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Abstract. In this paper we study the global existence and asymptotic behavior of
solutions for the Maxwell-Schrόdinger equations under the Coulomb gauge condi-
tion in three space dimensions with the final states given at t = + oo. This leads to
the construction of the modified wave operator for certain scattered data. It is also
shown that for the initial data in the range of the modified wave operator, the initial
value problem of the Maxwell-Schrόdinger equations has the global solutions in
time.

1. Introduction and Main Results

In the present paper we consider the global existence and asymptotic behavior of
solutions for the Maxwell-Schrόdinger equations under the Coulomb gauge condi-
tion in three space dimensions:

d2

— A - ΔA = - i{φ(V- iA)φ - φ{V + iA)φ}

= 0, ί > 0 , x e R 3 , (1.2)

diwA = 0, t ^ 0 , x e R 3 , (1.3)

where * denotes the convolution with respect to the spatial variables. Here, A(t, x)
is a function from [0, oo) x R 3 to R 3 which denotes the electromagnetic real vector
potential, and φ(t9 x) is a function from [0, oo) x R 3 to C which denotes the complex
scalar field of nonrelativistic charged particles. Equations (1.1)—(1.3) are the classi-
cal approximation to the quantum field equations for an electrodynamical non-
relativistic many body system.
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In [11, 12], Nakamitsu and M. Tsutsumi studied the solvability of the initial
value problem of the Maxwell-Schrόdinger equations under the Lorentz gauge
condition, instead of the Coulomb gauge condition. In [11, 12], it is proved that
if the spatial dimensions are two or one, the initial value problem of the
Maxwell-Schrόdinger equations with the Lorentz gauge condition is globally
solvable and that if the spatial dimensions are three, the initial value problem with
the Lorentz gauge condition is locally solvable. However, there seem to be no
results concerning the global existence and asymptotic behavior of solutions for
(1.1)—(1.2) in three space dimensions until now. In the present paper, instead of the
initial value problem we consider solving (1.1)—(1.3) with the final states given at
t = + oo. The difficulty of constructing the global solutions of (1.1)—(1.3) consists in
the quadratic nonlinearity of (1.1)—(1.2). In [10] Klainerman introduced the notion
of the null condition to show the global existence of small amplitude solutions for
the wave equation with quadratic nonlinear term. Recently, Bachelot [1] and
Georgiev [5] have improved the null condition technique to show the global
existence of small amplitude solutions for the Dirac-Klein-Gordon equations and
the Maxwell-Dirac equations, respectively, which are the classical field equations
related to (1.1)—(1.3). However, the null condition technique does not seem to be
directly applicable to (1.1)—(1.3), because the null condition technique is based on
the Lorentz invariance of the equations. But the Schrόdinger equation does not
necessarily have the same invariance as the wave equation, and especially the
Schrόdinger equation is not invariant under the Lorentz transform.

While the initial value problem is considered in [1, 5 and 10], in [3] Flato,
Simon and Taflin study the global existence and asymptotic behavior of solutions
for the Maxwell-Dirac equations with the final states given at t = + oo. This
corresponds to the construction of the wave operator. But in fact, the wave
operator cannot be constructed in the usual sense, because the phase of asymptotic
profile is distorted by the long range effect arising from the quadratic nonlinearity
of the Maxwell-Dirac equations. In [3] they take the phase shift of asymtotic
profile into account in order to compare the asymptotic behavior of the Maxwell-
Dirac system with that of the free dynamics (see also [5]). This corresponds to the
construction of the so-called modified wave operator. In [3] the phase function
indicating the phase shift of asymptotic profile is given as an approximate solution
of the classical Hamilton-Jacobi equation associated with a relativistic electron in
an external field. Recently, in [13] Ozawa has given a more explicit form of the
phase function for the one dimensional Schrόdinger equation with power nonlin-
earity of long range effect. In [8] Hayashi and Ozawa have also shown the
existence of the modified wave operator for the derivative nonlinear Schrόdinger
equation, following [13]. In this paper we shall give an explicit form of the phase
function indicating the phase shift of asymptotic profile and construct the modified
wave operator of the Maxwell-Schrόdinger equations for certain scattered data.
We shall first eliminate the long range effect of the worst term by using the
difference between the propagation properties of the Maxwell wave and the
Schrόdinger wave, following [14] and we shall next construct the phase function of
the phase shift resulting from the long range effect of the rest term in a similar way
to [13] and [8]. Since the long range effect of the Maxwell-Schrόdinger equations
is more complicated than that of the decoupled nonlinear Schrόdinger equation,
our proof is more complicated and delicate than that of [13] or [8].

Before we state the main results in this paper, we give several notations. For
1 ^ p g + oo, we denote the standard U space on R 3 by ZΛ For m,seR, let Hm
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and Hm's be the Banach spaces defined by the completion of the Schwartz space
in the norms

\\v\\Hm=\\(i-A)ml2v\\L2y

respectively. For m > 0, let Hm be the completion of
semi-norm

Nlϋ«= U-Δ)ml2v\\L>

with respect to the

For 1 g p g oo and a nonnegative integer fc, Wk'p denotes the Banach space of all
functions in Lp with derivatives up to fcth order in ZΛ Let the norm in Wk'p be
defined as follows:

= max

CX

— I v
CX

Lp
g p < oo ,

= oo .

For vey(R3% v denotes the Fourier transform of v. For a function v on R3, we
denote the support of υ by supp v. For zeC, we denote the complex conjugate of

z by z. Let ω = ^J — A and Ό(t) = e~ΐΔt. Let θ(ή be a real-valued function in
C°°([0, oo)) such that 0(ί) = 1 for ί ^ 2 and 0(ί) = 0 for 0 ^ ί ^ 1.

Now we state the main results in this paper.

Theorem 1.1. Let 1 > δ > 0. Assume that A + 0 = ( ^ i 0 ? / l i 0 , / I 3

 0 ) e / / 5 n H 1 n tf^5'1,
y4 + ] = (A\x, A2^. 1, A\^EH4 n W4'1 and div A + 0 = div^ + x = 0 . H7^puί 4̂ + (ί) =
(>4 + (t), >4 + (ί), >4 + (ί)) — cosωtA + 0 + ω " 1 sinωί^4 + 1 . Assume that φ + 0 e 7/6 '7 αnίi
suppι/ί + 0(ξ) cz {ξ; |ξ | ^ 1 + δ} u {ξ; \ξ\ ^ 1 — <5}. PFe pwί ίA + (ί) = U(t)φ + 0.
Then, there exists an η > 0 swc/i ί/iαf Ϊ/

0\\H^^η, (1.4)M + o l l ^ n / / 1 + M + o l l ^ 1 + M + i ll//4 + M + i l l ^ 1 +

(1.1)-(1.3) have the unique solutions {A(t\ φ{t)) satisfying

~A(ήe Π C f c ( [ 0 , o o ) ; H 2 - k ) ,

(1.5)

(1.6)

τ3-2/c\ (1.7)

ί ) 1 / 2 Σ
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1

Σ l){

ί

= O{Γ\\ogt)2)

3/8

= 0(1-'

Y.

>•

oo),

Tsutsumi

(1.8)

(1.9)

depends only on δ, R(t) = {R1(t), R2(t), R3(t)) is the solution of the following
linear problem:

Ψ-

-i\t\ - 3

t 1 t t )1
θ(ή2

4 π \\x t

2 3

(ί"> + 00),

and

-y

3 t

Σί

(1.10)

(1.11)

J- (1.12)

Λemαr/c 7.7. (i) We note that for k> I > 0, Hk £ Hι <έ L2. But, if c e f l ' n ί/1 for
/5 V

a positive integer /c, then — u e l M o r any multi-index α with 1 :g |α| ^ k. In
\dxj

addition, for the three dimensional case, H1 a L6. For the homogeneous Sobolev
space Hm{Rnl see, e.g., [2, §6.3]. But note that the definition of Hm(Rn) in the
present paper is slightly different from the one in [2, §6.3], where Hm(Rn) is defined
as the set of all tempered distributions v such that (— Δ)m/2veL2(Rn). If we take
veHm(Rn) modulo polynomials of degree at most [m — n/2] in the definition of
[2, §6.3], then the definition in [2, §6.3] is identical to that in the present paper (see
[2, problem 12 in §6.8]). Here [m — n/2] is the largest integer that is not larger than
m — n/2 and if [m — n/2] is negative, we take zero as a polynomial of order
[ m - n / 2 ] .

