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Abstract. We completely determine necessary and sufficient conditions for the
normalizability of the wave functions giving the algebraic part of the spectrum of
a quasi-exactly solvable Schrόdinger operator on the line. Methods from classical
invariant theory are employed to provide a complete list of canonical forms for
normalizable quasi-exactly solvable Hamiltonians and explicit normalizability
conditions in general coordinate systems.

1. Introduction

Lie algebraic and Lie group theoretic methods have played a significant role
in the development of quantum mechanics since its inception. In the classical
applications, the Lie group appears as a symmetry group of the Hamiltonian
operator, and the associated representation theory provides an algebraic means
for computing the spectrum. Of particular importance are the exactly solvable
problems, such as the harmonic oscillator or the hydrogen atom, whose point
spectrum can be completely determined using purely algebraic methods. In the
early 1980's, in order to study molecular spectroscopy, Alhassid, Gϋrsey,
Iachello, Levine, and collaborators, [2, 3, 1,14], introduced the concept of a
"spectrum generating algebra" to construct models for complicated molecu-
les whose point spectrum could be analyzed algebraically. The Schrόdinger
operators amenable to the algebraic approach to scattering assumed a "Lie
algebraic form," meaning that they belong to the universal enveloping algebra
of the spectrum generating algebra. Thus, a second order differential operator

* Supported in Part by DGICYT Grant PS 89-0011
** Supported in Part by an NSERC Grant
*** Supported in Part by NSF Grant DMS 92-04192
•••• Q n i e a v e from School of Mathematics, University of Minnesota, Minneapolis, Minnesota
55455, U.S.A



118 A. Gonzalez-Lόpez, N. Kamran and PJ. Olver

(Hamiltonian) ffl is said to be in Lie algebraic form if it can be written as
a quadratic combination

^ = Σc<*jajb + ΣcaJa> (l.i)
a,b a

of a collection of first order differential operators Ja which generate a finite-
dimensional Lie algebra g = Span{ Ja}. (In our Lie algebraic form (1.1), we could
also include a constant term if desired, although this merely has the effect of
translating the spectrum.) Note that if Jc is any generator of the Lie algebra g, its
commutator [ J c, J f ] with the Hamiltonian operator, while still of Lie algebraic
form, is not in general a multiple of Jf. (However, if Jί? is a Casimir for the Lie
algebra, then it is invariant in the usual sense.) Thus the Lie algebra g is not
a symmetry algebra in the traditional sense, but is referred to as a "hidden
symmetry algebra" of the operator (1.1). Lie algebraic operators reappeared in the
remarkable discovery of Turbiner, Shifman, Ushervidze, and their collaborators,
[22, 19, 21, 24], of a new class of physically significant spectral problems, which
they named "quasi-exactly solvable problems," having the property that a (finite)
part of the point spectrum can be determined using purely algebraic methods. Any
quasi-exactly solvable Schrόdinger operator will be in the general Lie algebraic
form (1.1), but the Lie algebra g must satisfy the additional condition that it
possesses a finite-dimensional representation space Jί consisting of smooth wave
functions. In this case, the Hamiltonian (1.1) clearly restricts to a linear transforma-
tion on the finite-dimensional space Jί, and hence the associated eigenvalues can
be computed by purely algebraic methods, i.e., matrix eigenvalue calculations.
Additional impetus for the study of such problems stems from the analogy between
the Lie algebraic form (1.1) of a quasi-exactly solvable Hamiltonian and the
generalized Sugawara construction of the stress-energy tensor in two-dimensional
conformal field theory noted in [17]. Subsequently, Gorsky, [8], discovered a dir-
ect relation between one-dimensional quasi-exactly solvable problems and three-
and four-point conformal blocks in a conformal field theory with a zero vector at
the second level; see also the recent review paper by Shifman, [20].

For one-dimensional problems, the complete classification of (second order) Lie
algebraic and quasi-exactly solvable Schrόdinger operators is fairly elementary for
two reasons. Firstly, there is essentially just a single parametrized family of
finite-dimensional Lie algebras of first order differential operators. Secondly, every
second order differential operator is equivalent to a Schrόdinger operator
ίf — — Dl + V{x\ with potential V(x). Complete lists of all one-dimensional Lie
algebraic potentials appear in [12], and all quasi-exactly solvable potentials in
[22]; they include many of the well-known potentials from basic quantum mechan-
ics, such as the (radial) harmonic oscillator, one-soliton (Pόschl-Teller), Morse, and
elliptic function potentials, as well as several new potentials of interest. Most of the
more recent work has, therefore, concentrated on higher dimensional problems.
See [5, 6], for complete classifications of all finite-dimensional Lie algebras of first
order differential operators in two (complex) variables and their quasi-exactly
solvable versions. See [21] for examples of planar quasi-exactly solvable potentials
and [7] for a more detailed, but still far from complete, treatment of two-
dimensional problems.

There is, however, one important question for one-dimensional problems which
has not been previously addressed in the literature, and whose solution is the main
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result of this paper. Namely, while one can determine a number of eigenvalues of
any quasi-exactly solvable Schrόdinger operator (1.1), it is not immediately clear
whether, in the physical coordinates, the associated eigenfunctions are actually
normalizable, meaning that they lie in the Hubert space L2, and so represent true
physical wave functions. Or, stated another way, which of the algebraically com-
puted eigenvalues of a quasi-exactly solvable Schrόdinger operator represent
genuine physical bound states? One is interested in conditions on the potential
V(x\ or, perhaps more importantly in view of the previously mentioned connec-
tions with conformal field theory, on the coefficients cab, ca9 in the Lie algebraic
form (1.1) of the operator. In this paper, we deduce a complete set of explicit
necessary and sufficient conditions, both on the potential and on the coefficients,
for the normalizability of the eigenfunctions of a general second order quasi-exactly
solvable Schrόdinger operator. A solution to the normalizability problem, when
combined with very recent work of Turbiner, [23], has direct applications to the
"Bochner problem," [15], which is to characterize differential operators possessing
orthogonal polynomial eigenfunctions.

Our solution to the normalizability problem relies on an unusual combination
of direct asymptotic methods and techniques from classical invariant theory,
[9,11]. We first prove that any one-dimensional quasi-exactly solvable
Schrόdinger operator is uniquely determined by two polynomials, one, P(z\ of
degree four (a "quartic") and the second, Q(z), of degree two (a "quadratic"), and
a single constant; the latter plays an inessential role, and can be absorbed by merely
translating the spectrum of the operator. The group GL(2, R) of linear fractional
transformations on the line acts on these polynomials according to the standard
representations of weights (4, — 2) and (2, — 1), respectively, and hence can be used
to place the operator into a simple canonical form. For an operator in canonical
form, the explicit change of variables required to place it in physical Schrόdinger
form is readily constructed, as are the formulas for the potential and the eigenfunc-
tions. Consequently, the normalizability conditions for the canonical form, and
hence the potential itself, are readily found by direct inspection. It should also be
remarked that our classification yields a complete list of exactly solvable potentials
with normalizable eigenfunctions which includes several new cases not noted
previously.

Translation of the conditions for normalizability into conditions on the coeffici-
ents of the Lie algebraic form (1.1) rests on the following key observation. For
a given quasi-exactly solvable Schrόdinger operator, the condition that its eigen-
functions be normalizable in the physical variables is invariant under the action of
the linear fractional transformation group GL(2, R). Moreover, any property of
a quasi-exactly solvable Schrόdinger operator which is invariant under the action
of GL(2, R) will also be an invariant property of the two polynomials P, β, which
determine the operator, and can therefore be expressed in terms of the classical
joint invariants and covariants of the two polynomials. The covariants, in turn, can
be readily re-expressed in terms of the Lie algebraic coefficients cab9 ca. Therefore,
we need to reformulate our explicit normalizability conditions for the canonical
form of the operator in terms of the joint covariants of the pair of polynomials P, β,
in order to find the required conditions on the Lie algebraic coefficients. The
requisite covariants themselves are obtained through the invariant-theoretic pro-
cess of "transvection," and, moreover, a complete system (a "Hubert basis") of
covariants of a quartic and a quadratic is known, so the invariant version of the
normalizability conditions can be found by inspection. For example, the simplest
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condition for normalizability is that the quartic polynomial have one (or more)
multiple roots, and is expressed invariantly by the vanishing of its discriminant; the
resulting condition is an explicit sixth degree polynomial constraint on the coeffici-
ents, cf. (6.9) below. Although most of the normalizability conditions are, unfortu-
nately, quite complicated, they will be exhibited in (semi-)explicit form in the final
section of the paper.

