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Abstract. The algebraic integrability for the Schrδdinger equation in 1R" and the
role of the quantum Calogero-Sutherland problem and root systems in this
context are discussed. For the special values of the parameters in the potential the
explicit formula for the eigenfunction of the corresponding Sutherland operator is
found. As an application the explicit formula for the zonal spherical functions on
the symmetric spaces SΌ*nISpn (type All in Cartan notations) is presented.

Introduct ion

The discovery of the method of inverse scattering transformation in the sixties
began a new era in the history of integrable systems. The stormy development of
the theory of integrability influenced various domains of mathematics and math-
ematical physics. First of all it is concerned with the spectral theory. In particular,
in 1974-76 there were discovered the beautiful results in the spectral theory of the
Schrόdinger operator

L = ~ J^i + <x) (1)

with a periodic potential u(x) (see [1] and references there). It turned out that such
a spectral property of L as finite-gapness is equivalent to the existence of commut-
ing differential operator A of odd order:

d2n + ί

[ L > Λ ] = 0, A = - ^ τ ϊ + ...9 (2)

or the existence of the eigenfunction ψ9 which is determined on the algebraic curve
(see [1]).

This example demonstrates very well the phenomenon, which we would like to
call as the integrability in the theory of the Schrόdinger operator. In the present
paper we continue the investigations of the multidimensional case begun in [2].
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Recall that the quantum problem with the hamiltonian

H = p2 + U{x), p = i τ - , x e R "

ox

and the corresponding Schrόdinger equation

Lφ = - Δφ + U(x)φ = Eφ (3)

is called ίntegrable, if there exist n commuting differential operators
L,! = L, L2. . . , Ln with algebraically independent highest symbols Px = ξ2,
P2(ξ), . . . , Pn{ξ).

Suppose we have one more operator Lo, commuting with Lf (i = 1,. . . , n) and
independent of them. More precisely, we will assume that the highest symbol P0(ζ)
of L o takes the distinct values at the roots of the equations P f(ξ) = Et (i = 1,. . . , n)
for almost all Et. In this case we will call Schrόdinger equation (3) algebraically
ίntegrable.

Problem. To describe all algebraically integrable Schrόdinger equations.
This problem even in a more general form was first investigated by

I.M. Krichever, who proved in particular that the corresponding joint eigenfunc-
tion φ actually is determined on some algebraic variety [3]. But the first non-
separable examples of such commutative rings were found much later in [2].
We call the Schrόdinger operator a separable if it commutes with an operator
in a smaller number of variables. An example of such operators is
given by

L = - A + Uxixx) + + un(xn) ,

where u^x) are the finite-gap potentials for all i = 1 , . . . 5 n.
In the paper [2] it was conjectured that all nonseparable algebraically integr-

able Schrόdinger equations in dimension n > 1 are nothing but multi-dimensional
analogues of Lame equations,1 connected with root systems of Lie algebra:

L = - A + Σ 4 ( 4 + l)(α, α)^((α, x)) , (4)

and their degenerations. Here R + is the set of positive roots of Lie algebra G, R" is
identified with its Cartan subalgebra H « H*, £P is the Weierstrass elliptic func-
tion, 4 are integers. In [2] /α were assumed to be equal, but further investigations
showed that at least in degenerate cases (see below) 4 should be allowed to depend
on the length of α.

We are still not able to investigate the elliptic case and want to present here
some results concerning the degenerations of (4):

L= -A+ Σ 4 ( 4 + l ) ( α , α ) / « α , x ) ) , (5)

1 This conjecture does not contradict the recent result of J. Feldman, H. Knόrrer and E.
Trubowitz [4], because all operators (4) are singular on the reals
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where / = — — = — , — ~ — or -^. The last case can be obtained as the limit of the
smbrωz sin ωz z

first one when ω -> 0. The first two cases come to each other after replacing ω -> ίω.

For the root system A._i and f= -7—5— the corresponding operators (5) are
siirωz

the special cases of the Sutherland operator [5]

L = ~ A + X — y - / (6)
i<j sin co(Xi — Xj)

and for/= —j the Calogero operator [6]

(7)

The elliptic generalizations have appeared after Moser's investigation [7] of the
corresponding classical systems. Olshanetsky and Perelomov were the first to
propose the generalization of (6) and(7) using the root systems [8-10].