(ii) There exists the unique solution R(t) of (1.10)—(1.11) under the assumptions
of Theorem 1.1 (see Lemma 2.4 in §2). We note that R(t) does not necessarily belong
to L2 for t > 0 and

= O(r o o ) .
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(iii) A + (t) and φ + (t) are the free solutions of the Maxwell equations and the
d

Schrόdinger equation with the initial conditions A + (0) = A + o, — A + (0) = A + ι

and φ + (0) = φ + o, respectively. Furthermore,

d
div A + (t) = — d i v ^ l + m = 0, ί > 0 . ( 1 . 1 3 )

dt

(iv) Equation (1.8) shows that the phase function ψ(t,x) defined in (1.12)
indicates the phase shift of φ(t, x) from the free dynamics. The first term at the
right-hand side of (1.12) corresponds to the long range effect of the Coulomb term,
that is, the last term at the left-hand side of (1.2). This part of (1.12) is the same as
the phase function given in [13] for the decoupled nonlinear Schrόdinger equation.
The second term at the right-hand side of (1.12) corresponds to the long range effect
resulting from the coupling of the Maxwell equations and the Schrόdinger
equation.

(v) The assumption on the support of φ + 0 ensures that the product of A + (t)
and Vφ+ (t) decays fast enough as t -> + oo. This fact is based on the difference
between the propagation properties of the Maxwell wave and the Schrόdinger
wave (see Corollary 2.5(ii) in Sect. 2). The influence by the product of A + (t) and
Vφ + (t) is most difficult to control, although it does not seem to be so bad at first
sight.

(vi) We consider the Maxwell-Schrόdinger equations under the Coulomb
gauge condition instead of the Lorentz gauge condition, because the former is more
usual than the latter in the nonrelativistic case from a physical point of view. Our
proof of Theorem 1.1 is also applicable to the case of the Lorentz gauge condition.

(vii) For the case of t -> — oo, we can obtain the same result as Theorem 1.1
without change of the proof.

The following corollary is an immediate consequence of Theorem 1.1.

Corollary 1.2. (i) Let δ > 0. By D + we denote the set of all scattered states
(A + o, A + 1, φ + o) such that div A + o = div A + 1 = 0, suppφ + 0 ^ {ξ;\ξ\ ^ 1 -\- δ} u
{ζ', \ζ\ = 1 ~ <5} and(1 A) holds. Then, for (1.1)—(1.3) the modified wave operator W+\

A(0),—A(0), φ(O)J is well defined on D + .

(ii) Let R(W+) be the range of the modified wave operator W+ given by part (i).
Then, for any (Ao, A1,φ0)eR(W+) there exist the global solutions (A(t),φ(ή) of

(1.1)-(1.3) with (A(0),-A(0),Φ(0)) = (AO,AUΦO) satisfying (1.5)—(1.7). Further-

more, these solutions satisfy (1.8) and (1.9) with(A + 0, A + 1, φ + o) = W+1(Aθ9A1, φ0).

Remark 1.2. (i) Noting Remark 1.2 (vii), we can also construct the modified wave
operator W-, which is a mapping from the scattered states as t = — oo to the
interacting states at t = 0.

(ii) Corollary 1.2(ii) gives the global existence result for the initial value prob-
lem of (1.1)—(1.3). However, it is not clear what initial data belong to R(W+).

The proof of Theorem 1.1 is roughly described as follows. Since the last term at
the right-hand side of (1.1) is difficult to treat as it is, we rewrite (1.1) by using (1.2).
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We substitute (1.2) into (1.1) to obtain

d2

-^Λ- ΔΛ= ~ί{φVφ -φVφ)~2A\φ\2

L

— * V {- i{φVφ - φVφ) ~ 2Ά\φ\2} , ί
L J

(1.14)

We also rewrite (1.2) as follows:

d
2i — φ + Δφ = i{dhA)φ + 2iA Vφ

^ ί ^ V (1.15)

Equations (1.14)—(1.15) are equivalent to (1.1)—(1.2), if the solutions (A(ή, ψ(ή) are
smooth. It is well known that if the L2 norm of the perturbed term is integrable in
time over [0, oo), the solution of an evolution equation such as the Maxwell-
Schrόdinger equations behaves like a free solution as ί-»oo. Therefore, it is
conjectured that the long range effect arises from the second term and the last term
at the right-hand side of (1.15). The long range effect of the latter can be controlled
in the same way as the case of the decoupled nonlinear Schrόdinger equation (see
Ozawa [13]). The long range effect of the former comes from the coupling of the
Maxwell equations and the Schrόdinger equation. Accordingly, our main task in
the proof of Theorem 1.1 is to evaluate the long range effect of the second term
2iA Vφ at the right-hand side of (1.15). For that purpose, we first assume that the
support of φ + 0 does not include the unit sphere centered at the origin. This
assumption ensures that the product of A + (t) and Vφ + {t) decays faster as t —• oo
than A + (t) alone or Vφ + (t) alone and so the influence by the product of A + (ί) and
Vφ + (t) decays fast enough as t -> oo. This fact results from the difference between
the propagation properties of the Maxwell wave and the Schrόdinger wave (see
Corollary 2.5(ii) in Sect. 2). After the influence by the product of A + (t) and Vφ + (ή
has become negligible, the long range effect of 2iA Vφ still remains. Therefore, we
need to introduce a long range correction in the definition of the wave operator.
The solution A(ί) of the Maxwell part can be divided into three parts, that is,
A(t) = A + (t) + R(t) + ι (ί). Here A + (t) is a free solution which A(t) approaches
asymptotically, R(ή is a solution of (1.10)—(1.11) which has a long range effect on
the solution of the Schrόdinger part and v(t) is a remainder which decays faster as
t -> oo than A + (t) and R(t). If we put

j\χ\2

we can take m(ί, x) as an asymptotic profile oϊψ + (ή (see Lemma 2.1(iii) in Sect. 2).
We put

φ{t) - e^m{t) + u{t) ,
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where φ(t, x) is defined in (1.12). If we rewrite (1.14)—(1.15) as the equations of v(t)
and u(ή, the terms of slow time decay vanish and the resulting equations oϊv(t) and
u(t) with the final states given at t = GO become solvable in proper function spaces
under the assumptions of Theorem 1.1.

Our plan in this paper is the following. In Sect. 2 we summarize several lemmas
and one proposition needed for the proof of Theorem 1.1. In Sect. 3 we state the
proof of Theorem 1.1.

We conclude this section with several notations given. For two three-dimen-
sional complex vectors a, beC3, we put a- b = aίb1 + a2b2 + a3b3. We abbreviate
d/dxjj = 1, 2, 3 and d/dt to dXj,j = 1, 2, 3 and dt, respectively. For a multi-index
α = (α1? α2, 23), we put δ" = dx\dx

2

2dxl and xα = xlyx2

2x3

3. We denote the scalar
product in L2 by ( , ). For seR, let [s] be the largest integer that is not larger than
s. Let p be a nonnegative function in C^°(R3) such that \\p \\jj = 1. For ε > 0, we

put pε(x) — ε~3p[- I. In the course of calculations below, various constants arew
simply denoted by C.

2. Preliminary Results

In this section we give several lemmas and one proposition needed for the proof of
Theorem 1.1.

We start with the estimates of the evolution operator for the free Schrodinger
equation.

Lemma 2.1. Let n ^ 1.

(i) Let p and q be two positive constants such that —h - = 1 and 2 ^ p ^ + GO.
p q

Then,
\\ T T ίt\ii \\ <C (Oτr\t\\ \2 p) II n II , , r Γ 1(\) n\ t -4- Π Π 1\
II u v*-/ II LP(R") = \£ii \i'\) || V || Lq(Rn) ? f t x-/ ^iv ) , i =ρ u . ^z,. IJ

(ii) Lei ^ β«<i r fcg ίwo positive constants such that 2 ^ q < + GO /or

n = 1,2, 2 g g < - " ' "n ^ 3 and I^ - - )r = 2.

J \\f(s)\\L2imds, ί ^ O , ( 2 . 2 )

where K1 is a positive constant depending only on n and q.
(iii) Let k be a nonnegative integer. Suppose that for j + | α | ^ fc,

^ 2 2 D ^ d ^ + oeL^R") . We put m(ί, x) =

i1^
(it)~nl2e 2t - Jθ(ί). Then, for some K2 > 0,

Σ
L2(R")

(2.3)
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Σ
\β\ ^ L X ( R " )

y + 2, (2.4)

where K2 depends only on k and n.