2. Quasi-exactly Solvable Schrόdiπger Operators on the Line

Let us begin by reviewing the known theory of one-dimensional quasi-exactly
solvable spectral problems. First, for classifying (Lie algebras of) differential
operators, we need to specify the allowable changes of variables. In our case,
two differential operators are equivalent if they can be mapped into each other
by a combination of change of independent variable, x = ξ(z), and "gauge
transformation" e*ix) Jί? e~aix). The gauge factor μ(x) = ea{x) is not neces-
sarily unitary, i.e., oc(x) is not restricted to be purely imaginary, and hence does
not preserve the normalizability properties of the associated eigenfunctions. Note
that the changes of variables and gauge transformations both respect the commu-
tator [Jf, @~\ between differential operators, and hence preserve the Lie algebra
structure.

A classical elementary result (which is not valid in higher dimensions) states
that any second order differential operator is equivalent, under such transforma-
tions, to a Schrόdinger operator, cf. [25].

Proposition 1. Let 2tf = -P(z)D2 - Q(z)Dz — R(z) be a second order differential
operator such that P(z) > 0. Then there is a (local) change of variables x = ξ(z) and
nonzero gauge factor μ(x) which transforms ^ to a Schrόdinger operator
9* — —Ώ2

X + V(x). The potential V{x) is uniquely determined up to translation
V(x) H» V(x + δ).

The minus signs in the formula for Jf7 are for later convenience. See Theorem
7 below for a more detailed version of this result.

Here we are interested in determining whether a given second order differential
operator can be written in the Lie algebraic form (1.1). Two Lie algebras of
differential operators are equivalent if they can be mapped to each other by
a change of variables and gauge transformation. There is a complete classification
of (generic) Lie algebras of first order differential operators in one (and two)
dimensions, [12, 5]. The additional condition that the Lie algebra be quasi-exactly
solvable, meaning that it has a finite-dimensional module (representation space) of
smooth functions has also been thoroughly analyzed in both cases, [22, 6]. Here we
state the one-dimensional classification.

Theorem 2. Every (generic) finite-dimensional quasi-exactly solvable Lie algebra of
first order differential operators in one (real or complex) variable is, locally, equivalent
to a subalgebra of one of the Lie algebras

, zDz, z2Dz - nz, 1} , (2.1)

where n e N is a non-negative integer. The associated module ^ ( M ) consists of the
polynomials of degree at most n.
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We will refer to the coordinate z in which the Lie algebra takes the canonical
form (2.1) as the "canonical" or "gauged" coordinate, to be distinguished from the
physical coordinate x in which the Hamiltonian takes the form of a Schrodinger
operator. See [6] for a cohomological interpretation of the parameter n. Physically,
the half-integer in is the analogue of the "spin" of the quantum mechanical system.
Note that even when n is non-integral, gn remains a Lie algebra, but it no longer
possesses a finite-dimensional module consisting of smooth functions/(z). The fact
that n can only assume discrete values in order that the Lie algebra satisfy the
quasi-exact solvability condition is a specific case of the apparently general, but as
yet poorly understood, phenomenon labelled "quantization of cohomology," first
noted in [6].

As an abstract Lie algebra, gπ is merely a central extension (by the constant
functions) of the subalgebra ί)π spanned by the differential operators

J-=J-=DZ9 J° = J°n=zDz-^ J+=Jn

+=z2Dz-nz, (2.2)

which realize the standard commutation relations on the Lie algebra si (2, R), and
so gn is isomorphic to the Lie algebra gl(2) of all 2 x 2 matrices. Note that since
$„ and ί)n only differ by inclusion of constant functions, in our analysis of Lie
algebraic differential operators we can, without loss of generality, concentrate on
the Lie algebra ί)n, since any Lie algebraic operator (1.1) for the full algebra gn is
automatically a Lie algebraic operator for the subalgebra i)n.

As a direct consequence of Theorem 2, the most general second order quasi-
exactly solvable Hamiltonian in one space dimension can be written (after a gauge
transformation) in the form

_ jp = c + + (J+)2 + c+olJ
 + J° + J°J+1 + coo(J0)2

+ c+J+ +c0J° + c-J- +c+. (2.3)

(In general, since the Jα span a Lie algebra, we can, without loss of generality,
assume that the coefficients in (1.1) are symmetric: cαb = cbα, and so only the
anti-commutators JαJh -f JhJα appear in the first summation.) Substituting the
explicit formulas (2.2) into the expression (2.3), we see that every quasi-exactly
solvable operator can be written in the canonical z coordinate in the form

- Jf = P(z)D2

z + Q(z)Dz + R(z) , (2.4)

where P, Q, R are polynomials

P(z) = αz4 + bz3 + cz2 + dz + e ,

Q(z) = 2(1 - n)αz3 + bz2 + cz + d ,

R(z) = n(n - \)αz2 - n[_(n - 1)6 + ί ] z + / . (2.5)

Here α, b, c, etc., are constants, and n isJ he quantized parameter determing the Lie
algebra. However, instead of using P9 β, R as the primary polynomials of interest,
we define

Q(z) = Q(z) + ̂ P'(z\ R{z) = R{z) + n-Q'{z) + n-^-^-P"{z). (2.6)
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Then P, Q, R are polynomials of respective degrees 4, 2, 0, and are given explicitly
as

P(z) = az4 + bz3 + cz2 + dz + e, Q{z) = bz2 + cz + d, R(z) = c* , (2.7)

where, in terms of the coefficients in (2.3),

a = c + + , b = 2c + Of c = 2c + -+c00, d = 2c0-, e = c--,

n2 + 2n n2 + 2n
b = c+, c = c0, d = c-9 c * = — — — C o o ~ c + -+c*. (2.8)

Note that the final constant c* in (2.3) is redundant. The Hamiltonian has the
form

- * = P(z)D2 + | β ( z ) - ^ P ^ |

(2.9)

Note that, by translating the spectrum of Jf, we can eliminate the constant R = c*,
and so such operators are essentially prescribed by their quartic and quadratic
polynomial coefficients P(z), Q(z).

The associated finite-dimensional representation space (module) for the Lie
algebra i)n is the space gPin) consisting of all polynomials χ(z) of degree at most n.
Thus the algebraic eigenfunctions of the quasi-exactly solvable Hamiltonian (2.3)
will, in the gauged z-coordinates, just be polynomials χk(z) of degree at most n, and
we can compute n different eigenvalues via this algebraic approach.

Note that if we introduce the standard basis φk(z) = zk, k = 0, . . . , n of the
representation space ^{n\ then the generators J+,J~ of ί)n act as ordinary raising
and lowering operators:

UΛ (k-n)φk + 1. (2.10)

This immediately implies that the reduced transformation takes on a rather simple
matrix form, and hence its spectrum can be computed by fairly simple linear
algebraic (or numerical) methods.

Proposition 3. Let M = J f | ^ ( n ) denote the restriction of the quasi-exactly solvable
differential operator (2.3) to the representation space Θ>{n). Then, with respect to
the standard basis φk(z) = zk, k = 0, . . . , n, of &(n\ the linear transformation
M takes the form of a pentadiagonal matrix, or, if C + + = c__ = 0 , a tridiagonal
matrix.

Indeed, the matrix representation of the Hamiltonian only depends on its Lie
algebraic form (2.3), and not on the particular coordinate system used to represent
it as a second order differential operator. Therefore, all the algebraic eigenvalues
can be computed in the simpler gauged coordinates; the only question, then, is
whether these represent genuine physical spectrum of the operator, i.e., whether the
eigenfunctions are, in the physical coordinates, normalizable. Our solution to the
normalizability problem will allow us to answer this question.
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3. Action of GL(2, R) on the Hamiltonian

The canonical form (2.9) of a quasi-exactly solvable differential operator is not
unique, since there is a residual (hidden) symmetry group which preserves the
quasi-exactly solvable Lie algebra ί)π. Not surprisingly, this group is
GL(2) = GL(2, IR), which acts on the (projective) line according to the linear
fractional, or Mόbius, transformations

cc β \ d t A A δ β * O (3.1)z ^ w = Λ = (
yz + δ \y δ

There is an induced action of GL(2) on the space gP{n) of polynomials of degree at
most n, which maps a polynomial P(w) e ^{n) to the polynomial

P(w) h-> P(z) = (yz + δ)nP[ — . (3.2)
V yz + δ )

We let p π 0 denote this (irreducible) multiplier representation of GL(2), which is
isomorphic to the standard representation on homogeneous polynomials of degree
ft in two variables, with GL(2) acting via matrix multiplication on the variables.
Indeed, the differential operators (2.2) are just the infinitesimal generators of the
multiplier representation pHf0 of GL(2), [16]. Therefore, the representation pHi0 in-
duces an automorphism of the Lie algebra ί)n, and hence of the space of associated
quasi-exactly solvable Hamiltonian operators. Explicitly, the action on the gener-
ators (2.2) of ί)n is

\j° \^j\βδ z δ + β y uy\ J ° , (3.3)

\J+) \β2 2aβ a2) \J+)

independent of ft, which, apart from the determinantal factor A = detA, can be
identified with the standard representation p2,o of GL(2) on the space of homo-
geneous quadratic polynomials in two variables. More correctly, this representa-
tion is isomorphic to the tensor product representation ρ2,-i = P2, o ® d e t " 1 =
P2,o®Po, -1 of the standard quadratic polynomial representation p2,o with the
inverse of the one-dimensional determinantal representation pOΛ\ i n det A.