It is very interesting that the operator (6) for g = — \ has appeared already in
1964 in the paper [11] by Berezin et al. There is a remark in [11], which says that
the radial part of the Laplace-Beltrami operator for the symmetric space of type AI
is conjugated to such operator L, but it was left without further development. Only
in 1978 Olshanetsky and Perelomov [12] proved the following general fact.

Let X — G/K be any symmetric space (SS) of negative curvature, R be the system
of its roots α with the multiplicities mα (see [13]). Let us introduce the function

ω

and denote by ξ the operator of multiplication by ξ9 ξ(f) = ξf.

Theorem [12]. The radial part B of the Laplace-Beltrami operator on the space X is
conjugated to the operator

-p2

L= A+ X g, .

αe^+ smh2ω(α, x)
^ = τ ^ α + 2m2 α-2)(α,α), P = ^ Σ m « α (8)

by means of the operator ξ:

L= -ξoBoζ-i . (9)

These special values of gΛ are sometimes called group values. The comparison of the
formulas (5) and (8) together with the table of all irreducible SS (see [10, 13]) shows
that the radial part of the Laplace-Beltrami operator is conjugated to the
Schrόdinger operator of the form (5) only when SS X has a complex group of
motion or has the type All or EIV.2 For SS with the complex group G the

2 It is very interesting to notice that the SS of type All and EIV has the quaternion and octonian
groups of motion correspondently, so "integrable" SS coincide with the SS, connected with the
algebras over 1R with division
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Laplace-Beltrami operator is conjugated to the trivial case 4 = 0: L = A. This fact
was used by Berezin [14] to find the spherical functions on such SS. For the type
All, i.e. for the SS X = SU*n/Spn, corresponding Schrόdinger operator has the
form

H= -Δ+ Σ • h2
4f ϊ

r^j sinrrω(Xj — Xj)
We will show now that this operator is algebraically integrable in the above sense,
and moreover we will find explicitly its eigenfunction, proving some conjectures in
[2]. As a corollary we give the explicit formulas for the zonal spherical functions of
these SS. For such functions there exists the general Harish-Chandra formula,
representing them as integral over the compact group K (see [13] and below). As
a by-product we have an explicit expression for this integral over K = Spn. For
n = 3 and 4 as well as for the SS X = E6IFA of type EIV such formulas can be
extracted from [15, 16].

This paper was written when one of the authors (A.V.) was a guest of the
Forschungsinstitut fur Mathematik (ETH, Zurich). He is very thankful to Prof. J.
Moser for the hospitality, and to Profs. J. Feldman, H. Knόrrer and E. Trubowitz
for the stimulating discussions.

1. Construction of Some Algebraically Integrable Schrόdinger Equations
and Their Solutions

The following construction is a small modification of that proposed in [2].
Let A be a finite set of vectors α e 1R" (for the beginning noncollinear) with the

prescribed multiplicities mα e N. Let the function φ(k, x), k, x e R" have the follow-
ing properties:

1) φ has the form
) , (11)

where P(k, x) is some polynomial on k with the leading term

A(k) = Π Λ *Γ
oceA

2) The relation
φ(k + sac, x) = φ(k - sα, x) (12)

holds for all oceA, s = 1,. . . , mα and for all fe, belonging to the corresponding
hyperplanes (fc, α) = 0.

Remark. In the paper [2] the relation (12) is written in another, but equivalent,
form

δMΛΓ'δJ-'ψ^O, (13)

where
δaφ(k, x): = φ(k + α, x) - φ(k - α, x) .

Proposition 1. There exists no more than one function φ with these properties.

Proof. It is sufficient to prove that the leading term of the polynomial P(/c, x) for
the function φ of the form (11) with the property (12) is divisible by (k, α)m° for all
OLE A. But it easily follows from the formulas (13), which are equivalent to (12).
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The main question here is the existence of such functions φ. In the paper [2] the
authors conjectured that if A is the system of positive roots of simple complex Lie
algebra then the function φ with the prescribed properties does exist. The following
result proves this conjecture.

Theorem 1. Let A be the set of positive roots of simple complex Lie algebra G with
the multiplicities mα, depending only on the length of on, then the function φ with the
properties 1 and 2 exists and is unique.

