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Summary. We show that a positive definite random Jacobi operator L over an abstract
dynamical system T : X —> X can be factorized as L = D2, where D is again a
random Jacobi operator but defined over a new dynamical system S : Y —• Y
which is an integral extension of T. An isospectral random Toda deformation of L
corresponds to an isospectral random Volterra deformation of D. The factorization
leads to commuting Backlund transformations which can be written explicitly in terms
of Titchmarsh-Weyl functions. In the periodic case, the Backlund transformations are
time 1 maps of a Toda flow with a time dependent Hamiltonian.

1. Introduction

Backlund transformations for Toda lattices have been given in a nonexplicit form by
Toda and Wedati [WT,T]. Adler [AJ found that Backlund transformations have their
origin in a factorization L = AA* in analogy to the Miura map for the KdV equation.
It has been mentioned already by Moser [M] that the relation between the Kac v. Mo-
erbeke system and the Toda lattice has its algebraic origin in a factorization L = D2,
where D is a matrix on a vector space with twice the dimension of the vector space
on which L acts. In those papers D or A are given first and L is obtained by forming
L = AA*~ = D2. Recently, the Poisson structure of the Backlund transformations was
studied in [DL] for the periodic Toda lattice and also in the more general context of
Toda equations on Lie groups.

In [K] we studied Toda lattices with random boundary conditions. They were
obtained by making isospectral deformations of random Jacobi operators. The ran-
dom Toda lattice is a generalization of both the periodic and the tied Toda lattice.
It is defined over an arbitrary abstract dynamical system. We will show here that
Backlund transformations can also be done in this case. They are generalizing the
Backlund transformations known for periodic and aperiodic Toda lattices investigated
in [T,A,DL]. What is new here, (beside the fact that we are working with random



590 O. Knill

Jacobi operators and not with finite dimensional matrices), is that we have explicit
formulas for the transformations in terms of Titchmarsh-Weyl functions. These func-
tions are Green functions and play an important role for the study of spectral problems
[S] and inverse spectral problems [CK] of stochastic Jacobi matrices.

The commutativity of the Backlund transformations follows from the fact that in
the periodic case, there is an interpolation of the transformations by time dependent
Hamiltonian flows. The Toda flow deformation of the operator L gives a random
Volterra flow for D. The factorization L - D2 leads to a kind of supersymmetry for
random Jacobi matrices.

2. Random Toda Flows

We redefine shortly the definitions in [K] needed here: An ergodic dynamical system
(X, T, μ) is a probability space (X, μ) together with a measurable ergodic invertible
map T on X that preserves the measure μ. The crossed product X of L°°(X) with the
dynamical system (X, T, μ) is a C* algebra and consists of sequences Kn G L°°(X)
with convolution multiplication

(iθ//)n(;r) = ]Γ i ^ μ ^ Λ )
k+7n-n

and involution

(K*)n(x) = K_n(Tnx) .

An element K G X is written in the form

where r is a symbol. The multiplication in X is the multiplication of power series
with the additional rule τkKn = Kn{Tk)τk for shifting the r 's to the right and the
requirement r* = τ ~ ι . The norm on X is given by

111^111 = I \\κ(χ)\\ l o o ,

where K(x) is the infinite matrix

[K(x)]mn = Kn^n(Tmχ) .

The multiplication and involution in X is defined such that

K G X ^ K(x) G θ(/2(Z))

is an algebra homomorphism:

KL{x) = K(x)L(x), K\x) = K(x)* .

According to Pastur's theorem (adapted to the present situation), the spectrum of
K(x) is the same for almost all x G X The algebra X has the trace ix(K) = Jχ KQ dμ.
An element K has the decomposition K = K~ + Ko + K+ defined by requiring
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K± = ^2±n>oKnτ
n. With C C X is denoted the real Banach space consisting of

random Jacobi operators
L = aτ + {arf + b

if α, b e L°°(X, R). The number

/ ί
M(L) = exp / log(α)

is the mass of L. We say it has positive definite mass if there exists δ > 0 such that
a(x) > δ for almost all x G X. For a Hamiltonian

H G Cω(C) = {#(L) = tr(/i(L)) I ft entire,

the random Toda lattice
L = [BH(L),L],

with BH(L) = hf(L)+ — h'(L)~ is an isospectral flow in C. It reduces to the periodic
Toda lattice in the case when |X| is finite. The flows all commute and exist globally.