Definition 4. Let n ^ 0, i be integers. Define the multiplier representation pHfi of the
general linear group GL(2) on the space ^(n) of polynomials of degree at most n by

P(w) h+ P(z) = (yz + δ)n(aδ - βy)1 P ( ^ j X P e ^ ( M ) . (3.4)
\ yz + 0 J

Note that pnJ is isomorphic to the tensor product of the ϊ th power of the
determinantal representation with the standard representation on &{n\ i.e.,

Pn,i = p M , 0 ® d e t f = pn,o®Po,ί

Let P(z) be a polynomial of degree d ^ ft, transforming under a representation
pnJ. A finite point z0 is a root of P if P(z0) = 0. We let Θ(P,z0) = m denote the
order of the root, so that P(z) ~ oc(z — zo)

m as z -• z 0. In particular, Θ(P, z0) = 0 if
P does not vanish at z0. The definition of order can be extended to z0 = 00 by
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defining Θ(P, oo ) = n — d, so that oo is a root of P if and only if the degree d of
P is strictly less than n, the weight of the representation. (Using this definition, we
see that every non-zero polynomial belonging to the representation pnΛ has,
counting multiplicities, precisely n complex roots. For instance, constant functions
have a root of order n at co.) The reader can readily check that the above
definition of order is invariant under general linear fractional transformations.

Lemma 5. Consider the action (3.3) of the group GL(2) on the Lie algebra ί)n. If
Jf (w) is a quasi-exactly solvable operator determined, as in (2.9), by the triple of
polynomials P{w), Q(w), R, then the transformed differential operator

£(z) = (γz + δ)" Jf ( ~ | ) -(γz + δ)-\ (3.5)

will be determined by the triple P(z), Q{z), R, where R = R, and

± | ) ,,6)
Δ1 \yz + δ J A \γz + δ

Moreover, the associated module for ί)n, which is just the space of polynomials 0>{n\
transforms according to the representation pn,o', in particular, the eigenfunctions χk of
the transformed operator Jti? are also polynomials, given by

γz
(3.7)

If we restrict to SL(2) (i.e., Δ = 1) the induced representation on the space of
quasi-exactly solvable second order diίferential operators is just the direct sum of
its usual representations on quartic, quadratic and constant polynomials. The full
representation of GL(2) on the space of quasi-exactly solvable second order
differential operators is isomorphic, via (3.6), to the sum of three irreducible
representations, pAr,-2®Pi,-iθPo,o> where po,o = 1 is the identity representa-
tion, reflecting the invariance of the constant R(z) = c*.

Finally, we should remark that there is an additional obvious scaling trans-
formation, (P, Q, R) i—• (vP, vQ, vR), which can be used to rescale the eigenvalues of
the quasi-exactly solvable operator without affecting the eigenfunctions.

Using the action of GL(2) on the space of quasi-exactly solvable Schrόdinger
operators, we can place the gauged operator (2.9) into a simpler canonical form,
based on the invariant theoretic classification of canonical forms for quartic
polynomials, [11].

Theorem 6. Under the representation p4ί_2 o/GL(2), every real quartic polynomial
P(z) is equivalent to one of the following canonical forms:

la. v(z4 + τz2 + 1), τ + ± 2 ,

Ib. v(z4 + τz2 - 1),

Πa. v(z2 + 1),

lib. v{z2 - 1),
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Ma. vz2 ,

Mb. v(z2 + I) 2 ,

IV z ,

V. 1,

VI. 0 ,

where v and τ are real constants.

In case I, all roots (real or complex) are simple, while cases II-V have one or
more multiple roots. Case la, for τ < — 2 has four real roots (and the sign can be
taken to be positive without loss of generality), whereas for τ > — 2 all four roots
are complex. Case Ib has two real and two complex-conjugate roots. Case II has
a double root at oo and either two simple real roots (if the signs are opposite) or
two simple complex roots (if the signs are the same). Case III has two double roots;
for Ilia they are at 0 and oo, while for IΠb they are at + i. Cases IV and V have,
respectively, a triple or a quadruple root at oo. See [11; Exercises 25.13, 25.14] for
more details, Cases ΠI-V (we exclude the trivial case VI throughout, as the
associated differential operator (2.9) is only first order) have a residual one-
parameter symmetry group which can be used to simplify the form of the quadratic
polynomial Q(z), but this will not be required.

A similar classification holds for the representations p 4 j ί with i Φ — 2, but
there is an additional scaling which allows us to reduce the parameter v in the first
three cases to ± 1 . The distinguished role of the particular weighting (4, — 2) is
quite interesting and will be remarked upon again later.

4. Gauge Transformations and Asymptotics

As discussed in [12], the gauge transformation (change of variables) required to
place the Hamiltonian operator (2.9) into Schrόdinger form can be explicitly
constructed using (in general) elliptic functions.

Theorem 7. Let

- ^ = P(Z)Ό2

ZΛQ(Z)-Ά-^P\

(4.1)

be a quasi-exactly solvable differential operator. Assume P(z) > 0 on an interval
I cz R. Define the change of variables z = ζ(x) where (dz/dx)2 = P(z\ with inverse
given by the elliptic integral

z

x = ξ(z) = Γ - S = , (4.2)

for ze I. Further, define the function

z

U^\ (4.3)
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Then the change of variables z = ζ(x) and gauge factor μ(z) will place the operator
Jf into Schrδdinger form

The potential is given by

n(n + 2)(PP" - J P ' 2 ) + 3(n + 1)(QP' - 2PQ') - 3g 2

where the right-hand side is evaluated at z = ζ(x). Moreover, ifχ(z) is a wave function
in the original coordinates, then

φ(x) = μ(ζ(x))χ(ζ(x)) (4.5)

will be the corresponding wave function in the physical (Schrόdίnger) coordinates.

The asymptotics of the wave functions in the physical coordinates will be
determined by the roots of the quartic polynomial P(z), since if z is finite, and
P(z) > 0, then the change of variables x = ξ(z) will be a smooth, locally monotone
function near z. Each maximal interval of positivity of P will give a different
interval of definition of the physical variable x, so a given quasi-exactly solvable
operator in the z coordinates can lead to more than one quasi-exactly solvable
Schrόdinger operator! The intervals themselves will be bounded by either a root
z0 of P(z) or by z 0 = + oo, and the corresponding asymptotic behavior of the
change of variables z = ζ(x) will be determined by the leading order behavior of
P(z) as z -> z 0. The following elementary lemma provides a complete description
of the asymptotics.

Lemma 8. Suppose z = ζ(x) is a real-valued function satisfying the ordinary differen-
tial equation z'2 = P(z). Suppose that, asx -> x0, we have z = ζ(x) -• z0, where z0 is
a (finite) root of P. Let ε = ± 1 correspond to the side we approach z0from, i.e.,
ε = + l ι / z - ^ z 0

+ , and ε = — 1 if z -> ZQ . Suppose P has the asymptotic behavior

P ( z ) ^ α | z - z 0 Γ , asz->z0, (4.6)

for some α > 0. (Positivity is required in order that the solution ζ(x) be real.) For
m Φ 2, define

Then the limit point x0 is finite if and only ifm<2, in which case

ζ(x)-zo~εβ\x-xo\
p, x^xo, m<2. (4.8)

If m ^ 2, then x 0 — ± °o? and

[εβ\x + κ\p, m>2
ζ(x)-zo~< - be -> oo, (4.9

[ f ig~vαl* + icl m = 2,
/or some p/zαse s/π/ί κ;.