Remark. The theorem is valid also for the nonreduced root system BCn, if we
replace the relations (12) for the roots α and 2α into

φ(k + sα, x) = φ(k — sα, x)

for (k, α) = 0 and s = 1, 2,. . . , mα, mα + 2,. . . , mα + 2m2α.

The proof of this theorem uses the theory of generalized hypergeometric
functions, developed by G. Heckman and E. Opdam in [17-21]. It is published in
the separate paper [22].

Recently K. Styrkas proved the following theorem, which shows that under
some assumptions the inverse statement also holds in a good agreement with the
second conjecture of the paper [2].

Theorem (K. Styrkas [25]). If the set A consists of the mutually noncollίnear vectors
with unit multiplicities, then the function φ with the properties 1 and 2 exists only if
A u ( — A) is the root system of some semisimple Lie algebra.

The following theorem explains the importance of such functions φ for the
theory of commutative rings of partial differential operators (PDO).

Let us consider the ring RA, consisting of the polynomials/(/c), satisfying the
relations (12):

f(k + sα) =f(k - sα) (mod(fc, α)) ,

for all OLE A, s = 1,. . . , mα.

Theorem 2. If the function φ with the properties (11), (12) does exist, then to every

( ^ \
x, — 1, such that

ox J

Lfψ(k,x)=f(k)ψ(k,x).

All such operators form a commutative ring, ίsomorphic to RA.

The proof can be found actually in [2], but we present it here to show that the
construction of Lf is quite effective.

Lemma. Any function of the form φ = Q(k, x)exp(/c, x) with a polynomial on
k Q which satisfies the relations (12), can be represented in the form

for some PDO L.
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Proof of lemma. It is easy to deduce from (12) that the leading term of Q has to be
divisible by Λ(k) = Y[aeA(K α)m* Let r(k, x) be the corresponding quotient. For

' d
the operator Lt = r — , x the function

\dx )

φx = φ- Lγφ

also satisfies the relations (12) and has a similar form

Φi = Qi(fc,x)exp(fc,x),

but the degree of the polynomial Qλ on k is less than deg Q. Repeating this
procedure we come to the statement of lemma.

To conclude Theorem 2 from this lemma it is sufficient to consider the function

φ=f(k)ψ(Kx).

If/ belongs to RA, then this function satisfies the relation (12) and by the lemma
there exists an operator Lf such that

The commutativity of such operators Lf and Lg follows from the fact that the
equality Lφ = 0 for the differential operator L means that L = 0.

Remark that/(/c) = - k2 belongs to RA for all A. The corresponding operator
has the form

We should recall that it works only if the function φ with the properties (11), (12)
does exist.

We know that it is the case if A is the set R+ of the positive roots (see Theorem
1). Any polynomial invariant under the Weyl group W, generated by the reflections
in the planes (α, k) = 0, belongs to RA. According to Chevalley theorem the algebra
Sw of ^-invariant polynomials is freely generated by n polynomials
P1=k2,P29...,Pn.

It is very important for us that the ring RA is much bigger than Sw. Indeed, any
polynomial p from the ideal, generated by

q(k) = Π ((fc> * ) 2 - («, °02) ((fc, α) 2 - mα

2(α, α)2) ,
cxeA

satisfies the relations (12) and therefore belongs to RA, but in general is not
invariant under the Weyl group. It means that the corresponding commutative ring
of PDO is supercomplete in the sense of [2] and Schrόdinger equation

(α,α),
—2—φ = Eφ (15)

is algebraically integrable.
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These equations for the classical root systems have the following form

BC ΛύBCn. - Δψ

2r(r+l) v 2r(r+l) λ+ k ψ
^ + Xj)

„ 2m(m + 1 )

To complete the investigations we should only find the explicit formulas for the
functions φ9 what we are going to do now for the root systems An and m = 1. As it
was shown before it is the most interesting case for the theory of SS. Such formulas
were first conjectured in [2] (see p. 606), now we want to give the proof.

Remark. In the recent very interesting paper [21] G. Heckman proposed another
approach to the similar problem, using the Dunkl differential-difference operator.
It is much more general but seems to be less effective in our concrete case.