3. Factorization of Random Jacobi Operators

3.1 Definition of the Titchmarsh-Wey I functions.

Given a random Jacobi operator L G C with positive definite mass. For almost all
x G X, L(x) is a bounded operator on /2(Z). We consider it also as a matrix acting
algebraically on R z . Fix an energy E outside the spectrum of L. The time independent
Schrodinger equation

L(x)u - Eu

admits a two dimensional family of solutions {un(x)} G Mz. If we fix for example
uo,u\, all the other values un can be calculated recursively by

anun+\ + α n _iu n _i + bnun = Eun ,

where an = a(Tnx) and bn = b(Tnx). With the vector

wn(x) = (an(x)un+\(x),un(x)) ,

the Schrodinger equation can be written as the first order system

AE(x)w-ι(x) = wo(x) ,

where AE is the transfer cocycle

1 0

The name "cocycle" is usually used for the function Z x I - > SL(2, C),

(x, n) H-> AE(x) = AE{Tn-\x)) AE(Tx)AE(x) .

Claim . For E outside the spectrum of L, the cocycle i β has a positive Lyapunov
exponent
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λ(AE)= lim n-{ f log(\\AE(x)\\) dμ(x) .
71-OC Jχ

Proof . The Thouless formula

Re(tr(log(L - E))) = log(M) + λ(ΛE)

shows that the Lyapunov exponent E —> X(AE) is harmonic outside the spectrum.
Because άzl(AE(x)) = 1, the Lyapunov exponent takes values > 0. According to
the maximum principle for harmonic functions, the minimum 0 can not occur in the
resolvent set. D

It follows from the multiplicative ergodic theorem (see [R]) that for E in the resolvent
set, there exist one dimensional coinvariant stable und unstable vector spaces W*(x)
such that

AE{x)W±{x) = W±(Tx) .

For almost all x G X we can take a unit vector w±(x) G W±(x) and define u^{x)
as the first coordinate of w±(x). Like this, there exist solutions u+(x), u~(x) G Mz of
L(x)u = Eu satisfying {<(£•)} ^ ^2TO and {u~(x)} G / 2 (-N). The Titchmarsh-Weyl
functions are

u+(Tx) _ u~{Tx)
m (x) = a(x) , m (x) = a(x) —- ,

u+(x) u (x)

They are measurable according to the multiplicative ergodic theorem and are allowed
to take the value oo or — oo.

Remark . Contrary to u^(x),u~(x), which were defined pointwise for x G X and
only up to a multiplication with a nonzero constant, rn+(x) and m~(x) are uniquely
defined measurable functions.

Remark . We use slightly different Titchmarsh-Weyl functions than in the literature.
In [CL1 for example

u+(Tx)
m (x)

a(x)u+(x)
is used. Often, (for example in[S, CFKS],) stochastic Jacobi matrices are discussed
with a(x) = 1.

3.2 The Titchmarsh-Weyl functions as Green functions.

Related to the operator L(x) G B(12(Z)) are the operators LN(x) G B(12(N)) defined
by

[LN(x)]lJ = [L(x)]lJ, ι,3 > 0

and L-N(x) G BQ2(-N)) by
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By the spectral theorem there are two probability measures dσ+, dσ~ on the real axes
such that

,v~ v~, ~, , - , , - yR E , _ E

Lemma 3.1.