Similarly, suppose z0 = εoo, ΪS infinite, with ε = + 1, and assume z = ζ(x) —• εoo
as x -> x o If P(z) ~ oc\z\m as z -> z0, ί/zβn ί/ze ίimiί point x0 is finite if and only if
m > 2, in which case ζ(x) — εβ\x — x0 \p.
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5. Normalizability of Wave Functions and Normalizable Potentials

Recall that in the quantum mechanical interpretation, a nonzero wave function
ψ(x% defined on all of IR, is called normalizable if it is square integrable, since in
this case it can be normalized to determine a genuine probability distribution
Ψ(χ)/ II «A II on IR by dividing by its norm. For a quasi-exactly solvable Hamiltonian
corresponding to the Lie algebra f)M, the eigenfunctions obtained by algebraic
methods are given by polynomials χk(z) of degree at most n in the z-coordinates.
According to (4.5), the corresponding eigenfunctions in the physical x-coordinates
are

ψk(x) = μ(z)χk(z) = μ(ζ(x))χk(ζ(x)) , (5.1)

where each χk(z) is a polynomial in z of maximal degree k, and z = ζ(x) is the
change of variables described by (4.2). Since they are determined using algebraic
techniques, we will refer to the functions φk(x) as algebraic eigenfunctions for short;
this does not mean that the functions are algebraic in the traditional, mathematical
sense of the word.

The normalizability problem is to determine whether or not the algebraic
eigenfunctions (5.1) are in the Hubert space L 2 = L2(R). Three obvious sources of
difficulty can arise in this regards. First, the change of variables x = ξ(z) may not
cover the entire real x-space. Second, the gauge factor μ(ζ(x)), defined by (4.3),
could become singular for some finite value x0 of x. Third, the potential, as defined
by (4.4), could itself have a singularity. Clearly these latter two possibilities will not
happen unless z 0 = ζ(x0) is a root of P, but they can happen at simple roots of P, as
we shall shortly see. The first difficulty is dealt with by the following elementary
result.

Lemma 9. Suppose P(z) > 0 is positive on the open interval z0 < z < zu and
vanishes at the endpoints P(z0) = P{Zi) = 0. If both z0 and zγ are simple roots, then
none of the physical eigenfunctions (5.1) are normalizable on R.

Proof. If both z 0 and zγ are simple roots, then the inverse z = ζ(x) of the elliptic
integral (4.2), i.e., the solution to the ordinary differential equation

ί'2 = P(ζ), (5.2)

will be a periodic function of x, going back and forth between its minimum z0 and
maximum zλ. Consequently, all eigenfunctions (5.1) will also be periodic functions
of x, and hence can never be normalizable. (On the other hand, they will contribute
to the continuous spectrum of the Schrόdinger operator, and therefore, provided
they are bounded, determine a (very small) part of the scattering data. We will
discuss this case in a subsequent paper.) Q.E.D.

Suppose the conditions of Lemma 9 hold. If z0 is a multiple root and zx a simple
root, then ζ(x) will be defined on the real line, being asymptotic to z0 as |x | -> oo,
and monotone, symmetric around its maximum value zί. A similar behavior holds
if zγ is the multiple root, with ζ(x) having a minimum z0 and asymptotic to zί at
± GO. Finally, if both z0 and z1 are multiple roots, then £(x) will be a monotone
function on IR, asymptotic to z 0 at one end and z1 at the other. These remarks also
hold if z0 or zι is oo. Moreover, if P has degree 4, so oo is not a root according to
our earlier definition, then we can "integrate through oo" from a finite root z0 to
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another finite root zγ ^ z 0. (Alternatively, we can perform a linear fractional
transformation so that oo is no longer in the interval under consideration.) Finally,
if P(z) > 0 is positive definite, and has no roots (finite or infinite), then, even though
we can continue to integrate through oo, we can never produce normalizable wave
functions.

Summarizing the preceding discussion, only quartics with at least one multiple
root are possible candidates for producing normalizable operators; moreover, the
multiple root must lie at the end of an interval of positivity of the quartic P(z).
Therefore, the only canonical quartics from Theorem 6 which can possibly produce
normalizable wave functions are the following:

1. P(z) = v(z2 + 1), ( - oo, oo)

2. P(z) = v(z2 - 1), [ 1 , oo) or ( - oo , - 1]

3. P(z) = vz2, (0,oo)or(- oo , 0)

4. P(z) = z, [0, oo)

5. P(z)=l. ( - 0 0 , 0 0 ) (5.3)

The second column indicates the interval(s) where P is positive, with square
brackets indicating simple roots. In case 1, P has a single double root at oo in case
2, P has a double root at oo and a pair of simple roots at + 1; in case 3, P has
a double root at 0 and a double root at oo; in case 4, P has a triple root at oo and
a simple root at 0; in case 5, P has a single quadruple root at oo, and no change of
independent variable is required. In cases 2 and 3 there are two possible intervals of
positivity, and hence potentially two different physical Hamiltonians, although we
can readily switch from one to the other by a discrete reflection z i—• — z. As
remarked in Theorem 6, the positive multiplier v > 0 must be included in cases 1, 2,
and 3, because we are dealing with the particular representation p4 > _ 2 , although
we could omit it by rescaling the operator (and hence also Q and R).

In cases 2 and 4, the polynomial has a simple root at + 1 or 0, which, as
remarked above, introduces further complications into our normalizability prob-
lem. Choose the integration constant so that the solution ζ(x) to (5.2) is symmetric
about x = 0. The restrictions of ζ(x) to the intervals (— oo, 0) or (0, oo) thus define
two one-to-one mappings onto (1, oo), (— oo , — 1), (0, oo), for cases 2a, 2b, and 4,
respectively. We can therefore map the canonical operator J f into two Schrodinger
operators ^ _ (x) = — D* + V- (x) and ^+ (x) = - DI + V+ {x), defined respec-
tively on (— oo, 0) and on (0, oo). Their respective potentials satisfy

V-(-x)=V+(x), x>0,

and therefore define an even function V(x) on the entire real line. This potential
may or may not have a singularity at the origin x = 0. The singular case will be
discussed in a separate section, so we assume now that V(0) is finite. The problem is
how to extend the eigenfunctions of, say, £f+ (obtained by diagonalizing Jf), which
are only defined for x > 0, to eigenfunctions of Sf = — D2

X + V(x\ defined for all
x e R . Now, since V(x) is an even function, the L2 eigenfunctions of ^ must have
a well-defined parity. If φ+ (x) is an eigenfunction of £f+ defined on (0, oo), and
l i m x ^ 0 + ^ + (x) = ^ + (0) exists, then elementary uniqueness theorems for second
order ordinary differential equations imply that we can extend φ + (x) to be
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a smooth, even eigenfunction, ψ(x) = ψ( — x), of Sf if ψ + (0) Φ 0, or to be a smooth,
odd eigenfunction, φ(x) = — φ( — x), of ίf if ψ + (0) = 0.

Definition 10. A quasi-exactly solvable potential V(x), defined for x e R, is called
normalizable if every algebraic eigenfunction is normalίzable. The potential is called
partially normalίzable if some, but not necessarily all, of the algebraic eigenfunctions
are normalίzable.

Tedious but direct calculations based on Theorem 7 produce the explicit change
of variables, the potential, and eigenfunctions for the above normal forms in physical
coordinates. Each of the five classes of potentials is a linear combination of four
elementary functions, but the coefficients must satisfy a certain algebraic constraint.
Analysis of the explicit formulas for the eigenfunctions yields a complete set of
conditions for the normalizability and partial normalizability of the potentials.

According to the definition of [22], a potential is exactly solvable if it does not
explicitly depend on the "spin" n, since, in this case, one can find representation
spaces of arbitrarily large dimension and thereby produce infinitely many eigen-
values by algebraic methods (although there is no guarantee that these will
correspond to normalizable eigenfunctions). Note that since the gauge transforma-
tion (4.2), (4.3), can explicitly depend on the parameter n, exact solvability cannot
be detected in the canonical coordinates, but depends on the final physical, i.e.,
Schrόdinger, form of the operator. (For instance, if we included a fixed, nonzero
magnetic field, corresponding to a first order differential operator term, in our earlier
definition of a Schrόdinger operator, we would have a different set of conditions for
exact solvability.) We also exhibit a complete list of one-dimensional exactly solvable,
normalizable potentials, which includes the well known harmonic oscillator, radial
harmonic oscillator, Morse, and (restricted) Pόschl-Teller potentials, as well as
a number of new and interesting cases not noted before in the literature

Canonical forms for Quasi-exactly Solvable Spectral Problems

Case 1. P(z) = v(z2 + 1), z e ( - oo, oo).
Change of variables: z = sinh ^Jvx.
Gauge factor:

( \ (2 Λ\Λ SX Cbz2 + cz + d
μ(z) = (zz + 1) 4 exp < — ^ ] dz

bz + (d- ^ t a n " ^

Potential:

V(x) = A sinh2 y/vx + B sinh ^Jvx + C tanh ^/vx sech ^/vx + D sech2

(5.4)

where

b2 (c + (n + l)v)b (c — (n + l)v)(d — b)

4v' 2v 2v

{d-b)2-(c-(n+l)v)2 + v2

D = . (5.5)
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Constraints:

[B ± 2(B + 1)V^4]4 + A(4D - v)[B ± 2(« + I K / M J 2 - 4A2C2 = 0, A ^ 0 .