Remark 2.1. Lemma 2.1 (ii) implies that m(t) is asymptotically equivalent to
U(t)φ + 0 as ί-> oo.

For the proofs of Lemma 2.1 (i) and (ii), see, e.g., [17] and [6]. For the proof of
Lemma 2.1 (iii), see [14, Lemma 2.1 (ii)]. Lemma 2.1 (ii) in [14] treats only the case
\β\ = 0, but the proof for |j8| Φ 0 is the same as that for \β\ = 0.

The following lemma is concerned with the decay property of solution of the
free wave equation.

Lemma 2.2. (i) Let n^.1 and let L be a nonnegatiυe integer. Then,

£ \\d*xd
J

tcosωtu\\L*iRη

sin
j + |α | ^ L

ύK3(l + ty | u \\HL+W2](R") (2.6)

where K3 depends only on L and n.
(ii) Let n be odd spatial dimensions larger than one and let L be a nonnegative

integer. For any δ with 1 > δ > 0, there exists a K5 > 0 such that

/ χ ( A t f ί ( t J ) ^ X 4 ( l + ί ) " 2 l | u | | ^ ^ i - ^ , ί > 0 , (2.7)

, (2.8)
7 + M ̂

w/zβre M δ ( ί ) = {ξeRn; \ξ\ ^ (1 + <5)ί} u { ί e R " ; \ξ\ ^ (1 -
o n L , δ a n d n.

and

f. For the proof of part (i), see [9, §1].
Part (ii) follows from the Huygens principle for the wave equation in odd spatial

dimensions larger than one. We first choose two functions φ1, φ2 e C°°(R) such that

φj(s) = φj{— s)J = 1, 2, φι(s) = 1 for \s\ ^ 1, φι(s) = Ofor ^ ( 1 - - ) / (1 - δ),

s(s) = 1 for \s\ ^ 1 a n d φ2(s) = 0 for \s\ ^ [ 1 + - ) / (1 + δ). W e p u t

Λα-^t φ2 δ)t
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We note that for any nonnegative integer k,

Σ \d*xdjφδ(t,x)\^Ck9 (r,x)e[0,oo)xR".
7 + |α| ^

Since the propagation speed of wave is one, we have by the Sobolev imbedding
theorem and the Huygens principle

J + |α| ^ L

S Σ

Σ \\didUΦsCθsωtu)\\L2iRn)

|α| £Ξ L + 0/2] + 1

0/2]

^ C ( l + ί ) - 2 | W | r M + u ( r ) , ί ^ l . (2.9)

By the Sobolev imbedding theorem we also have

\y.\ ̂  L + [π/2] + 1

SC Σ ll3;« | lz.»(R"), ί ^ O . ( 2 . 1 0 )
j + |α| ^ L + [«/2] + 1

Equations (2.9) and (2.10) show (2.7). The proof of (2.8) is the same as above. D

Remark 2.1. (i) The analogous result to Lemma 2.2(ii) also holds in even space
dimensions (see [15, Theorem XL 18(a)]), although the Huygens principle does not
strictly hold in even space dimensions.

(ii) Lemmas 2.2(i) and (ii) imply that the solution of the wave equation decays
faster inside and outside the light cone as t -> 00 than on the light cone.

We next consider the following linear wave equation:

a r

2 w - Aw = h(t, x), ί > 0 , X G R 3 , (2.11)

\\Vw(t)\\b+\\dMt)\\b^O ( ί ^ o o ) . (2.12)

We have the following proposition concerning the solvability of (2.11)—(2.12).

Proposition 2.3. Let L be an arbitrary integer with L ^ 2. We assume that

L - l

h(t)e Π Cj([0,ao);HL-j)

and for some C o > 0,

V Σ V + t)3l2+k\\d"xe!Ht)h>ύc0, £ > o .
fc = 0 / + | α | = k
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Then, there exists a unique solution w(ί) o/(2.11)-(2.12) satisfying

w{t)eC{lO,oo);HLnH1) , (2.13)

L - l

δfw(ί)e Π CJ'([0,oo);HL-1- / ) , (2.14)
7 = 0

Σ \\didiw(ή\\L2^K5(ί + ί ) 1 / 2 " k sup Σ (1 + 0fc+1/2l|5ϊ3/Λ(ί)llz.- ,
y + |α | = /c ί ^ 0 7 + |α | = k- 1

ί > 0 5 fc=l,...,L, (2.15)

Σ Wdϊdiwiήh^Ksil + tΓ1-"
j+\*\ = k

k+1

x s u p Σ Σ ( 1 + ί ) 3 / 2 + Ί l ^ δ / Λ ( ί ) | | L 2 , ί > 0 ; fc = 0 , . . . , L - 2 , ( 2 . 1 6 )
r ^ O ί = fc 7 + | α | = /

where K5 depends only on L.

Proof. We first consider the following regularized problem:

a f

2 w e λ -^w e λ = ( l + ; - ί ) - L - 1 P e * M ί ) , ί > 0 , x e R 3 , (2.17)

II Vweλ(t)\\h + \\dtwελ(t)\\2

L2^0 (t-> + oo) , (2.18)

where 0 < / < 1 and 0 < ε < 1. The solution wελ(t) of (2.17)—(2.18) is given by

oo

Wελ(t) = - J (1 + λs)~L~^OJ'1 sinω(t - s))pF*h(s)ds, ί ^ 0 . (2.19)
t

Formula (2.19) and a direct calculation yield

weλ(ήef) CL + 1([0,oo);if0, (2-20)

sup (l + o L + 1 / 2 ι i w e λ ( ί ) i ι ^ + Σ (i + ί ) L + 3 / 2 ι i 3 ; s / w e λ ( ί ) i ι ^ < ^
t ^ 0 L 1 ̂ 7 + |α| ^ L + 1 J

(2.21)

for 0 < λ < 1 and 0 < ε < 1.
We next derive the a priori estimates independent of/ and 8 for wε/ί. We take the

scalar product in L2 between (2.17) and dtwελ(t) to obtain

\jt{\\dtwελ(t)\\b + II Vwελ\\h} = (1 + / ί Γ ^ 1 ^ * ^ ) , 3fweλ(0), ί > 0 . (2.22)

Integrating (2.22) over [t, oo), we have by Young's inequality

l ia ( w a ( t ) | | ^ + II VwEλ(t)\\b ύ 2 J (1 + / s J - ^
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x j s u p ( l +s)ll2\\dswελ(s)\\L2

C(l + t)"1] s u p ( l + s)3/2\\h(s)\\

j s u p ( l +s)1/2\\wελ{s)\\L2

l ί I 2

+ -(1 + ί ) " ι \ sup (1 + s)1/2 IIdswελ(s)\\L2\ , ί ^ 0 ,

(2.23)

where C does not depend on ε and /,. Equation (2.23) gives us

s u p (1 + t ) 1 ' 2 {| | δtweλ(t) \\L2 + || VwEλ(t) \\L>}^C s u p (1 + t ) 3 / 2 II h(t) \\L* , ( 2 . 2 4 )
ί ^ 0 ί ^ 0

where C does not depend on ε and λ. In the same way as above we obtain

sup Σ (l + ί) k - 1 / 2 H3;δ f

J w ε λ (ί) | |^
1 2 0 j + \x\ = k

g C s u p X ( l + f)* + 1 / 2 H δ £ δ / Λ ( ί ) l l z Λ k = 2,...,L, (2.25)
ί ^ 0 y + |α | = k - 1

where C does not depend on ε and /. Therefore, (2.24), (2.25) and the standard
compactness argument show the existence of a solution to (2.11)—(2.12) satisfying
(2.13) and (2.15) with the continuity in t of wελ(t) and its derivatives replaced by
L°°(0, oo). The continuity in t follows from the regularity theorem of linear hyper-
bolic equation. Equation (2.16) follows immediately from (2.15) and the Gagliardo-
Nirenberg inequality (see, e.g., [4]).

We finally prove the uniqueness. We suppose that w1(t) and w2(ί) are two
solutions of (2.11) and (2.12) satisfying (2.13)—(2.15). Then we put z = w1 — w2 to
obtain

d?z-Az = 0, r > 0 , x e R 3 , (2.26)

| | 5 t z ( ί ) l l ^ + l l ^ ( ί ) l l £ 2 ^ 0 (ί-> + oo). (2.27)

The conservation law of energy for (2.26) shows

\\δtz(t)\\h + II Vz(t)\\b = \\d,z(s)\\b + II Vz(s)\\b, 0 g s, t < + oc . (2.28)

Letting s -> + CΌ in (2.28), we have by (2.27)

for any t ^ 0, which implies that w1(t) = w2(t) for t ^ 0. The proof is complete. D
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We next state the following lemma concerning the estimates of the phase
function defined in (1.12).