2. Explicit Formulas for the Function ψ for the Root System An-l9 m = 1

Let us introduce the differential operators Q '̂ "ι\ where i u . . . , ίk and N are
distinct natural numbers, by the following recurrent procedure [2]

QN — 1? QN ~ @i ~ ^N ~ 2co cothco(Xi — xN) ,

QN' '"l" = QN' 'lk~\{dik-δN)-2ωcothω(xik-xN)Qlχ "h~ι

+ Σ 2 ω 2 ή n h - 2 ω ( x i s - x i k ) Q Ϊ ' 'C' ' l A 1 , (16)
s = l

where the symbol i means that this index should be omitted and Bt = d/dxi. It is
easy to check that the operators Ds = Q s ' s can be found also by replacing
ki -> di — ds in the following polynomial on k

Ds(k, x)

I — }_, 2cothco(Xi — Xs)-^r + L ^ ω s m " (χί ~ Xj) I } j kt .

Theorem 3. The function

) (17)

satisfies the relations (12) and therefore is the eigenfunction of the commutative ring of
PDO, containing the Schr'όdίnger operator (10).
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Proof. It is sufficient to prove that the operator

D = DnoDn-1o oD2 (18)

is right-divisible by

Qι. = (di — dj) — 2 ω c o t h ω ( x I — x7) = shco(x, — Xj)°(di — dj)o sh~1ω(xi — Xj) .

Indeed

Q) exp(/c, x) = shω(Xi — Xj)(di — dy)2exp(fc, x)

= 2(ki — kj)shω(Xi — Xj) = 0 mod(fcj — kj) .

By the definition the operator D is right-divisible by Q\. We will prove now that
the operator D is anti-invariant under the permutation of coordinates

σ J D ) = ( - l ) σ A σeSn. (19)

Together with the previous remark it will imply the theorem.

Lemma 1. Let ui} = ufa — Xj), u(x) = 2ω2sinh~2ωx. Then the following relation
holds

(20)

Proof of Lemma 1. Let us introduce the notations; v(x) = 2ω coth ωx,

vί{ = v±xίTxjl dtj-di-dj, Q = Qι

n " n-\ Ql = Q = Q];-X — n'\ Qij =
Qln "" ' ' ' ' ' ' ' 7 ' ' ' " ' n \ etc. Then the formulas (16) will have a form

β = β'δfc - vinQ
l + Σ ^ΰ βi;"

We have for 1 ^ i ^ n — 1,

and

It follows also from (21) that

en

2 β = "Σ «4 δ f - ϊ «h 3, β' = "Σ Mi- β' + 2"Σ
i = 1 i = 1 i = 1 i < j

Now the relation (20) takes the form

t = l
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Remark that

so the left side of (20') has the form

"Σ 2(diQ)di + 2(dnQ)dn + "Z Sf Q + d2

n Q + Σ (MAO* ~ Qj) ~ 2<4jRiJ)
i=l ί = l i<j

= "t (2ub,Q
ιδb, - 2u'inQ

ι) + "Σ 2ul

ij(Qi'δij + Qι - Q>) + 2^ uinujnQ
ij.

ί=l i<j ί<j

Using the relation wr = — 2vu we can rewrite it as

(Mj(Vin ~ Vjn) - 2(uin + M jB)Uy)βy

<j

+ "x 2 « ; Λ . t ρ ^ + " χ 2«ίnMj π β y .
i Φ j Φ fc i < j

It is easy to check by the straightforward calculation that the following identities
have a place

Σ U'σ(l)σ(2)Uσ(2)σ(3) = 0 »
σeS3

^13^23 + 2l/12Ol3 - ^23) = (t>l3 + ^23)^12

for

w = 2ω2 sinh ~ 2 ωx, t; = 2ω coth ωx .

Thus the previous expression reduces to (Σ"Γi 2uin)Q. Lemma 1 is proved.

Lemma 2. The operator D defined by (18) satisfies the relation

[4,D] = 2"Σ utJD. (22)

Proo/ From (20) one can deduce the following chain of relations:

Q\oΔ={Δ-2u12)oQ\,

Q\2o{Δ - 2u12) = {Δ- 2uί3 - 2u23)oQl\ etc. .

Finally we have

Now let us consider the operator
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for the arbitrary permutation σeSn. It is evident that σ*(D) satisfies the same
relation (22) as well as the difference if = σ*(D) - ( - l ) σ £ , which we want to
prove to be zero.