(5.6)

Exactly Solvable Potentials:

V(x) = C tanh ^/vx sech y/vx + D sech2 ^ v x . (5.7)

These include the restricted Poschl-Teller potentials

V(x) = D sech2 y/vx, D < 0 . (5.8)

In particular, if D = — m(m + 1 ) , where m is a non-negative integer, than V(x) is
a reflectionless m-soliton potential.

Eίgenfunctίons:

φk(x) = (cosh s/vx)2v 2 e x p y- j - J-^^— χk(μinhy/vx) ,

where gdx = 2 t a n " ι e x — - = tan"* sinh x is the Gudermannίan or hyperbolic am-

plitude function, [10; p. 43].

Partial normalizability conditions:

S = 0, and d e g χ k < 5 _ | - . (5.9)

Fw// normalizability conditions:

b = 0, and c < - nv . (5.10)

Note particularly that the normalizability conditions will, in most cases, serve to
simplify the constraint conditions, (5.6), on the coefficients for a potential to be
quasi-exactly solvable. Note that in this case all normalizable potentials are exactly
solvable.

For example, consider the Poschl-Teller potential (5.8). Assume that we have
partial normalizability conditions (5.9) holding for one^or more algebraic eigen-
functions. In this case, according to (5.5), 0 = 2vC = d(c — v(n + 1)). However,
the second normalizability condition in (5.9) implies that c — v(n + 1) φ 0, and
therefore we must have d = 0. The potential is then of the form V = —\vK sech2

sjvx with

K= - 4 - = f - - ( n +
v \v

the inequality following from (5.9). Solving for c in terms of the potential strength
K we obtain
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where we have taken (5.9) into account to determine the appropriate sign in front of
the square root. The normalizability condition (5.9) can therefore be expressed in
terms of the potential strength K as follows

The number of algebraic eigenstates is equal to one plus the highest value of the
degree of χk, which is therefore given by the integer

where [x] = max{m e N | m < x}. This reproduces the well-known number of
bound states of the potential (5.8), [13; p. 74], and shows (for the first time, we
believe) that all the eigenvalues of the Pόschl-Teller potential can be computed
algebraically.

Case 2a. P(z) = v(z2 - 1), z e [1, oo).
Change of variables: z = cosh ^Jvx.
Gauge factor.

/ x / ? ,x - \ 1 Cbz2 + cz + d Ίμ(z) = ( z 2 - 1 ) " 4 e x p I - J z2_γ dz

— \Z JL i e x p I
L 2v

Potential:

V(x) = A cosh2 -v/vx + B cosh λ/vx + C coth ^/vx csch ^/vx + D csch2

 λ/vx ,

(5.11)

where

_b2

 p _ (c + (n + l)v)g

2^ ' C 2Ϊ '

g _ (b + j ) 2 + (c - (w + l)v)2 - v2

4v

The potential has a singularity at x = 0 unless C + D = 0. Since

(b + c + d - nv)(b + c + d - (n + 2)v)

4v

the potential is regular at the origin if and only if

b + c + d = nv or b + c + J = (n + 2)v . (5.12)

Consίrαmίs:

[ 5 ± 2(n + l)^/vAY - Λ(4D + v) [ 5 ± 2(n + l ) ^ / ^ ] 2 + 4^12C2 = 0, A ^ 0 .



132 A. Gonzalez-Lόpez, N. Kamran and PJ. Olver

Exactly Solvable Potentials:

Γ Γ o Γ 1

V(x) — C coth y/vx csch y/vx + D csctr y/vx, | C | ^ D + - v .

The nonsingular cases, i.e., when C + D = 0, D > 0 provide, we believe, significant
new examples of exactly solvable potentials.

The algebraic eigenfunctions for the general, possibly singular, quasi-exactly
solvable potential (5.11) on the half line x > 0 take the form

b + d

r — -ί rχ\~^~ Γ b r Ί r
φκ + (x) = (sinh V vx)2v" 2 ί tanh y/v - J exp — cosh y/vx χfc(cosh y/vx) .

(5.13)

Note that φκ + (x) is singular at x = 0 if 4v#(χfc, 1) < nv — b — c — d.
For the two nonsingular cases, (5.12), the algebraic eigenfunctions are all

nonsingular at x = 0, and so can be extended to the entire real line. If b + c + d
= nv, then we find even eigenfunctions

c

φk(x) = I cosh y/v ^ j exp I — cosh y/vx J χfc(cosh y/vx\ x e R .

on the entire line; on the other hand, when b + c + d = (n + 2)v, we find odd
eigenfunctions

c

φk(x) = sinh y/v ^ ί cosh y/v ^ j exp ί — cosh y/vx J χfc(cosh y/vx), x e R .

Partial normalizability conditions: The regularity conditions (5.12) and either

b < 0 , (5.14)

or

δ = 0, and d e g χ k < - — — . (5.15)

Full normalizability conditions: The regularity conditions (5.12) and either (5.14) or

b = 0, and c < — nv . (5.16)

Case 2b. P(z) = v(z2 - 1), z e ( - oo, - 1].
This case is just like Case 2a, with z replaced by — z. Thus the change of

variables is z = — cosh y/vx9 and the formulas for the gauge factor, potential, etc.
are found from those in Case 2a by replacing z by — z and/or cosh by — cosh. In
particular, the potential is the same as (5.11) with B, C replaced by — B, — C, and
is regular at the origin if and only if

-b + c-d = nv o r -b + c-d = (n + 2)v. (5.17)

Partial normalizability conditions: The regularity conditions (5.17) and either
(5.15) or

b > 0 . (5.18)
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Full normalizability conditions: The regularity conditions (5.17) and either (5.18) or
(5.16).

Case 3a. P(z) = vz2,ze (0, oo).
Change of variables: z = e^yx.
Gauge factor:

1 Cbz2 + cz + d Ί } JL_! [bz d1 C

Potential:

V(x) = Ae2^x + Be^~vx + Ce~^~vx + De~2^x, (5.19)

where

AJJ_ Bjc + (n + i)v)i cJ±±±mi D = ι
4v 2v 2v 4v

Constraints:

± Cj~λ ± 5^/D = 2(n + l)VvAD, X, D ̂  0 .

Exactly Solvable Potentials:

V(x) = Ae2^~vx + Be^~vx, or K(x) = Ce~^x + De~2^x . (5.21)

These are the Morse potentials.

Eigenfunctions:

\j/k(x) = exp — e^vx +

Partial normalizability conditions:

b < 0, or b = 0, deg χk < - — — , (5.22)

and

d > 0 , or d = 0, ^ t e , 0 ) > ^ - | ; . (5.23)

Full normalizability conditions:

b < 0, or £ = 0, c < - nv , (5.24)

and

d > 0, or d = 0, c > nv . (5.25)

Note that we cannot have both b = 0 and d = 0.
For example, consider a Morse potential (5.21) with (for instance) C = — ID.

According to (5.5), b = 0, d = v(n + 1) — c, so the potential is

= vK(e~ 2 ^* — 2e~^vx), (5.26)
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with d and K > 0 related by d = 2v^/K, which relies on the first normalizability
condition in (5.23). The second normalizability condition in (5.22) then easily
reduces to

-.

Hence in this case the maximum number of algebraically computable eigenfunc-
tions is given by the integer \_sJK + £], which again exactly coincides with the
known number of bound states for the potential (5.26), [13; p. 73].

Case 3b. P{z) = vz2, z e ( - oo, 0).

Change of variables: z = —e^vx.
Gauge factor:

f l
-2

The potential is the same as that in Case 3a with B, C replaced by —B9 - C .

Eigenfunctions:

= expΓ - f e^x

L 2v
ψk(x) = expΓ - f e^x + °-^x + ~ e'^Λ χk( -

L 2 v 2φ 2v J
Partial normalizability conditions:

b > 0, or b = 0, deg χk < - — — , (5.27)

and

d < 0 , or d = 0, ^ ( χ f e 5 0 ) > ^ - ^ . (5.28)

Fw// normalizability conditions:

b < 0, or £ = 0, c < - nv , (5.29)

and

d > 0, or J = 0, c > nv . (5.30)

Case 4. P(z) = z,ze [0, oo).
Change of variables: z = 4.x2.
Gauge factor:

_n f l rbz2 + cz + d J ) Mzϋ. Γ l Γ 2 1 A

μ(z) = z 4 exp < - rfz > = z 4- exp - bz + -cz
\2] z j [ 4 2

K(x) = Ax 6 + Bx4 + C x 2 + ^ > (5.31)
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where

Constraints:

16Λ3l{4n + 5)(4n + 3) - 42) ] ± 32(n + 1)A3/2{B2 - 4AC) + (B2 - 4ΛC)2 = 0 ,

A ^ 0, D ^ - -.