Lemma 2.4. We assume φ + 0eH6'7. Then, there exists the unique solution R(t) of
(1.10)-(l. 11) such that

R(t)eC([0,oo);HΊ nH1) ,

6

sup X
t ^ 0 fc=l

sup

dtR(ήe f] Cfc([0,oo);//

j + |α| = k

* + 1 Σ

6-k\

(2.29)

(2.30)

' + ollέ6<7 (2.31)

for some K6 > 0. Furthermore, the phase function φ(t, x) defined in (1.12) satisfies

sup Σ (1 + r)*flog(l + t)Y
ΐ^ 1 fc = O

for some KΊ > 0.

Proo/ We note that for some C > 0,

ll*A+oll^5 -

We put

1 +

(2.32)

(2.33)

H(t, x) = h(t9 x) + -1- η -i- * F Λ ) (ί, x),
4π V x /

We first verify that H(t, x) satisfies the assumption in Proposition 2.4 with L = l.
Let k be any integer with 0 ^ k ^ 6. Leibniz' rule shows that

Σ \
J + \oc\ = k

is bounded by a sum of terms

C d"J~l d
t

C
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where j 1 + j 2 =j and ot1 + α 2 = α. Since either j 1 + | α : | or j 2 + | α 2 | is less than
[fe/2] + 1 and supp#(ί) c {ί ^ 1}, we have by (2.33)

Σ
j+\a\ =

(2.34)

On the other hand, since the Fourier transform of is \ξ\ 2 a n d ξjξk/\ζ\2 e L 0 0 ,
4π|x |

we have

— V\—*V h
4π L2

(2.35)

Equations (2.34) and (2.35) show that H(t, x) satisfies the assumption in Proposi-
tion 2.3 with L = 7. Therefore, by Proposition 2.3 we obtain the first half of
Lemma 2.4.

We next prove (2.32). By the Gagliardo-Nirenberg inequality (see, e.g., [4]) and
the Hardy-Littlewood-Sobolev inequality (see, e.g., [16]), we have

I
1

1 y
VII

r
c

(x

A

-

I

y)dy

1

L

y\

= I
v(y)dy

1

x -

1/2

L2

- y

v

-v

ί
R 3

(y)dy

1

x — j

L x

; v(y) y

1/2

L

(2.36)

Let k be any integer with 0 ^ fe ^ 5 and let j + |α| = k. Since β,

1 x x λ
y I, Leibniz' rule shows that

y ) =

\aί\ + \a2\ = k

X X
t ^ 1 .

(2.37)

Therefore, we have by (2.37), (2.36) and (2.33),

Σ 1 +•
\ = k

<Ctk

1

Σ
| α t | + | α 2 | = k

Φ+o[--y dy

dy
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ύ cr

^ cr

M + \0L2\ = k

M

l\y\ dx

2ψ+0(χ - y) dy
L0 0

1/2

i 1/6

I
ι 1/3

I 2 I
, 1/2

I 2

^ CΓk || ιA + ollέ 6 ' 7, ί ^ l . (2.38)

On the other hand, let k be any integer with 0 ^ k ̂  5 and let j -f |α | = k. If
^ k ̂  5 and 7 φ 0, we have

d*xdJΪR[s,-x)ds \did]

tR(t,x)\
| α | = / c - 1

ds, ί ^ 1 .

(2.39)

If 0 g k :g 5 and j = 0, we have

lαl = /c lαl = /c 0

5
s,-x

t
ds, t ^ 1 . (2.40)

Therefore, (2.31), (2.39) and (2.40) yield

Σ Σ (l + iMoga + o r 1

Σ

s,-x)ds

C Σ Σ (1 + ί)fcί"fc(iog(i + 0)" 1 ί5*
k=ί | α | = /c 0

Σ Σ (
ί-Ό \a\ — K

(d"xR)[s,-x

L'

ds

ds
L*

S C

C
f c = l

c
fc = 0

(2.41)
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Equation (2.32) follows immediately from (2.38), (2.41) and the definition of
φ{t,x). D

The following corollary is an immediate consequence of Lemmas 2.1(iii), 2.2(ii)
and 2.4.

Corollary 2.5. Let δ > 0 and let all the assumptions in Theorem 1.1 be satisfied. We
put

z' | x | 2 ~ ίx\
m(t,x) = (ίty3/2e 2t φ + J-)θ(t).

Let φ + {t% Λ + (t) and φ(t, x) be defined as in Theorem 1.1.
(i) The following relations hold.

Σ { H>-2J = O(t-1) (ί - oo) , (2.42)

ϊ Σ \\dΛ

xdl{ei(Pφ + {s)-eiφm(s)}\\^ds) = O(Γ3/2) (ί - α)) . (2.43)
t 2j+ |α| ^ 2 /

(ii) There exists a K8 > 0 swc/i that

Σ liaίa/{e^^

O I I H ' , t ^ O , ( 2 . 4 4 )

where K8 depends only on δ.

Proof. We first show (i). Equation (2.42) follows directly from Lemma 2.1 (iii) and
Lemma 2.4. On the other hand, (2.3), (2.4), the interpolation and Lemma 2.4 yield

£ ||at«S,V<ψ + (t) - e^m(t)} | |i* S Cr1'4, I £ 1 ,
2/ + |α| ^ 2

which implies (2.43).

We next show (ii). Since

suppm(ί, x) cz { X G R 3 ; | X | ^ (1 + δ)ήu{xeR3; \x\ ^ (1 - δ)ί}

for each ί > 0, Lemma 2.2(ii) and Lemma 2.4 give us (2.44). D

Remark 2.2. The assumption on the support of φ + 0 is not needed for the proof of
Corollary 2.5(i), but it is indispensable to the proof of Corollary 2.5(ii).

We conclude this section by giving the following lemma.

Lemma 2.6. Let s be a real number with s > 1 and let k be a positive integer. Then,
for some Csk > 0,

J ( 1 + τΓ s(log(2 + τ))kdτ g Csk{\ + ί)~ s + 1(log(2 + t))\ t ^ 0 , (2.45)
t

where Csk depends only on s and k. Furthermore, we can choose Csk = 5 in (2.45) for
(s, k) - (4, 3), (3, 4), (7/2, 3) and (2, 2).

Lemma 2.6 follows immediately from the integration by parts.
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3. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by using the results obtained in Sect. 2.
As stated in Sect. 1, we use (1.2) to rewrite (1.1) and (1.2) as (1.14) and (1.15). We

next put

(3.1)

φ(ή = eiφm{ή + u(t) , (3.2)

where A + (t), R(t) and φ(t, x) are defined in Theorem 1.1 and

(t) . (3.3)

We substitute (3.1) and (3.2) into (1.14) and (1.15) to obtain

dfυ- Δυ=f(t) + F(t9 υ,u), t > 0, x e R 3 , (3.4)

2idtu + Δu = 2i(A+ + R + v) Vu

+ g(t) + Gχ(ί, y,M) + G2(t,v,u), t > 0, x e R 3 , (3.5)

\hdtv{t)\\h+ Σ I I ^ I I L ^ O ( ί - o o ) , (3.6)
7 = 1

0 ( ί - ^ o o ) . (3.7)

Here

F(t, v, u) = F0(t, υ, u) + — v\ — *(V F0(t, v, u))ϊ ,

g(t) - - i A φ e i φ m Λ r \ V φ \ 2 e i ψ m - ίeιφ ~ Vφ ' \ ( i t ) ~ 3 / 2 e^^ (Vφ + 0)(- )θ(t)

ίx \
iάiv{A+ + R)eιφm - 2eιφ A + -l-m) - 2eιφ(A+ + Λ ) Vφm

v)u - 2eιφvl -m\ -2eιφv Vφm
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2(A + + R) veιφ?n + 2(A+ + R)-vu

υ\2eιφm + 2\υ\2u ,

G2(ί, ι;5 M) = —\ — *9i(eιφmΰ) L ^

2π(Jx| J

4π[\x

1 ί 1

4π

where

F0(t, υ, u) = 2Z{e~iφmVu) + 2VφςR{eiφmύ)