, /• dσ+(x)(£') _ / x / /• c/σ-(Γx)(£')ΛL E'-E

E'-E / • -' ^ ~'L E'-E

Proof. UQ(X) or u0 (x) can't be zero, or else u^ = u^(Tnx) is an eigenfunction for
the matrix L±N. This is not possible since the spectra of LN(x) and L~N(x) are lying
in an interval containing the whole spectrum of L(x). Define the solutions {v^(x)}
and {v~(x)} of L(x)u = Eu by imposing the boundary conditions VQ(X) = VQ(X) = 0
and ?;|(.τ) = vZ\(x) = 1. Because both UQ(X) and ii^(.τ) never can get zero, v+. u+ and
v~, u~ are two pairs of linearly independent solutions of L(x)u - Eu. This implies
that the two Wronskians

]n = det

are both different from zero. Because det(A£;(x)) = 1 and

the Wronskians are independent of n. Define symmetric matrices G+(x).G~(x) by
requiring that for m < n,

r ^ - , Λ η _ v_m(x)u_n(x)
[U (X)\-m.-n- -T—7-—

and [G±(x)]nm = [G±(x)]mn- For all n,m G N one has

[G+(x)]mn(x) - [(LN(x) - ̂ ) - ] ]

To verify this, use L{x)v(x) - Ev as well as the symmetry of the matrices
Especially

m+(x)
' aHx)
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and

a(T~ιx)u0 (x)

D

Remark . The lemma implies that —ra^x), —n^x) are Herglotz functions: they are
mapping the upper complex half plane into itself.

3.3 Factorization of a random Jacobi operator.

We will simplify the notation, by often leaving away the x in the variables m±, n ± ,
a,b. If we avoid the superscripts +, — in m, n, etc., we mean that both equations (one
with superscript + and one with superscript —) are true.
One can calculate the functions α, b back from m, n by

77i + n = £ — 6 ,

m . n (T) - a2.

We want to show now, how a random Jacobi operator L can be factorized as
L = D2 + E.

We take a special integral extension (Y. 5, ^) of the dynamical system (X, T, μ)
(see [CFS] for the general notion of an integral extension ). It is defined like this:
Y consists of two copies X\, X2 of the probability space (X, m). S is the identity
map from X\ to X2 and the mapping T from X2 to X\. The S invariant measure
v is determined by v(Y) = μ(Y)/2 for Y C XL. Define on Y a new function c by
requiring that for x G X = X\,

c(x) = —m(x), c(S~ιx) - —n(x) .

We have then for all x G X\,

b(x) ,

c(x) • c(Sx) = a2(x) .

Because c is defined on Y, these formulas extend α, 6 to functions on F. Define
the C* algebra y analogously to X as the crossed product of L°°(Y) through the
dynamical system (F, S, v). The elements of y can be represented as

where σ2 = r. Call ^ the map

where Kn(x) = K2n(%) for x £ X\ - X. The mapping Ψ gives for
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[φ(K)(x)]nm = [K(x)\2n,2m

Theorem 3.2.
a) The random Jacobi operators

are bounded for E outside an interval containing the spectrum Σ{L) and

ψ(D2) = L- E .

D is self adjoint if E is real and below Σ(L).
b) The operators

have the same spectrum then L.

Proof.
a) If E is real and below the spectrum of L, we have from Lemma 3.1,

-m±(x) > 0, -? i ± > 0 .

If E is outside an interval containing the spectrum of L, πv^ take complex values in
general. But they are bounded in modulus by the inverse of the distance from E to
the interval containing the spectrum of L. The relation ip(D2) = L — E follows from
the definition:

c{S~x)) + y/c(S-2) c(S-ι)σ~2

a(T~l)T* =L-E .

b) S is ergodic as an integral extension of T [CFS1 and D is an ergodic random
Jacobi operator over the ergodic dynamical system (Y, S, v). The spectrum Σ(D(x))
is constant almost everywhere. Especially it is translational invariant: the spectrum of
D is the same as the spectrum of D(S). Thus, also the spectrum of

is the same as the spectrum of

Π

For simplicity, we will leave away in the future the restriction map ψ and write
just L = D2 + E instead of L = φ(D2) + E.