Note that V is singular at the origin unless D = 0, so the conditions

rf = ^ or d = ^ + l , (5.32)

are necessary and sufficient for regularity. The resulting potentials are the anhar-
monic oscillator potentials discussed in detail in [22, 20].

Exactly Solvable Potentials:

These are radial harmonic oscillator potentials when D = 1(1 + 1), / e N.
Eίgenfunctions: The algebraic eigenfunctions for the general, possibly singular,

quasi-exactly solvable potential (5.31) on the half line x > 0 take the form

In the two nonsingular cases, (5.32), if d = - , then the algebraic eigenfunctions can

be extended to give even eigenfunctions

on the entire line. On the other hand, when d = - + 1 the algebraic eigenfunctions

can be extended to give odd eigenfunctions

Normalizability conditions: (5.32) and

ί < 0 , or 6 = 0, c < 0 . (5.33)
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In this case, there are no partially normalizable, regular potentials.

Case 5. P{z) = 1, z e (— oo? oo).

Change of variables: z = x.
Gauge factor:

-ex ϊ-bz3 -cz2 -dzλ
p |_6 z 4CZ 2 z y

Potential:

V{x) = Ax4 + Bx3 + Cx2 + Dx , (5.34)

where

, \ , ^[ l D = ̂

Constraints:

SA2D + £ ( £ 2 - 4AC) = ± 16(n + 1),45/2,

Exactly Solvable Potentials:

V{x) = Cx2 + Dx, C ^ 0 .

These are (translated) harmonic oscillator potentials.

Eigenfunctions:

= exp - δx 3 + - cx2 + - dxφk(x) = exp - δx 3 + - cx2 + - dx χk(x)

Normalizability conditions:

6 = 0, and c < 0 . (5.35)

Note that, in this case, there are no partially normalizable cases; moreover, every
normalizable quasi-exactly solvable potential is just a translate of the harmonic
oscillator, and is hence exactly solvable.

6. Invariant Characterization of Normalizability

The results of the preceding section give a complete solution to our normalizability
problem. The only draw-back is that, in order to apply them, one first needs to
place the quasi-exactly solvable operator in canonical form via a suitably chosen
change of variables, and this requires explicit knowledge of the roots of the quartic
polynomial P. Although, in principle, this can be done using Ferrari's formula, in
practice it is rather difficult to see which particular choices of coefficients cab in the
original form (2.3) will indeed give rise to normalizable operators. However, since
the normalizability conditions do not, obviously, depend on the choice of gauged
coordinate z, they should be invariant under the induced action of the group GL(2)
discussed in Sect. 3. Therefore, the normalizability conditions should be directly
expressible in terms of invariant quantities, namely the classical joint invariants
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and covariants of the system of polynomials (2.7). The consequent invariant
normalizability conditions will then provide explicit normalizability conditions on
the coefficients cab, and the reduction to canonical form becomes unnecessary. For
example, in all cases for normalizable wave functions, the quartic polynomial
P must have a multiple root, and this can be expressed in an invariant manner by
the vanishing of the discriminant of P, which results in an algebraic constraint (of
degree 6) in the coefficients cab.

In order to construct a complete system of invariant and covariants of a (system
of) polynomials, the invariant-theoretic process of "transvection" is essential. We
begin by defining the classical transvectants between functions (polynomials),
conveniently expressed in the projection coordinate z, rather than the more usual
homogeneous coordinates found in the classical texts.

Definition 11. Let F(z) e ̂ ( m ) and G(z) e ̂ {n) be polynomials of respective degrees
(at most) m, n. Let r g min{m, n}. The rth transvectant ofF and G is the polynomial

Theorem 12. Suppose F transforms under GL(2) according to the representation
pmj and G transforms under GL(2) according to the representation pn>j. Then the r th

transvectant (F, G)(r) e op^n^n-ir) z s a pOiynomιaι of degree at most m + n — 2r and
transforms under GL(2) according to the representation pm+n-2r,i+j+r

The fact that (F, G) ( r ) has degree at most m + n — 2r is not obvious from the
formula (6.1). The proof of Theorem 12 can be deduced from the references [9] and
[11]; a more direct proof will appear in a forthcoming book by the third author.

Example 13. Let F have weight (m, i) and G weight (nj). The simplest cases of (6.1)
are

(F, G) ( 2 ) = n(n - \)F"G - 2(m - l)(n - 1)F'G' + m{m -

(F,G) ( 3 ) = n(n - l)(n - 2)F'"G - 3(m - 2)(n - l)(n - 2)F"G'

+ 3(m - l)(m - 2)(n - 2)F'G" - m(m - l)(m - 2)FΌ"\ (6.2)

having weights (m + n - 2, i + j + 1), (m + n - 4, i + j + 2), (m + n-69ί+j + 3),
respectively. In particular, the first two non-vanishing transvectants of a poly-
nomial F of degree m with itself are the Hessian

HIF1 = l (F, F p = FF" - ^ ^ F ' 2 , (6.3)
2m(m — 1) m

of weight (2m — 4, 2z + 2), and the fourth transvectant

JΓF1 = (F F ) ( 4 )

2m(m — l)(m — 2)(m — 3)

= FF," _ 4 ' ! ^ F ' J F " ' + 3(^-2)(m-3)f,,2

m m(m — 1)
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of weight (2m - 8, 2\ + 4). (Note that all the odd transvectants (F, F)(2s + 1) = 0
automatically vanish.)

We can use the process of transvection to construct invariants and covariants
from a given polynomial. Indeed, the First Fundamental Theorem of Invariant
Theory, [9], [11], says that every polynomial invariant and covariant of a system of
polynomials can be constructed by successive transvection.

Example 14. Consider first the case of a single quadratic polynomial,
P(z) = az2 + bz + c. Its discriminant can be written as half the second transvectant
of P with itself, i(P, P) ( 2 ) = Aac — b2, and is the only nonzero transvectant. Indeed,
every covariant of a quadratic polynomial can be written in terms of the poly-
nomial itself and its discriminant.

Example 15. For a single quartic polynomial

P(z) = az4 + bz3 + cz2 + dz + e,

transforming (as in our case) according to the representation p 4 , - 2 ? a complete list
of polynomially independent covariants is provided by the Hessian

( 6 5 )

which has weight (4, — 2), the two invariants (both of weight (0, 0)),

,* _ (p p\(4) — _ pp"" p' p'" j p"2
l " 9 6 l Λ n "2 2 + 4 ^

= 12ae - 3bd + c2 ,

j = λ- (p, H ) ( 4 ) = - IP""H - P"Ή' + P"H" - PΉ"' + PH""~\

= -det
δ

dditiona

12a
3b

1c

3b
2c

3d

1 covariant

T
1

= 24

2c
3d

12e

(6.6)

H ~ P H Ί ? ( 6 < 7 )

which has weight (6, — 3). The constants are chosen for convenience; they do not
agree with most of the standard normalizations of these covariants, but, as every
reference has different normalizations (even, in some cases, more than one in the
same book) we feel free to choose a more convenient version which will eliminate
most of the large numerical factors. We note that the discriminant of P is defined to
be the invariant

δ = i 3 - j 2 , (6.8)
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and has the basic property that P has a multiple root (and so has canonical form
II-VI in Theorem 6) if and only if δ = 0. According to the discussion in Sect. 5,
then, the condition δ = 0, which is a sixth degree of polynomial equation

[12c+ + c__ - 12c+ oco- + ( 2 c + - + c 0 0 ) 2 ] 3 =

4c+_+2coo \2

(6.9)

in the coefficients cab of a quasi-exactly solvable operator (2.3), is necessary for the
existence of normalizable algebraic wave functions.

Now, in the classical treatment of the invariant theory of quartic polynomials,
the polynomial P transforms under GL(2) according to the representation p 4 > 0 , so
there is no extra determinantal factor in the transformation rule. In this case the
invariants i andy transform, respectively, according to the representations p0Λ and
Po,6> t n e 0 referring to the fact that they are invariants (not covariants), and the
4 and 6 giving their respective weights. Linear combinations of invariants (and
covariants) will provide further invariants, provided the summands transform
according to the same representation of GL(2). Thus, the discriminant δ, which has
weight 12, transforms according to the representation p0,12 > and is an invariant,
whereas, for the classical weighting, the quantity i — j is not an invariant, since the
two summands transform according to different representations.