+ 23(β fφ Fmw) + 2%(ΰVu) - 2v\m\2

- 4(A+ + R + # ( e ! > m u ) - 2(/l+ + K + I;)|

We shall solve (3.4)—(3.7) by the contraction mapping principle. Let η be
a positive constant satisfying (1.4). By Lemmas 2.2, 2.4, Corollary 2.5(ii) and (2.35),
we obtain

Σ Σ l | 3 ; 3 / / ( ί ) | | L ^ C ( l + ^ ) 2 ι / 2 ( l + ίΓ 5 / 2 log(2 + ί), ί ^ O , (3.8)
j=0 | α | ^ 2 - /

Σ II Sa

xdig(t) \\L2 ^ C(l + η)loη(l + r)- 2 (log(2 + ί)) 2 , ί ^ 0 , (3.9)
2/ + |α| ^ 3

where C does not depend on η. Therefore, if we choose η > 0 such that

η ^ 1 , (3.10)

we have by (3.8) and (3.9)

d*xd
J

tg(ή\\h) , Σ
1/2

Σ Σ

max

+ ί)"2(log(2 + O)2, t ^ 0

for some M ^ 0, where M is independent of η for 0 < η ^ 1. We put

= C([0, oo); if3 n i ί 1 ) ,

), ί ^ O , (3.11)

(3.12)
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u(ήef)
; = O

sup Γ(l + ί)3/2(log(2 + t)Y2 ( X || d%υ{t) \\h

+ Σ WΛυ{t)\\h] '

supΓ(l+0(log(2 + ί )Γ 2 ( Σ \\d*xv(t)\\b
|α | = 3

\h) '+ Σ \\8a

xdMt)\\h
|α | = 2

sup|(l + ί)αog(2 + 0)"2( Σ \\d>(t)\\h) \
r ^ θ L \ | α | ^ 2 / J

supΓ(l + ί)(log(2 + t)Γ 2 ( Σ Wd'Λumb)1'2

ί ^ θ L \ |α | ̂  1 /

sup (1 + ί)(log(2 + ί))~2 Σ Mdίw(0k2 ^ 3(14λ/
/3 + \)Mη ,

ί ^ θ L | α | = l J

[ /oo \ 3 / 8 Ί

(1 + ί)(log(2 + ί))~ > l|5ϊw(s)||/4 ds
wvkAt J Jwhere Kλ is defined in Lemma 2.1(ii). We introduce the metric J([t^i, w^, [i;2, w2

into X as follows:

<*([»!, « i l [»2,«2]) = Σ S U P [(i + f)3/2(iog(2 + ί)
1 ^ |α | ^ 2 t ^ 0

+ Σ S U P [(i + 03/2(iog(2 + ήy2na;δfMί)-
|α | ^ 1 ί ^ 0

Σ
|α | = 3 t ^ 0

Σ sup [(1 + ί)(log(2 + ί))"2 \\d*A(vi(t) - v2(ή)\\L2^
|α | = 2 ί ^ 0

[ /oo \3/8

V ί /
for [vu Mi], [ι;2, M 2 ] e l . We note that X is a complete metric space with the metric
d. We first define the nonlinear mapping N1 [v, u] for [v, ύ] e X. For \_v, u] e X, we
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consider the linear problem:

? F(t, v9 w), ί ^ O , xeR\ (3.13)

Σ \Wwj(t)\\2

L2+\\8Mt)\\h^0 ( ί - o o ) . (3.14)
7 = 1

Let iVi [_υ, u] be a mapping from [υ, u ] e X t o a solution w(ί) = (wx(t), w2(t), w3(ί)) of
(3.13)—(3.14). We next define the nonlinear mapping N2[y,u~] as follows. For
[υ, u] e X, we consider the following linear problem:

2idtz + Az = 2ί(A+ + R + υ)-Vz

+ g(t) + G1(t,v,u) + G2(t,v9u), t ^ 0, xeR3 , (3.15)

| | z ( ί ) | | L ^ 0 ( ί - o o ) . (3.16)

Let Λ^O, w] be a mapping from [t;, w j e l t o a solution z(t) of (3.15)—(3.16). We put
N[_υ, u] = [A/i [y, u], N2[_v, u\]. By the definition of N, we see that the fixed point
[w, i;] of the nonlinear mapping N in X are the solutions of (3.4)—(3.7). Now we
show that if η > 0 is sufficiently small, the nonlinear mapping N is a contraction
from X into X.

We first evaluate w = N1[v,u]. By Lemmas 2.2(i), 2.4 and the Gagliardo-
Nirenberg inequality (see, e.g., [4]) we have

\\d*x(ΰVu)\\L* + \\d°x(v\m\2)\\L> + \\d'x{(A+ +R

(ί)| |H"-| | Vu(t)\\L* +

C( || ϋ(ί) \\v, || m(ί) || „,..« ||m(t) | | w .

C(\\A + ( t ) \ \ w u , + \\R(t)\\wu*)\\m(t)\\w,,\\u(t)\\Hi

C(\\v(i)\\L'\\m{t)\\w^\\u{t)\\H^ + \\υ(t)\\άΛm{t)\\L'\\u(t)\\L')

ί)llw" * + \\v(t)\\^\\u(ή\\2

L,

t ) " 5 / 2 ( log(2 + ί)) 2 + C| |«

Cη3{ί + t)-4(log(2 + t))2 + C{\ + η)η2(l + rΓ3(log(2 + f))2

Cη2(l + t)"5 / 2(log(2 + t))2\\v(t)\\Hh\v(t)\\ti?
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+ Cη3(l + ί)~7/2(log(2 + ί))4 + C(l + η)η(l + ί)"

+ Cη{i + 0 " 3 / 2 ( l o g ( 2 + t))2\\u(t)\\^\\u(t)\\^

^ C(l + ?7)6?72(1 + ί)~ 5 / 2 (log(2 + ί)) 2 + C{\ + ί?)2 | |M(ί)| |^2.s ί ^ 0 (3.17)

for [v, u] e X. In the same way as above, we have

Σ \\dxF0(t,v9u)\\L2^ C ( l + η)6η2(l + ί ) ~ 5 / 2 ( l o g ( 2 + t))2 + C | | M ( 0 I I ^
|α | = 2

i.4, ί ^ O ( 3 . 1 8 )

for [i;, u] E X.
We consider the regularized problem associated with (3.13)—(3.14):

d2wε/ί — Λwελ = (1 + λt)~4pε* {/(ί) + F(t, v, u)}, t ^ 0, x e R 3 , (3.19)

Σ IIFW0llί 2 + R w ε ; ( 0 l l / ^ 0 (ί — oo) , (3.20)

7 = 1

where 0 < λ < 1 and 0 < ε < 1. The solution wελ(t) of (3.19)—(3.20) is given by

oo

Formula (3.21) and a direct calculation yield

weλ(t)ef] C2([0, oo); i f ' ) , (3.22)
7 = 1

2

Σ Σ S U P [(1 + ; ^ ) 4 II dxdiwελ(t) \\L2 + (1 + / ί ) 3 II wεΛ(ί) | |L2] < + oo (3.23)
7 = 1 | α | ^ 5 - ; ί ^ O

for 0 < λ < 1 and 0 < ε < 1.
We next derive the a priori estimates independent of ε and / for wελ. Let α be an

arbitrary multi-index with |α| ^ 1. We apply d% to (3.19) and take the scalar
product in L2 between the resulting equation and dtdχWελ(t) to obtain

1 d { 3

^jA\\dtd
a

xwελ(t)\\h+ Σ l l^;w β A j (ί)ll

δ2F(ί, ϋ, u)}, dtd"xweλ(ή), t^ 0 . (3.24)

Integrating (3.24) over [ί, oo), we have by (3.11), (3.17), (2.36) and (3.23)

\\dtdxweλ(t)\\h+ Σ \\W>ελj(t)\\h
7 = 1

= - 2 J (1 + ;-s)"4(p e* {dxf(s) + δ;F(s, i;, w)}5 dsdxweλ(s))ds
t

£2] {\\d*J(s)\\L2 + \\dϊF(s,v,u)\\Lή\\dsd<xwei(s)h>ds . (3.25)
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Since α is an arbitrary multi-index with |α| ^ 1, we take the summation of (3.25)
over |α| rg 1 to obtain

Σ \\da

xdtwελ(t)\\h + Σ \\fi>eλ(t)\\b
|α | ^ 1 1 ^ | α | ^ 2

^ 2 Σ 1 {\\d*f(s)\\L>+\\dy

xF(s,v,u)\\L2}\\d*dswελ(s)\\L2ds
|α | ^ 1 ί

\ l / 2 / \ l / 2

Σ I I ^ / W I I L O + Σ \\SxF(s9υ9u)\\b)