Remark . The requirement that L has positive definite mass could be weakened. If
L has positive mass then /log+ (| |A^||) dμ is finite and Oseledec's theorem is still
applicable to define the Titchmarsh-Weyl functions. If the mass is zero and a(x) > 0
for almost all x G X then one can consider the cocycle a(T~ι) • Λβ to find the
Titchmarsh-Weyl functions. If a(x) - 0 on a set of positive measure, the Jacobi
matrix L(x) is block diagonal for almost all x G X and a decomposition L = D2 + E
is then in general no longer possible.
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4. Backlund Transformations

4.1 Bcicklund transformations as isospectral transformations.

Theorem 4.1. For II e Cω(C), the Toda flow L = [BH{L), L] is with D2 = L - E
equivalent to the Volterra flow

D = [BH(D2 + E), D] .

The mapping

BTE : L ^ L(S)

is a Bcicklund transformation: It is isospectral and commutes with each Toda flow.

In order to prove Theorem 4.1, we need a lemma

Lemma 4.2. Given two random operators D = dσ + σ*d: R = rσ + σ*r over the
ergodic dynamical system (Y. S, v). If d2 is not constant on Y and DR + RD = 0 then
R = 0.

Proof. The equation

RD + DR = (rd(S) + dr(S))σ2 + 2(dr + (dr)(S~1))

+ ((rd(S) + dτ{S))σ2Y =0

is equivalent to
d!r + (dr)(5~1) = 0 . (1)

r d(S) + d r(S) = 0. (2)

From (1), we get dr - —dr(S~ι) or dr = dr(S~2). If S2 is ergodic, then dr =
CQ = const and from (1) follows Co = 0 and so r = 0. If S2 is not ergodic, then
Y = X\ U I 2 and 6'2 is ergodic on Xz. This implies that

dr = -(dr)(S) = Co = const

when restricted to X\. Equation (2) gives

d(S) d \ (d{S)2-d2)

dd(S)

=°
which implies that Co = 0 unless d2(S) = d2 almost everywhere. By ergodicity of
5, the equation d2(S) = d2 is equivalent to d2 = const which was excluded by
assumption. Therefore r = 0 and so R = 0. D

We prove Theorem 4.1:

Proof. If D fulfills the equation D = [£//(D2 + E), DJ then L(t) = D2(t) + E satisfies
the differential equation L = [Bjj{L),L\.

— L(t) = ̂ -(D2(t) + E) = DD + DD
dt dt

= [BH{D2 + E), £>]£> + D[BH(D2 + E), DJ
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If on the other hand L(t) satisfies L = [BH(L), L], then

DD + DD = [BH{D2 + E). D2] = [BH(D2 + E), D]D + D[BH(D2 + E), D] .

where D(t) is defined by L(t) = D(tf + E. With

we can write this as
RD + DR = 0.

From Lemma 4.2, we have R = 0, unless D is constant. But in the later case D - L - 0
anyway.

Each Toda flow commutes with L H^ L(T) and in the same way, each Volterra
flow is commuting with D ι—> D(S). The just proved relation between the Toda and
the Volterra flow shows that the Toda flows are commuting with L t—> L(S) and the
operators BT^L satisfies the same differential equation as L. A transformation with
this property is called a Backlund transformation. D

Example . In the case h(L) = L2/2, the motion of D is given by the differential
equation

c = 2c(c(S)-c(S~1))

which is called the Volterra, Kac Moerbeke or Langmuir lattice. It is a conservation
law for the integral

/'
/ log(c) dv

and in terms of the Titchmarsh-Weyl functions m. n it can be rewritten as

rh = 2rn(n — n(T)) .

ή = 2n(m(T~ι) - m) .

Also these differential equations are parametrized by a parameter E.

A historical remark. The Volterra system appeared first in 1931 in Volterra's work.
He studied the evolution of a hierarchical system of competing individuals. Henon
mentions in a letter (1973) to Flasehka the relation of the Toda lattice with the Volterra
system. In 1975 the version with aperiodic boundary conditions was solved by Moser
[Ml. In the same paper, the relation with the Toda lattice is published.

Remark. Backlund transformations are also defined for complex values E outside the
convex hull of the spectrum. They still preserve the spectrum, but the images are no
more selfadjoint operators. The norm can blow up in an isospectral way. Indeed, if E
is approaching a pole of m+(x) in a gap of the spectrum, then \\BT+(E)L(x)\\ —> oc.