In our case, however, the situation is markedly different. The polynomial P trans-
forms under GL(2) according to the representation p4> _ 2, cf. (3.6). Therefore, by
Theorem 12, the covariants H and Tbelong to the representations p 4 j _2 and p 6 j _ 3,
respectively, while the invariants i and j both transform according to the representa-
tions po,o> which implies that they are absolute invariants! (So is the discriminant δ,
and any other invariant obtained by transvection.) Now the quantity i — j is an
invariant, so that, for example, the condition i = j has invariant meaning (albeit not
very useful) for a quartic P belonging to the representation space of p 4, - 2

The complete list of independent covariants for the system consisting of a quartic
polynomial and a quadratic polynomial is known, and can be found in [9; p. 168].

Theorem 16. Let P be a quartic polynomial and β a quadratic polynomial. Then
a complete system of irreducible covariants for the pair P, β is provided by the
polynomials themselves, the discriminant A of the quadratic, the covariants H, T, and
invariants ί, j of the quartic, and the following 11 joint covariants:

(P,β) ( 1 ), (P,β) ( 2 ), (P,Qψ\ (P ? β 2 ) ( 4 ) , (#,β) ( 1 ) , (H,QY2\

(H,Qψ\ (H,Qψ\ (Γ,βp, {T,Qψ\ (T,QψK (6.10)

Of the preceding covariants, Δ, ij, (P, β 2 ) ( 4 ) , ( H , β 2 ) ( 4 ) , and (Γ,Q 3 ) ( 6 ) are
absolute invariants, having weights (0,0). Moreover, β, (P, β) ( 2 ) , (P, β 2 ) ( 3 ) ,
(H, β) ( 2 ) , (tf, β 2 ) ( 3 ) , and (T, β 2 ) ( 4 ) are quadratic covariants, all of weight (2, - 1),
whereas P, H, (P, β) ( 1 ) , (H, β) ( 1 ) , and (Γ, β ) ( 2 ) are quartic covariants, of weight
(4, —2), and, finally, Γis a sextic co variant, of weight (6, —3). Therefore we have the
striking result that, when the original quartic and quadratic have weights (4, — 2)
and (2, — 1), all covariants have essentially the same weightings - integral multiples
of the "fundamental" weight (2, - 1). In particular, for this weighting, all the
classical invariants are absolute invariants. (For comparison, the reader can
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compute the weights of the covariants in the "classical" weighting where P has
weight (4, 0) and Q has weight (2, 0); they are much more irregular, leading one to
believe that our weighting is, in a very definite sense, the most natural!)

Remark. Note that the potential V(x) associated with a quasi-exactly solvable
operator (4.1) is an absolute covariant, and hence, not surprisingly, the explicit
formula (4.4) can be written in terms of the basic covariants, namely

v{χ) = _ 2n(n + 2)H(P) + 3 ( n + l ) ( P ) 6 p 6 ^ _ R ^

where H(P) is the Hessian of the quartic P, given by (6.5).
We are now ready to determine the invariant conditions for full normalizability.

Note that, due to syzygies and redundancies among the invariants and covariants,
every one of our invariant conditions has many different reformulations. We have
merely chosen what appears to be the most convenient or straightforward of the
various options. The computation of transvectants is readily done using a simple
MATHEMATICA program. If P(z) and Q(z) are polynomials of the same degree, we
write P>Q if P(z) ^ Q(z) for all z, and P ψ Q are not identical. In other words,
P>Q if and only if P(z) > Q(z) except possibly at a finite number of points.

Case 1. First, the conditions

J 3 = j 2 φ O , ίH-jP>0, (6.12)

are necessary and sufficient for P to have the canonical form v(z2 + 1). The
normalizability conditions (5.10) can then be written as

(iH-jP,Q2)(4) = 0, and 3(Γ, β) ( 2 ) > ίOn(iH -jP) . (6.13)

Indeed, for P in canonical form, and Q(z) = bz2 + cz + d, we find

z = v2, j= -v 3 , iH-jP = 3v*, T=v3z,

(iH -jP9 6 2 ) ( 4 ) = 1728v4S2, (Γ, β) ( 2 ) = 10v3(4bz - c),

which proves that (6.13) is equivalent to (5.10). (Note that iH—jP is a quartic
polynomial, i.e., transforms under the representation of weight (4, — 2), which
happens to be constant in the given coordinates; similarly Γis a sextic and (Γ, Q)(2)

a quartic.) In particular, since b must vanish, both (Γ, β) ( 2 ) and iH — jP are constant,
so the second inequality in (6.13) says 3(Γ, Qf2) > 10n(iH —jP) except at oo (where
they are both 0), so in a general coordinate system we need only check the inequality
in (6.13) at most at two different points. A similar remark applies to iH —jP.

Case 2. The necessary and sufficient conditions for P to have the canonical form
v(z2 — 1) are

ι 3 = 7 2 + 0, ίH-jP<0, (6.14)

where, for P in canonical form, i = v2, j = — v3 and iH —jP= — 3v4. Now the
problem could either be of the form in Case 2a or the alternative Case 2b, and so we
must take the two alternative sets of normalizability conditions into account
simultaneously. The problem spjits into two subcases, depending on whether or not
b vanishes. Assume first that b Φ 0. Note that, according to (5.14) or (5.18), the
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coefficient b can have either sign, depending on whether we are in Case 2a or Case
2b. We find, by direct computation, that if P is in canonical form, then

(iff -jP, β 2 ) ( 4 ) = - 1728v4fe2 (6.15)
therefore this case is characterized by the invariant condition

( i H - y P , β 2 ) ( 4 ) < 0 . (6.16)

Next, consider the regularity conditions, which are either (5.12) or (5.17), depending
on whether we are in case 2a, b > 0, or case 2b, b < 0. We can re-express these
alternatives using a single condition, namely

b(b + d) = I δ I (c — n*v), (6.17)

where, according to the two sub-alternatives, rc* denotes either n or n + 2. We now
express the normalizability condition (6.17) (in conjunction with (6.16)) in invariant
form. We find, by direct computation, that if P is in canonical form, then

(2/ff + i2P9 β 2 ) ( 4 ) - 144i/(β, β) ( 2 ) - 1728v5ί(6 + d),

Therefore (6.17) has the following rather complicated invariant form

12i2(T, β 3 ) ( 6 ) + 1800n*ί2(ίff - P, β 2 ) ( 4 )

= 25y(3/P-3iff sβ
2)<4 )[(2/ff + i2P, 6 2 ) ( 4 ) - 144i/(β, β) ( 2 ) ] ,

(6.18)

where n* = n or n + 2. Note that each term in (6.18) is an (absolute) invariant.
Unfortunately, no simpler formulation of the normalizability conditions seems to
work!

Alternatively, suppose b = 0, which is characterized by the invariant condition

( i f f -7P,β 2 ) ( 4 ) = 0 . (6.19)

Direct calculation of transvectants shows that the regularity conditions (5.12) now
have the invariant formulation

25[(P, β2) ( 3 )]2(iff -jP) = 864(β, β) ( 2 )[3(Γ, β)<2> + 10n*(iff - j P ) ] 2 . (6.20)

Similarly, the normalizability condition (5.16) (which is the same in both cases) has
the invariant form

3(T,Q)W<l0n(iH-jP). (6.21)

Case 3. This is similar to Case 2, but computationally easier. First the necessary
and sufficient conditions for P to have the canonical form vz2 are

i3=7-2 + 0 , Γ = 0 . (6.22)

The set of full normalizability conditions, which are (5.24), (5.25), or their alternat-
ives (5.29), (5.30), are equivalent to the following three alternative possibilities. The
first is bd < 0, which can be written in invariant form as

( H , β 2 ) ( 4 ) - 4 8 ΐ ( β , β p > 0 . (6.23)
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The second, which is b = 0, c < - nv, d φ 0, and third, which is d = 0, c > nv,
b Φ 0, both have the same invariant form:

(P O 2 Ϊ ( 3 )

( H , β 2 ) ( 4 ) = 4 8 i ( β , β ) ( 2 ) , ( H , β p - 8 i β # 0 , m ( 2 ) o - n < 1 ^ . (6.24)

i=j = O, HφO, (6.25)

are necessary and sufficient for P to have the canonical form z. The normalizability
conditions (5.32), (5.33) can then be written as either

(r, ρ 3 ) ( 6 ) > o, 2400(ρ, ρ) ( 2 ) (#, ρ 2 ) ( 4 ) - 25[(p, ρ 2 ) ( 4 ) ] 2 = 64n*(r, ρ 3 ) ( 6 ) ,
(6.26)

or
(τ ;β 3 ) ( 6 ) = o, (p ? ρ) ( 2 ) >o, 3P{H, ρ) ( 1 ) - 6H(p9 ρ) ( 1 ) = U*H2 , (6.27)

where n* is either n or n + 2. In the second equality in (6.27), the left-hand side is
a (real) eighth degree polynomial, constant in the canonical coordinates, and hence
the equality needs only be checked at three distinct points.