\ l / 2

Σ \\SΛΛ^As)\\b) ds, ί ^ O . (3.26)

At the last inequality of (3.26) we have used the Holder inequality for sequence.
Equations (3.11), (3.17), (2.36), (3.26) and Lemma 2.6 yield

Σ \\8xdtw&λ{t)\\h+ Σ \\8>*λ(t)\\b
M S I 1 g |?| g 2

^ 2 J Mί?(l + 6-Γ4(log(2 + S))3ds
t

ί)3/2(log(2
\a\ii

+ C J {(1 + η)6η2{\ + s)"4(lθg(2 + s))2

t

^,4(1 + sΓ3 / 2(log(2 +

x s u p Γ(l + ί ) 3 / 2 ( l o g ( 2 + t)Γ2 ( Σ II d'xd,wtλ{t) llί
ί 20 L \|»| £ 1

+f)-3(log(2 + ί))4 + C(l +ηfη2(l + E)"3(log(2

>3/4/» \l/4

+ C(l+η)2( j \\u(s)\\^i*ds) ί j ( l + s ) " 6 ( l o g ( 2 + s ) ) 8 rfs

xsup[(l + t)3/2(log(2 + t))" f
t ^ 0 L \ |α | ^

^ { 1 0 M + d ( l + ^

x s u P Γ ( l + 0 3 / 2 ( l o g ( 2 + ί ) ) ~ 2 f Σ \ \ d % d t ^ ε λ ( t ) \ \ b S \ l 2 \ t^09 ( 3 . 2 7 )
t ^0 L \ |α | ^ 1 / J

where Cx does not depend on ε and /. If we choose η > 0 so small that

η)6η^M , (3.28)
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then we obtain by (3.27)

sup Γ(l + 03/2(log(2 + t)Γ2( Σ \\Z>sΛt)\\h
t ^ O L \ l ^ | α | ^ 2

\ 1 / 2 Ί

+ Σ H^vUOIli* U l l / ? M . (3.29)
1*1 ^ i / J

In the same way as above, we have by (3.11), (3.18), (2.36) and Lemma 2.6

Σ lls;3 tweλ(ί)iiL^+ Σ \\s>

S {10M + C2(l + n)bη}η(\ + tΓ2(log(2 + t))4

Σ S"xd,wei(t)\\iΛ\, t^O, (3.30)
|a| = 2 J

where C2 does not depend on ε and /. If we choose η > 0 so small that

C2(l +η)6η^M , (3.31)

then we obtain by (3.30)

2 ( Σ \\S>ε
| α | =

1/2

+ Σ \\d"xd,wtλ(t)\\bj U l l M ί ? . (3.32)

From (3.19), (3.8), (3.17), (3.18), (3.29) and (3.32), it follows that for some C > 0,

sup |~(1 + 03/2Oog(2 + t)Γ2\\(Vwa(t)\\Li

(3.33)+ (1 + ί)(log(2 + 0 ) " 2 Σ \\d*χd?+jwελ(t)\\L> U C ,

where C does not depend on ε and /. When we consider passage to the limit as
ε -» + 0 and Λ -> + 0, (3.29), (3.32), (3.33), a compactness argument and the regular-
ity theorem of linear hyperbolic equation show the existence of the solution w(ί) to
(3.13)-(3.14) such that

w(ήeC([0, oo); H3 n H1) , (3.34)

2

3,w(r)e Π C J "([0,oo);H 2 ^), (3.35)

supΓ( l + 0 3 / 2 (log(2 + ί ) ) " 2 f Σ
ί ^ O L \ 1 ̂  |α|1 ^ |α| ^ 2

+ Σ | |δ;3 tw(ί) | |L^ / 2 l^HMf/, (3.36)

/ J
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t ^ 0
d'Mt)\\h

|α | = 3

(3.37)

sup (1 + ί)3/2(log(2 + ί ) ) " 2 II dfw(t)\\Li
r go L

+ ( 1 + ί ) ( l o g ( 2 + ή y 2 Σ \\3"χd?+Jw(t)\\L>\ ύ C . (3.38)

The uniqueness of the solution follows from the same argument as in the proof of
Proposition 2.3.

We next evaluate z = N2[v,ύ]. By Lemmas 2.2(i), 2.4 and the Gagliardo-
Nirenberg inequality (see, e.g., [4]) we have

joe I ^ 2

+ C( IIdiv v | + II div v || WIΛ \\ u \\ w^ + || div v | | L χ || M b

X
-m
t

x
-m
t W1'

+ I I ^

2 θ ( ί ) /

P »"•») — ^ V L .

i

\

)

Jx

+ C(\\A. Σ
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C ( \\v\\L*\\u\\H2

Σ \v\\L^\\υ\\^\\u\\L

^ C(l + >7)V(1 + 0"2(log(2 + ί))2, ί ^ 0

for [v, u] e X. In the same way as above we have

(3.39)

^ O (3.40)

for [v, u] e X.
On the other hand, by (2.37), the Hardy-Littlewood-Sobolev inequality (see, e.g.,

[16]) and the Gagliardo-Nirenberg inequality (see, e.g., [4]) we have

\δ«G2(t,v,u)\\L2^C
loci S 2

1

c

c

- *

1

X

1

X

-* m 2

w

mu)

r2Jeιφm\\H

*+c

2

1
— *
\x

+ C

u

1

2

- *

W2,β

C || mm | | H / 2 || mm || ^iβ/51| W |

- n 1/2 I, - I, 1/2

M | | 2 \\UU\\2

<

| m u \\ ^ 2 , 6 / 5 1 | t/ \\H2

I 1 / -^ ! I I I 1 / -^ II l | l / - ί - [ l II

I H 2 I I w I I ^ . 3 I I M 1 1 ^ \\m\\H2

|m | 1 | m | | ^ . 3 1 | u | | ^ 2 1 | u |

for [D, U] ε X. In the same way as above we have

Σ \\d*xdtG2(t,v,u)\\L2SC(ί+η)*η3(l+tΓ2(\og(2

(3.41)

(3.42)

for [υ, w] e X.
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We first consider the regularized problem associated with (3.15)—(3.16):

2idtzBλ + Λzελ = (1 + λt)~4[2ipε* {(Λ+ +R + v) V(pε*zελ)}

+ pε*g(t) + p^G^v.u) + pε*G2(t,v, «)], t ^ 0, xeR 3 ,

(3.43)

- O ( t - o o ) , (3.44)

where 0 < ε rg 1 and 0 < λ < 1/4. By using the contraction mapping principle, we
easily see that for each ε and λ, there exists a T > 0 such that (3.43)-(3.44) has the
unique solution zελ(t) satisfying

zελ(t)e(\ C2(lT9oo);W)9 (3.45)

sup (1 + λtf X \\d*xdϊzBλ(t)\\L* < + αo . (3.46)
t^T[_ j = 0 J

Since the initial value problem of (3.43) can easily be solved globally in time, the
above solution zελ(t) can be extended to the time interval [0, oo).

We next derive the a priori estimates independent of ε and λ for zελ. Let α be an
arbitrary multi-index with |α| ̂ 2 . We apply d% to (3.43) and take the scalar
product in L2 between the resulting equation and dχZελ(t) to obtain

ijtWxzίλ(t)\\h = WVdWMWh

+ 2/(1 + λtΓ*(pe*{(A+ +R + v) Vdx{pt*zeλ)}, d"xzti)

{d?(A+ +R + υ) Vd?(pe*ztλ)}, d*zελ)

,u)),dizελ), t ^ O . (3.47)

Here, the summation at the right-hand side of (3.47) is empty, when |α | = 0. By the
integration by parts we have

(pε*{(A+ +R + v) Vdx(pε*zcλ)},dxzελ)

= ((A++R + υ) V(pε*dxzελ), pε*dxzελ)

= - ^ ( d i v μ + +R + υ)(p,*d'xztλ),pe*dϊztλ). (3.48)

We take the imaginary part of (3.47) to obtain by (3.48)

w
= - ( 1 + At)"4(div(^l+ +R + v){Pε*dlzελ),pε*dlzελ)

a1 + α 2 = α

| α 2 | ^ |α | - 1

S"xGι + d*G2),d°xzελ)
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\b. + \\divυ\\L~)\\dxz,x\