4.2 Backlund transformations in the coordinates of Flasehka.

A Backlund transformation can also be descr ibed in the canonical coordinates q.p

L°°(X) if they exist. If log(α) is a additive coboundary: 3/ G L^iX)
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log(α) = /(T) - / ,

we can define q.p by
4α 2 = eq{T)~q, 26 -p .

We will see that there is an additional free parameter for doing the Backlund trans-
formations in the coordinates q.p. The generating function and the implicit canonical
transformations in the following proposition have been given by Toda and Wedati
[WT] in the case of aperiodic Toda lattices where the Backlund transformations are
not isospectral.

Theorem 4.3. For E outside an interval containing the spectrum Σ(L), the Backlund
transformations BTE

r /m\

b' = b + n- n(T), a2 = a2'
m

can be written in the canonical variables q,p as canonical transformations BTE :
(q<p) -> (<i',p')

Oq

' q'-«-c q{T)~ql+c + IEp = e e
dq'

with a generating function

W{q. q') = [ eq/-q~C - e

q{T)-q'+c - IE (qf - q) dμ .
Jx

where C is a parameter. Explicitly

qf - q + log(2m) + C .

p = p + In - 2n(T) .

Proof. From b' = b + n — n(T) we get p' = p + 2n — 2n(T) which gives together with
b = -m - n + E

p = —2nι — 2n + 2E .

p' = - 2 m - 2n(T) + IE .

Taking the difference of these two equations gives

p = p + In - 2n(T) .

From a'2 = a 2 ^ we obtain

log(4α/2) = log(4α2) + log(rn(Γ)) - log(m)

and
q'(T) - q(T) - log(m(Γ)) = q - q - log(m) .

The ergodicity of T implies that

q' — q = log(2m) + C .
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where C is a constant. Together with

log(2m) + log(2n(T)) = log(4α2) = q(T) - q

this gives

q' - q(T) = C~ log(2n(Γ)) ,

and so

p = -2m - 2n + 2E= -eq-q~c - e

q-q>{T~^+c + 2E ,

p1 = -2m - 2n(T) + 2E = -eq'-q~c - e

qiT)~q'+c + 2E .

We verify

dW , dW
P= -^—, V =dq * ̂  dq' '

D

4.3 Asymptotic behavior for E —> — oo.

Proposition 4.4.

lim BT%{L) = L(T) ,
£ — — oo

lim BTE(L) = L.

b) For all E outside an interval containing Σ(L),

Proof.
a) From Lemma 3.1, we see that the functions

log (m+(x) E) = Iog(a2(x)) + log ί [(1 -

= log (a2(x)) + log I V -
n=0

log ( ^ - ^ ) - - log

with s^(x) = [(X 1^)) 7 1]! ! and .s~(x) = [(L~N(x))nl_i_i are analytic in a disc around
oc. We have thus the Taylor expansion in the variable \/E (compare [CK])
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log (m+(.τ) E) = Iog(α2(x)) + s+

{(x)— + ί s^ix) ) — + ,

l o g ( n - ( a ) • E ) = l o g ( a 2 ( T ^ x ) ) + s ; ( x ) ^ + ( s ( x ) ^ J + . . . ,

leading to

log {m+(T)) - log(m+) = log (α2(Γ)) - log(α2) + (s|(Γ) - s | )- i + . . .

and
w+(Γ) _ a2(T)

iim — ^
i?^-oc m+ a1

Because n+ = E — b — ?n+ we get also

Iim n+(T) - n+ = b - b(T) .

From these two formulas l i m ^ ^ ^ ^ BTg(L) = L(T) follows. Similar, we deduce
from the Taylor expansion that

Iim = 1. Iim n~ = 0
E-r-oc m~ E-t-cxj

and lim^^-oc BT^(L) = L.

b) With L = aσ + (ασ) + 6 and L" = BT% o i?T~ L = α7/σ + (α/;σ)* + b", we obtain

log(a/7) = log(α) + - log (m+(T)) - - log(m+) + - log (n'iT)) - - log(?r)

= log(α) + - log (α2(T)) - - log(α2) = log(α(Γ)) ,

b" = b + n+ - n+(T) + rn~ - m~(T) = b + (E-b)-(E- b(T)) = b(T) .