Lemma 3. Let 3? be a differential operator such that ord[zl, <£ ] ^ ord $£. Then the
highest symbol of ££ is polynomial on x.

Proof. See in [14, Lemma 2.5]. When x tends to infinity staying in the Weyl
chamber

C= {xeW\xί >x2" - >xn)

then σ*(D)->( — l)σ Π;<j(^ϋ ~ 2ω), as it follows from the definition of D. It
means that £f ~> 0 when x -> oo, x e C.

Comparing this fact with Lemma 3 we come to i f = 0 and formula (19).
Theorem 3 is proved.

Example. For A2 the formulas (16) lead to the following form of ψ:

Ψ = (^12^13^23 ~~ 2ω co t h cox 12/c13/c23 * *

+ 4ω 2 coth ωx 1 2 cot ωx13/c23 + * *

— 8ω3 c o t h ω x 1 2 c o t ω x 1 3 cothωx 2 3

— 4ω 3 s inh" 1 ωx 1 2 s inh~ 1 ωx 1 3 s inh~ 1ωx 2 3)

-I- k2x2

Here /ĉ  = kt — kj, x^ = Xi — Xj and we omit the terms which differ only by
permutation of indices.

3. Applications to Harmonic Analysis: Zonal Spherical Function and the
Inversion of Abel Transformation for the Symmetric Spaces of Type All

Let G/K be a symmetric space (SS), DK(G) be the ring of all differential operators on
G, which are invariant under G-left and K-right shifts. The zonal spherical function
of X is defined [23, 24] as joint eigenfunction φ(g) of the operators from DK(G\
which is bi-invariant under K and normalized by φ(e) = 1. For the SS of non-
compact type, i.e. for connected real semisimple Lie group G with a finite center
and its maximal compact subgroup, there exists Harish-Chandra formula, giving
all spherical functions as an integral over X,

φλ(g) = J exp((U - p)H(gk))dk . (23)
K

Here H(g) is determined by the representation g = fcexp H(g)n according to
Iwasawa decomposition G = KAN, stf is Lie algebra of A9

Σ
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R+ is the set of positive roots of the Lie algebra & of the group G with respect to si,
ma are the multiplicities (see [13]).

We want to give the explicit formulas for the zonal spherical functions φλ(g) in
the case of SS of type All in Cartan notation, i.e. for X = SU%JSpn (see also [26]).

Let δ(x) and q(μ) be the following functions

δ(x) =

q(μ) = Π ((ft " N? ~

Theorem 4. The zonal spherical function φλ(g) for SS X = SU%n/Spn of type All /ιαs
the /orm

ΦA(̂ ) = Π (2/ - l ) ! ^ - 2 ^ ) ^ 1 ^ ) Σ ( - iγψ(iσ(λ\x),
7 = 1 σ e S n

w/zere λ = (λi,. . . ,λn)e<Cn, geA: g = expdiag(x1 ?. ..9xn9xl9... ,xB), ^ " = 1 x£

= 0, and ^ is given by (17).

The proof is a simple consequence of the previous considerations and
Gindikin-Karpelevic formula for c-function (see [13]). Notice that K-biinvariant
function on G is completely determined by its restriction to A = exp s/9 because
G = KAK.

For n = 3 and n = 4 similar formulas can be extracted from the papers by
Vretare [15] and Beerends [16].

Our results allows also to invert the integral Abel transformation

(Af)(g) = exp(p9a)Sf(gn)dn9 (24)
N

where g = expaeA, aesrf, p, si and N are the same as above. It transforms the
space of K-biinvariant functions on G into the space of PF-invariant functions on A9

where W is the Weyl group of the root system R. For our case, i.e. for SS of type
All, for the Abel transformation (24) Beerends found the explicit integral repre-
sentation [16]. He found also the formulas for the inversion of this transform for

Theorem 5. The following operator

(±iy (25)
where c~1 = 2n(w~1} f|"= 1 (2/ — 1)! and Dt are the same as in (17), is the inversion of
Abel transform (24) for X = SU*n/Spn More precisely: the function B(Af) co-
incides with the restriction of K-biinvariant function f on A = {exp diag(x l 5. . . , xn,

£ }

The proof follows from Beerends results [16], reducing the problem about the
inversion of A to the construction of the so-called shift operator [19, 20]. In our
case it has a form (25).
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