (besides of H € &
some kind of decay at oo is assumed)

S(H —XN)#0 (3.2)

if A € cont spec H \ (thresholds U eigenvalues). We conjecture that a similar relation
holds for wave operators (2.4) and for other differential operators from the class &.
However, this relation does not suffice to show that the class of H’s and f’s for which
(2.15) holds is sufficiently rich. We believe that the set of H € & and of f, € #
for (2.15) fails is rather meager but there is no proof so far of this fact.

4. Explicit Example

In this section we verify condition (2.18) for f(u) = u? and for H, the Schrodinger
operator H = —A+V(z) in the dimension n = 1 with V' (x), the square well potential:

0 forO<z<mw

4.1
a for either x < 0 or x > 7. @1

Viz)= {

Of course, this potential does not satisfy conditions (i) and (ii) of Sect. 2. However,
it will be clear that the analysis below holds for smooth versions of V(x) as well as
for multi-dimensional square wells and their smooth descendants.
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Let x o be an eigenfunction of (4.1) with an eigenvalue 0 < E, < a and 9,
the scattering (generalized) eigenfunction corresponding to a point £ > a of the
continuous spectrum. Then condition (2.18) is equivalent to

1
Theorem 4.1. Let a < 3% Then (4.2) holds.

1
Proof. If a < 1 then H has only one eigenvalue F|, obeying

1 1
se<Ey<a<y. (4.3)

Since this is the lowest eigenvalue, x g, > 0. The scattering (generalized) eigen-
function ¢ can be decomposed into the real and imaginary parts (i.e. two real
eigenfunctions) with the real part being

cos(\/Ex) 0<z<m
up(r) = ¢ cos(+/E — ax) <0 4.4
cos(VE —alx —7) x>7

1
Due to (4.3), ugEO(m) >0 for 0 < z < 7, provided a < 36" Hence for such a’s

™

/U9E0X3Eo dz > 0.
0

The remaining part of Uop X dz can be easily computed. Since
9EyXE, y
—o0

Ae,/a—Eoz <0
XE, = Aacos(‘/Eoﬂ)e_ fa—Fg@—m) o>
2E,—a -

with A > 0, a normalizing constant, we compute

0 0o
—E E
([ s (5050 o

2E)—a
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5. Proof of Theorem 2.2

Assume (2.1) has a periodic solution with a period T, = 27 /w,. Then g, solves the
“linear” equation

2
P = Hu+ W_(g,)u. 5.1

Put differently, g, is an eigenfunction of the operator
() & 20 —1¢al n
K = ol +H+W_(u) on L (w;' S xR"), (5.2)

where w151 is the circle of radius w_ !, with the eigenvalue 0:
K®g_ =o0. (5.3)

In order to get rid of the e-dependence of the space on which K is defined we scale

the time variable as .
t— —. 5.4)

We

This generates a unitary transformation under which K© is mapped into K, ,_, where

2
K., = wZ% +H+W.@) onL*S' xR, (5.5)
with
t
t,x) =g, —
Veltr2) =g <w5’x) (5.6)
€ LX(S' x R™).

The scaled periodic solution %, obeys
K, . v. =0, (5.7

i.e. 9, is an eigenfunction of K, with an eigenvalue 0.
Recall that
W_(u) = eU_(u).

Lemma 5.1. The function U_, considered as a composition map ¢ — U_ o, is a
bounded map from D into D, norm continuous in €.

Proof. Denote by U! and U/’ the derivatives of U, (1) w.r. to . The statement follows
from the relations

(@ - VU.(p(x) = UL @)z - V)b,
and
(- VYU.((@) = UL@p@))(@ - VYP(@) + U @)@ - Vb)),

and the fact that U, is continuous in ¢ uniformly in w € any compact interval of R.
O
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Assume now that g, is born out of the periodic solution g, = xsinw,t of the
(¢ = 0)-problem in the sense of Definition 2.1. Then by Lemma 5.1, U.(¢,) is
uniformly bounded in D. Moreover, Definition 2.1 implies

U.(1h,) — Uy(ty) in e?® L,

as € — 0, where b is the same as in Definition 2.1. Remembering that by Definition
2.1 9, — 1, weakly in L?, we conclude that K., obeys the conditions of Theorem
8.4 of Sect. 8. The latter, applied to the case at hand, implies that

6(1_(0’(”0)}—70f1 (¥y) =0, (5.8)
where a is the same as in Definition 2.1,

14 .
Yo, ) = gO<—,x> = x(x)sint,

“o
P, = orthogonal projection onto (Null Ko,wo)"L

and

Ky, = Ky, Py (5.9)

On the direct sum of the eigenspaces of 8% /0t?

K, = EDH — nw?) (5.10)
n>0
and B 3
Py = @ Po,nv
where 3
Py, =id forn # 1
and

Py, = 1® proj. onto (Null(H — wi))".
Consequently, on Ran P,

6(1?07“’0) = 6(Hw(] - U)g) @ 6(H - nzw(%)a (511)

n>1

where Hw0 =H Pwo. Expand now (remember (2.13))

AH@)sinty =Y f,(@)e™.
Substituting this and (5.11) into (5.8) and using the orthonormality of {e!™}, we derive
§(H — n*wd)f, =0 (5.12)

for all n # 1. The latter relation contradicts condition (2.15). Consequently, there are
no periodic solutions in a neighbourhood of v¢,. U

In conclusion of this section we explain the origin of relation (5.8). Consider the
unperturbed, linear problem and note that 1,(¢,z) = x(x)sint is an eigenfunction
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of K, with the eigenvalue 0. Using the separation of variables one determines the
spectrum of

2 &
K, 6 =w'— + H.
0,w w o2 +
Namely,
point spec K, = point spec H — {n*w?},
and

cont spec K, = U (—nw?* + cont spec H).
neZ

Since by resonance condition (2.16)
n*w} € cont spec H for some n > 1,

the eigenvalues 0 of K, , is embedded into the continuous spectrum of K , (see

Fig. 1, where it is assumed that cont spec H = [, 00)).
Spec K,

Fig. 1

We consider now K, , as a perturbation of K, . Extrapolating result on the
Schrodinger equation (see e.g. [Sim, How, HoS, Yaj, Sig, AHS]) one expects that
the eigenvalue 0 of Ko’w0 disappears under the perturbation and becomes a resonance
of K, , . The expansion in ¢ for the imaginary part of this resonance starts with
€? times a coefficient given by the Fermi Golden Rule and which turns out to be
exactly the Lh.s. of (5.8) multiplied scalarly by f,(1,). Thus (5.8) is a consequence
of the assumption that the eigenvalue O survives the perturbation and remains to be
an eigenvalue of K_ , . Consequently, the imaginary part of this eigenvalue must
vanish.

In the case when f,(x sinwt) has only finite number of the Fourier coefficients, say
ny,, as it happens when f;(u) is a polynomial, the leading in ¢ term in the imaginary
part of the resonance is the 2™ _term, where m is the smallest integer obeying

(mnywo)* € cont spec H.
In this paper we consider the case when m = 1. For m > 1, the leading coefficient

is again given by the Fermi Golden Rule in which f;(1);) on the Lh.s. of (5.8) is
replaced by a more complicated function.