+ C{\\A+\\WVΛ,-C + \\R\\w^)\\zελ\\2

HM

+ C | | δ ; t ; | | L 3 | | Vza\\h\\3°zελ\\L2 + CWvWw*-^ \\zελ\\2

m,,

+ (\\d%g\\L>+\\d"xG1\\L* + \\d"xG2\\L2)\\d*xzeλ\\L', t^O, (3.49)

if 1 :g |α| ^ 2. We take the summation of (3.49) with respect to α and use (3.12),
(3.39), (3.41), the Gagliardo-Nirenberg inequality and Lemmas 2.2(i), 2.4 to obtain

~( Σ

\\d'xztί{t)\\h

C(ί+η)η(l + tΓ1 Σ \\δ"xztl(t)\\2

L2

|α | S 2

\\

|α | g 2

Σ
^ |α| ^ 2

)2 Σ l l fe
|ot| g 2

+ C ( l + ί ? ) V ( l + t Γ 2 ( l o g ( 2 + t ) ) 2 Σ II ̂ z ε , ( t ) H i , , ί ^ O . ( 3 . 5 0 )
MS 2

If |α| = 0, we have by (3.47), (3.48) with |α| = 0 and Lemmas 2.2(i), 2.4

H ' = - ( 1 +Aί)~4(div(/1+

+ (1 +λή-43(p,*(g + G1 + G2),zελ)

z c{\ + η)η(ί + ί)-1llz ^

Cη(l + tΓ3l2(lθg(2 + t))2\\zελ(t)\\2

L2

ί ^ o . (3.51)

Equations (3.50), (3.51), (3.12), the Holder inequality for sequence and Lemma 2.6
yield

Σ Wdϊz^ήWhsCil + ηfη^il+sΓ1 Σ \\dUeΛs)\\bds
\x\£2 t | α | S 2

+ ϊ Σ II
ί |α| S 2
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00

^ C{\ + ηfη j (1 + s)"3(log(2 + s)fds

oo / \ 1/2 / \ 1/2

+ f Σ \\3Λ

xg(s)\\b) Σ \\dΛ

xzελ(s)\\b) ds
ί \ | α | ̂ 2 / \ | α | ̂ 2 /

2 + 0)"2( Σ
\ | a | ^

+ 5Mη(l + ί)"2(log(2 + ί))4

xsupΓ(l+ί)(log(2 + 0)"2f Σ \\
(3.52)

where C3 does not depend on c and λ. If we choose η > 0 so small that

* 7 ) 6 ^ , (3.53)

then we have by (3.52)

sup Γ(l + ί)(log(2 + t)Γ2( Σ l|3^βΛ(ί)II^Y/2] ^ 6Mη . (3.54)
ί ^ O L \ | α | ^ 2 / J

Differentiating (3.43) in ί, we have

2iδt(dtzeλ) + A(dtzελ) = 2ί(\ + λty4pε* {(Λ+ +R + υ) V(pε*dtzελ)}

- 8U(1 + λty5pE* {{A+ + R + υ)'V{pe*dtzελ)}

+ 2i(l + λt)-*pε*{(dtA+ + dtR + dtυ)- V(pε*zελ)}

+ dt[(l +λty4pε*{g + d + G2}], ί ^ O . (3.55)

We take the scalar product in L2 between (3.55) and dtzελ(t) and take the imaginary
part of the resulting equality to obtain by (3.48), (3.54), (3.42), Lemmas 2.2(i), 2.4 and
the Gagliardo-Nirenberg inequality

C(\\A+ | | L . + \\R\\L» + \\v\\L»

C(\\d,A+ ||L« + ||δ,Λ||L» + ||

(II dtg \\L2 + || dfi, | | £ J + || d,G2 \\L>) \\ d,zελ \
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+ C ( l + η ) 5 η 2 ( l + t ) - 2 ( l θ g ( 2 + t ) ) 2 \ \ d t z ε λ \ \ L 2

+ ( Σ \ \ d ! 9 h * ) \ \ d , z t λ \ \ L > , ί ^ O . (3.56)
\j=o /

Here, we have used the fact that 0 < λ < \ at the first inequality of (3.56). Let α be
an arbitrary multi-index with |α| = 1. The application of δa

x to (3.55) yields

2iδt(δxzελ) + Δ{dxzελ) = 2i(l + λty*pε*{(A + +R + v) V(pt dxdtztί)}

+ 2ί(l + λt)-*pc*{{d*xA+ + d*xR + d«xυ) V(Pε*δtzcλ)}

- m(l + λtΓ5pε*{{dxA+ + ΘXR + d"xv) V(pε*zελ)

+ (A+ +R + v) V(pε*δxzελ)}

+ 2i(l + λtΓ4

Pε*{(δx~dtA+ + dxdtR + dxdtv) V{pε*zελ)

+ (dtA+ + d,R + dtv) V(Pt*d5zei)}

+ d«xδt[(l+λty4pε*{g + G1+G2}l t ^ O . (3.57)

We take the scalar product in L2 between (3.57) and δxδtzελ(t) and take the
imaginary part of the resulting equality to obtain by (3.48), (3.54), (3.42), Lemmas
2.2 (i), 2.4 and the Gagliardo-Nirenberg inequality

C(\\dxA+ | |Lχ + | | δ ; Λ | | L - + | | 3 S ϋ | | L . ) | | Vδtzελ\\L2\\δldtzελ\\L2

C(\\dxA+\\L»+ | | δ ; Λ | | L - + \\δxv\\L*)\\Vzελ\\L2\\δxδtzελ\\L>

C ( M + | | i - + ||Λ||L- + | |c | |L-) | | Vdxztλ\\L4dxd,z,λ\\L>

C(\\δxδtA+ ||L« + | | δ ; δ , R | | L . ) | | Vzελ\\^\\δa

xδtzελ\\L2

C\\δxδtυ\\L>\\Vzελ\\L*\\δxδtzελ\\L>

+ llδ δ.GiH^-f- \\dxδtG2\\Lή\\δxδtzελ\\L2

tr1 Σ \\dfΛz,λ\\b
1/51 = 1

(l + ^ 2 ( 1 + ί)"2(log(2 + t))2 Σ \\δβΛzελ\\L>
l/?l = i

(l + >/5)f/2(l + t)"2(log(2 + ί))2 | |δ;δ,z, A | | L ί

Σ \\δlδ]

tg\\LX\\δlδtztλ\\L^ ί ^ O . (3.58)
j=o J
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Here, we have used the fact that 0 < λ < 1/4 at the first inequality of (3.58).
Equations (3.56), (3.58), (3.12), the Holder inequality for sequence and Lemma 2.6
yield

Σ iifewiii^cα + ̂ j j α + s)-1 Σ wdiz^mhds
|α | ^ 1 t |α | ^ 1

C(l+η)5η2](l + sΓ2(log(2 + s))2 £ \\dxztλ(s)h'ds
t |α | ^ 1

\\d!g(s)\\L>\\\d,zti(s)\\L*ds

GO Γ

ί Σ
t L|α| ̂

t (..7 = 0

t L|α| = 1

+ Σ H

g C 4(l + f/)»/(l + ί)"2(log(2 + t))

x{supΓ(l+ί)(log(2

x sup (1 -
ί ^ o L

+ 10Mη(ί + ί)"2(log(2 + ί))4

xsup (1 + ί)(log(2
ί^o L

Σ Il3ίδ fz f iλ(ί)||
| α | ^ 1

where C 4 and C 5 do not depend on ε and λ. If we choose η > 0 so small that

-*ι)v^τ> (3 6°)

ί/)5f/^M, (3.61)

then we obtain by (3.58)

sup Γ(l + ί)(log(2 + t))~2 f Σ \\^ΛzAt)\\h]lt2λ S 2lMη . (3.62)
I S O L VlαlSl / J
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Furthermore, from (3.43), (3.54), (3.62), (3.39), (3.41), the Holder inequality for
sequence and the Gagliardo-Nirenberg inequality it follows that

Σ 1 1 ^ ^ ( 0 1 1 ^ 2 Σ \\saΛzeλ{t)\\L2
|α | = 1 |α | = 1

+ 2 Σ \\d«pε*{(A++
|α | = 1

+ Σ \\d"χP.*{g + G1 +
l«l = i

\ l / 2

Σ \\d"Λzeλ(t)\\b)

+ Σ (ii
|α | = 1

^ [(42^/3 + l)Mη + C 6(l + η)η(Mη)

+ C7{1 + (1 + η)5}η2~\{\ + f)"1(log(2 + ί))2, t ^ 0 ,

(3.63)

where C 6 and C7 do not depend on ε and λ. If we choose η > 0 so small that

C 6(l + ί?)f? g 1 , (3.64)