D

Each random Toda flow L(t) is now embedded in a one parameter family of flows

t>-> BTEL(t) .

where E is a parameter. The random flow itself is obtained for E —» — oc.

Remark . In the case |X| < oc, the boundaries of the curves E ̂  BT^(L) and
E ι—> BTg(L(T~1)) have nonempty intersection. This gives the possibility to deform
L into L(T) inside the isospectral set: For aperiodic dynamical systems, one can't
expect that a deformation of L into L(T) can always be done because in general, m+

and mΓ are different everywhere.
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4.4 Commutation of Bάcklund transformations.

Assume the Hamiltonian HE(L) = tr(/i£(L)) is dependent on a parameter E G U C M
where U is an open interval in R. Together with a smooth curve t —> E(t) in U, we
can define an i so spectral deformation

j t

Theorem 4.5.
a) Assume \X\ is finite. For all L G C, there exist time dependent Hamiltonians
H±(L) = tr(/i|(L)), such that E »-> L(E) = B T ± ( E ) is the Toda orbit of

b) In general, for all real E'\ E" < inf (£•(£)) and for all σ, μ e {+, -},

BTσ(E')BT^(E")L = BTμ(E")BTσ(E')L .

For the proof we need the following little lemma:

Lemma 4.6. Given d linear independent constant real vector fields f{t) on the d
dimensional torus Ύd.

a) If the smooth vector field j^X = f(E.χ) is commuting with the vector fields f{ι\

then there exist aτ(E, χ) : R x Ύd —» R independent of χ such that

2=1

For any differentiate functions at(E), bt(E), the time dependent vector fields

are commuting.

Proof.

a)

0 =

implies

for a l l j = l,...,d.
b )

[

F(E)

[fj<ι>

d

h = ( V Λ

G(E)) =

d

E)f{ι\ G(E) = ^2bι(E)f{ι)

2 = \

ύ Ϊ{1) ~ f (V/f) = (V/, )

V/y = 0 ,

i 3

• /

w

i-,3
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Now to the proof of Theorem 4.5

Proof. a) The set Iso(L) C C of Jacobi operators with the same spectrum and mass
forms a d dimensional real torus Ύd, where d < \X\ — 1 (see [vM 11). There are d
linearly independent real vector fields fτ on Ύd which correspond to d different Toda
flows [vM 2]. The real analytic curves

E e [-ooΛnί(Σ(L))] ^ L(E) = BT^(L)

on the isospectral set Iso(L) correspond to real analytic curves E ι—> χ±(E) on the
torus Ύd. Because these curves are smooth and passing through every point χ G T d ,
they are integral curves of time dependent vector fields

f < E , x ) = x l E ) .

We have seen that a Backlund transformation is commuting with each constant Toda
flow. Therefore, the vector fields f±(EJχ) and ft are commuting. Application of
Lemma 4.6 a) implies that f±{E,χ) are independent of \. In the original operator
coordinates, this means that the time dependent Hamiltonian fields

with Hamiltonian
HE{L) = tr(hE(L)) = ^hE

n

have coefficients hE,n, which are independent of L.
b) Assume first \X\ is finite. Assume σ = + and μ = —. The other cases go in the
same way. Take from a) the time dependent vector fields f±(E) on Ίd which are
independent of the coordinate x £ Td. We know from Lemma 4.6 b) that for each
E', E", the flows of the vector fields

ί ^ F+(t) = t(E'/ί) ,

are commuting. As BT_OCL = L (see Proposition 4.4), the transformation BTE,, is
obtained by integrating up the time dependent vector field fE from E = — oo to
E = E" which is just the time 1 map of the flow given by the vector field F~(t). Be-
cause BT^^L = L(T) (again Proposition 4.4), the transformation BTE, is obtained
by shifting L ι-» L(T) and then integrating up the vector field fE from E = —oo to
E - E'. This is a shift T followed with a time 1 map of the vector field F+(t). We
have thus interpolated the Backlund transformations by Toda flows with time depen-
dent Hamiltonians. From the commutation of the vector fields and the commutation
of the Backlund transformations with the shift T : L ι—> L(Γ), the claim follows.