Case 5.

i=j = T=H = 0, (6.28)

are necessary and sufficient for P to have the constant canonical form 1. The
normalizability conditions (5.35) can then be written as

(P, ρ 2 ) ( 4 ) = 0, and (P, ρ ) ( 1 ) > 0 . (6.29)

Again, the first condition implies b = 0, so (P, ρ ) ( 1 ) = — 4c is constant, and so the
inequality needs only be checked for at most two points.

It is worth re-emphasizing that each of the previous invariant normalizability
conditions can be explicitly written in terms of the coefficients of the quartic and
quadratic polynomials defining the operator, and hence, using (2.8), directly in
terms of the Lie algebraic coefficients cαb, ca. Apart from the discriminantal condi-
tion (6.9), the resulting expressions, however, are too unwieldy to warrant display-
ing here. Rather, for any given operator, a straightforward calculation based on the
explicit transvectant formulas for the covariants will determine whether or not it
satisfies the normalizability criteria.

7. Singular Potentials and Normalizability

Cases 2 and 4 also included singular quasi-exactly solvable potentials, and we now
analyze these in some more detail. When the potential V(x) is singular at the origin
it is of the form

: U{X) + ^ - ^ , (7.1)

with U smooth and λ e R. In the canonical coordinate,

(d-\n-\ Case 2a,

2v 2

n ( 7 2 )

- 1, Case 4 .
2
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The question is whether we can assign a physical interpretation to such a potential,
and, consequently, appropriate normalizability conditions. A potential of this type,
with l = l e N a nonnegative integer representing the total angular momentum of
the particle, arises naturally in quantum mechanics when one tries to solve the
Schrόdinger equation for a spherically symmetric Hamiltonian by separation of
variables. Indeed, suppose ψ(x) is an eigenfunction for the Schrόdinger operator
£f = -D*+ V{x) on 0 < x < oo with limit

lim ^(x) = ^(0) = 0 , (7.3)

at the origin. Let r, 0, φ be spherical coordinates in R 3 , and A denote the standard
flat space Laplacian in IR3. Given λ = le¥l and a spherical harmonic Yιm(θ, φ\ the
function

is an eigenfunction for the three-dimensional Schrόdinger operator J f =
— A + U(r). Furthermore,

Ψ e L 2 ( R 3 ) if and only if ψ e L2(0, oo).

Thus, if the parameter λ is a nonnegative integer, we can regard the Schrόdinger
equation for the potential (7.1) on (0, oo) as the radial Schrόdinger equation for the
regular three-dimensional potential U(r) at angular momentum λ, provided that we
use (7.3) as the boundary condition at the origin.

If, however, λ is not a nonnegative integer, we can no longer identify the singular
part of Fwith a centrifugal term, and the singularity of Fat the origin is unavoidable.
When λ φ N, we shall therefore interpret the Schrόdinger equation for (7.1) as the
radial Schrόdinger equation for the singular potential V(r) at zero angular mo-
mentum. (Actually, by redefining the coefficient of the singular term we could obtain
any angular momentum, but we would not gain anything by doing that.) The
boundary condition at the origin is still (7.3), but now we have the additional
problem of ascertaining whether the singularity of V at the origin is "physical."

We recall some standard facts on three-dimensional spherically symmetric
potentials of the form

V(r) = U(r) + L , (7.4)

with U smooth and limr_, + Q0 V(r) > — oo .

i) If

V*-\, (7-5)

then the spectrum of Jf is bounded from below, [18].
ii) If

-\<y<\> σ.6)

then 3tf is not essentially self-adjoint on C°°(R3\{0}), but it has a self-adjoint
extension which is physically acceptable, [4; p. 230].
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iii) If

γ ^ - , (7.7)

then jf is essentially self-adjoint on C°°(lR3\{0}), [18].

Thus the potential (7.4) is physical at least for y > — 4. It is not so clear
what happens for the borderline value y = — \. The asymptotics of the eigenfunc-
tions of the potential (7.4) at the origin demonstrate that the average value
of the potential energy (and hence also the kinetic energy) over an eigenfunction
of (7.4) is necessarily infinite, which is problematic for physical applications,
cf. [4; p. 228]. The same argument will show that this doesn't happen in cases ii) and
iii). In fact, in case iii) there is only one square integrable eigenfunction of Jf near
the origin (limit-point case), for which the average potential and kinetic energies are
finite. In case ii), there are two square integrable eigenfunctions of J f near the
origin (limit-circle case), but the average potential and kinetic energy is finite for
exactly one of these eigenfunctions. In fact, the condition of possessing a finite
average potential and kinetic energy is the extra boundary condition one has to
impose in this case to single out the "physical" self-adjoint extension of ^f from the
infinitely many mathematically possible self-adjoint extensions.

Summarizing, the (radial) potential (7.4) is physically meaningful provided
that

y> - 1 , (7.8)

which implies that all values of λ are acceptable except for λ = —\. Notice,
however, the two different physical interpretations for the eigenvalue problem of
(7.1) if λ is a nonnegative integer. The boundary condition in the singular case is
given by (7.3) for all values of λ.

Applying these remarks to our problem, first consider the singular potentials of
type (5.31), assuming that the regularity condition (5.32) is not satisfied. The
algebraic eigenfunctions for x > 0 are given by

- n

b Λ c

The boundary condition ψ(0) = 0 implies that d > \n, and the full normalizability
conditions in this case are

d>~, and d*~±. (7.9)

Direct calculation of transvectants shows that the first condition has the invariant
formulation

(Γ, <23)(6) > 0: 64tt(Γ, <23)(6) + 25[(P, β 2 ) ( 4 ) ] 2 < 2400(2, β) (2)(tf, Q2)(4),

(7.10)

or

(Γ, β 3 ) ( 6 ) = 0: 8nH 2 + 3P(H, β ) ( 1 ) > 6H(P, β ) ( 1 ) . (7.11)
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The second condition in (7.9) is similar:

(T, β 3 ) ( 6 ) > 0: 64(π + 1)(Γ, β 3 ) ( 6 ) + 25[(P, β 2 ) ( 4 ) ] 2 Φ 2400(β, β) ( 2 ) (H, β 2 ) ( 4 ) ,

(7.12)

or

(T, β 3 ) ( 6 ) = 0: 8(n + 1)H2 + 3P(tf, β ) ( 1 ) φ 6H(P, β ) ( 1 ) . (7.13)

Again, remember that the physical interpretation (and even the domain of the
x coordinate and the particular boundary conditions) of the eigenvalue problem for
£P changes as d varies on [^n, oo)\{j(n + 1)}. In particular, the values of d for
which the potential describes a three-dimensional anharmonic oscillator with
angular momentum / are given by

ί = ^ + / + l , J e N . (7.14)

For / = 0, i.e., for d = \n -f 1, Kis actually regular, but we have seen before that the
algebraic method gives odd eigenfunctions. Hence these eigenfunctions auto-
matically satisfy the boundary condition ψ(0) = 0, and their restrictions to (0, oo)
are therefore solutions of the radial Schrόdinger equation with potential
Ax6 + BxA + Cx2 and zero angular momentum. Thus, for this value of d we have
two different (mathematically equivalent) physical interpretations. When d is nei-
ther of the form (5.32) nor (7.14) then we are still dealing with a radial Schrόdinger
equation, but the potential is singular at the origin and we take the angular
momentum equal to zero.

Similarly, in Case 2a, the eigenfunctions φkf + (x), x > 0, are given explicitly
by (5.13). The boundary condition (7.3) and full normalizability requires that
b + c + d > nv and eithej b < 0, or b = 0,c < — nv. The analogous conditions for
Case 2b are —b + c — d>nv and either b > 0, or b = 0, c < — nv. Therefore, the
range of parameters for which all the algebraic eigenfunctions in one of the two
subcases are normalizable is given by either

b = 0, c< -nv, \d\>nv-c9 (7.15)

or

b(b + d)< \b\(c-nv) . (7.16)

Direct calculation of transvectants shows that these have the invariant formulation

3(T,Q){2)<10n(iH-jP),

25[(P, β 2 ) ( 3 ) ] 2 ( ί t f -jP) - 864(β, β) ( 2 )[3(Γ, β ) ( 2 ) + 10n(ίH - 7 P ) ] 2 < 0 (7.17)

or

12z'2(Γ, β 3 ) ( 6 ) + 1800m2(iH -jP, β 2 ) ( 4 )

-/ 2 P, β 2 ) ( 4 ) - 144//(β, β ) ( 2 ) ] > 0 , (7.18)

respectively. Finally the case λ = — \ that has a questionable physical interpreta-
tion can be expressed in invariant form as either (6.16), (6.18), or (6.19), (6.20), the
second equation in each pair having n* = n + 1.
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