In general, let L^N\x) be a periodic approximation of period TV such that for
-N/2<iJ < N/2,

Ni3+N = [L(N)(x)]υ = [L(x)]ij .



Factorization of Random Jacobi Operators 603

Then
(LiN)(x)f -+ Lκ\x)

in the strong operator topology (the strong and weak operator topologies coincide on
the space of tridiagonal operators) and so in the strong resolvent sense (see [RSJ p.
292). This implies, that the Green functions of ( L ί A ) ) N are converging to the Green
functions of LN(x). Therefore, the Titchmarsh-Weyl functions of L(N) are converging
pointwise to the Titchmarsh-Weyl functions of L(x) and so

BTELiN\x) -» BTEL(x)

in the weak operator topology. This gives

BT%,BT£nL
{N\x) -> BTσ

E,BT^πL{x)

in the weak operator topology and finally

BTZ,BT£,,L(x) = lim N

lim

D

5. Symmetries

5.1 A simple version of super symmetry.

The factorization L — E - D2 leads to the simplest version of super symmetry: Define
the elements

H_(L-E 0 \ ( 0 Dσ\ n 0\
V 0 L(S) - E) •w ~ \(DσΓ 0 ) \0 -I

in Λ/(2, £). The property

is called super symmetry (fCFKS] p. 121). One calls the operators

+ _ / 0 Dσ
W ~ V0 0

super charge operators. They satisfy

0 Dσ\ / 0 0
0 0 >/ : ^ " \(Dσ)* O

The eigenspace of the eigenvalue 1 of P is the space of Bosonic states and the
eigenspace to the eigenvalue — 1 is the space of Fermionic states. The operator L — E
is the restriction of H on the Bosonic states and the Backlund transformation L(S) — E
is the restriction of H on the Fermionic states. D is also called charge operator. This
suggests to denote the invariants

C~(E) = exp ί / log vm~ dμ J = exp I
\J x J \
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the charge of the operator D' and

C\E) = exp ( / log y/m* dμ) =
\Jx J

the charge of the "antioperator" D+.

M exp f

5.2 CPT symmetry.

We have seen that we can write the first Toda lattice as the differential equation

fn - 2m{n — n{T)) ,

n - 2n(m(T~]) — m)

in LOC(X) x L°°(X). Define the transpositions

C :

P :

T :

mά

t <-

One can see that the above equations for the motion of the Titchmarsh-Weyl functions
m, n satisfy the symmetry CPT in that applying the transformation Co PoT leaves
the equations invariant. We could call the transformations a change of Charge, Parity
and Time. The name charge is matching with the habit to call a Dirac operator like
D = Λ/cσ + (y/cσ)* the charge operator. Notice also that the linearization of the first
Toda equation, the random wave equation

rh = n — n(T) ,

n = m(T~ι)-m

has this CPT symmetry while the continuous analogue on R

m = nx .

n = mx

has more symmetry, namely C and TP where P : x h-» —x. The discretization
changes the symmetry. The doubling of the lattice simplifies the Toda equation to

c = 2c(c(S)-c(S~]))

and the C transformation which was an involution before becomes now the shift
C : c K^ c(S). We have still TP symmetry where P : S ι—>• S~ι. The doubling of the
lattice changed also the symmetry.

6. Some Questions

• How does the time dependent Hamiltonian flow interpolating Backlund transforma-
tions look like explicitly? Does such a Hamiltonian flow exist in the aperiodic case
also?
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• Under which conditions is L ι—> L(T) the time one map of a Hamiltonian isospectral
flow in CΊ For which ergodic automorphisms T commuting with T can one connect
L with L(T) inside the isospectral set?
• Can one find analogous factorizations and Backlund transformations of higher di-
mensional random Jacobi operators in the crossed product X of L°°(X) with a 7Ld

dynamical system? Jacobi operators are then of the form

l=\
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