C7{1 +(1 +η)5}η^M, (3.65)

then we obtain by (3.62),

+ r)(log(2 + ί)Γ 2 Σ
ί ^ 0 L |α| = 1

\Δd°xztλ{t)\\ιλύ 3(14^/3 + 1)M^ . (3.66)
J

Let α be an arbitrary multi-index with |α| ^ 2. The application of ^J to (3.43)
yields

+ p e * ^ + p β * G 1 + p e * G 2 ] , ί ^ O , x e R 3 . (3.67)

Since zελ(t) -+ 0 in H2 as ί -> oo, we have by (3.67) and DuhameΓs principle

δ;zeλ(ί) = ^ ί (1 + ^ ) " 4 l / ( ί - s ) [2 ip e *3;{μ + + R + ϋ) F(p ε*z ε A)}

+ P e * 3 ^ + p e * 3 ; G 1 + p e * δ ; G 2 ] d s , ί ^ O . (3.68)

We take the L8 / 3(ί, oo; L 4 ) norm of (3.68) to obtain by Lemma 2.1(ii) with q = 4
and r = 8/3,

\3/8

\\dx

xzελ(s)\\%3ds)

,] \\d«xg\\LidS + K,] \\dxGΛL*ds
t t

00

i ί \\d*xG2\\L2ds, ί ^ 0 , (3.69)
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where Kγ is defined in Lemma 2.1 (ii). The summation of (3.69) over | α | g 2 gives us

/ oo \3/8

Σ ί W*z*άs)IIL*ds)
| α | S 2 \ t /

+ * ! ? Σ W
ί |α | ^ 2 ί | α | ^ 2

+ κ j Σ l l δ ί G 2 | | L ^ , ί ^ O . (3.70)
i |o<|g2

Lemmas 2.2(i), 2.3, (3.54), (3.64) and the Gagliardo-Nirenberg inequality yield

Σ \\d"x{(A+ + R + υ) V(Pe*zeλ)}(s)\\L2
|α | ^ 2

+ Σ ( i | β M + ι i L - + ιi
|ot I = 2

+ Σ \\S>\\^\\za\\w
|α | = 2

^ C ( l +)?)>72(1 + s ) " 2 ( l o g ( 2 + s))2, s ^ O . (3.71)

By (3.70), (3.71), (3.12), (3.39), (3.41) and Lemma 2.6 we have

/ oo \3/8

Σ ί liθ;zeA(s)iι!i3ds
1*1 S2 V ( /

^ C K i ί l + ^)??2 f ( 1 + s)" 2 ( log(2 + s))2ds
t

00

+ K,Mη j (1 + sΓ2(log(2 + s))2Js

+ CK,(\ + ηγη2 ] (1 + sΓ2(l0g(2 + 5))2rfs
t

+ K i ( l + ^)4>73 f ( 1 + s)" 2 ( log(2 + s)) 2 ds
r

^ { S K . M η + C^l + η ) 5 η ( K i η ) } ( l + ί ) ~ 1 0 o g ( 2 + t ) ) 2 , f ^ O , (3.72)

where C 8 does not depend on ε and A. If we choose η > 0 so small that

C 8(l + η)5η £ M , (3.73)
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then we obtain by (3.71)

(1 + ί)(log(2 + t)Y2 Σ j \\dxzελ(s)\\]!? ds) l^βK^η. (3.74)

|α| ^ 2 \ ί / J

When we consider passage to the limit as ε —• + 0 and / -> + 0, (3.54), (3.62),
(3.66), (3.74), a compactness argument and the regularity theorem of linear theory
show the existence of the solution z(ί) to (3.15)—(3.16) such that

1

z(t)e Π Cj(l09 oo); H3~2j) , (3.75)
7 = 0

sup Γ(l + ί)(log(2 + t)y2 ( X II dxz(t) || M ' λ^βMη, (3.76)
ί^θl_ \ |α | ^2 / J

(3.77)

/ J

Γ / 7 Y / 2 Ί r
sup (1 + ί)(k>g(2 + t))-2[ y \\Δda

xz(ή\\2

L2) \< 3 (14 x /3 + \)Mη , (3.78)
^oL \N = i / J

[ /oo \ 3 / 8 Ί

(1 + ί)0og(2 + OΓ2 Σ ί I I ^ W I I ^ s ύ 6K,Mη . (3.79)
|α |^2 \ ί / J

We now prove the uniqueness of the solution z(t) satisfying (3.75)—(3.79). We
suppose that zx(ί) and z2(ί) are two solutions of (3.15)—(3.16) satisfying (3.75)—(3.79).
If we put Z(t)) = Zi(ί) - z2(ί), then Z(ί) satisfies (3.15) with #(ί) = Gi(ί, v, u)
= G2(t, v, u) = 0. Accordingly, in the same way as the case of the regularized

problem we can prove that if η > 0 is chosen so small that (3.53) holds, Z(t) satisfies
(3.54) with 4Mη replaced by zero. This implies the uniqueness.

Thus, if we choose η > 0 so small that (3.10), (3.28), (3.31), (3.53), (3.60), (3.61),
(3.64), (3.65) and (3.73) hold, then (3.34)-(3.38) and (3.75)-(3.79) show that N |>, u] is
a mapping from X to X. In the same way as above, we can prove that if η > 0 is
chosen sufficiently small, then

1
2

Consequently, we conclude that if η > 0 is sufficiently small, then N [v, u] is
a contraction mapping from X to X. Therefore, there exists a unique fixed point
[v, u]eX such that [v, u] = N[υ, u]. Since [y, u] belongs to the image of JV, υ and
u must satisfy (3.34)—(3.38) and (3.75)—(3.79), respectively. Furthermore, by Corol-
lary 2.5(i) and the definition of the mapping N we can conclude that if we define
A(t) and φ(t) as in (3.1) and (3.2), respectively, then A(t) and ^(ί) are the solutions of
(1.14)—(1.15) satisfying (1.5)—(1.9).

We next show that A(t) satisfies the Coulomb gauge condition (1.3). We first
note that (4π|x|)~ 1 is the fundamental solution of — Δ. The application of the
divergence operator to (1.14) yields

df{ά\vA)- Δ{ά\\A) = 0, t > 0, xeR 3 . (3.80)
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Since άiv A is a solution of (3.80), div satisfies the energy identity:

||3 fdivΛ(ί)||i2 + || VdiwA(ή\\b = l l ^ d i v ^ ) ^ + || V div A(s)\\h

= \\dtdivA + (s) + dt div R(s)

+ { δ f d i v > l ( s ) - dtdivA + (s)- dtdi\R(s)}\\l*

+ || 7div^ + (s) + Vdiv R(s)

+ {VdivA(s)- VdivA + (s)

- VdivR(s)}\\2

L2, 0 < ί , 5 < o o . (3.81)

Letting s -• oo in (3.81), we have by (1.8), (2.31) and (1.13)

\ \ d t d i v A ( t ) \ \ t 2 + || V d i v A { ή \ \ 2

L 2 = 0, t ^ 0 ,

which implies that A(t) satisfies the Coulomb gauge condition (1.3). We can easily
verify that (1.1)—(1.2) are equivalent to (1.14)—(1.15) for the solutions in the class of
(1.5)—(1.7). Therefore, we conclude that {A{t\ φ(ή) are the solutions of (1.1)—(1.3)
satisfying (1.5)—(1.9).

It remains only to prove the uniqueness of the solutions satisfying (1.5)—(1.9).
We omit the proof of the uniqueness, because the uniqueness follows from a similar
(but slightly simpler) argument to above. For the details, see [13] and [14].

Concluding Remarks, (i) In the proof of Theorem 1.1 we have not used the gauge
condition (1.3) at all, although the use of (1.3) makes the proof a little simpler. This
is because we intend to make it clear that the gauge condition (1.3) does not play
any essential role in the proof of Theorem 1.1. But the gauge condition plays an
important role in the paper [5], which treats the initial value problem of the
Maxwell-Dirac equations. It seems important to investigate the relation between
the Maxwell-Schrόdinger equations and the gauge condition.

(ii) The global existence of small amplitude solutions for the initial value
problem of the covariant nonlinear wave equation has been studied through the
L00 — L2 estimates with weights related to the generators of the Poincare group
(see, e.g., [1, 5 and 10]). Recently in [7], Hayashi has proved the global existence of
small amplitude solutions for the initial value problem of the Schrόdinger equation
with quadratic nonlinearity by using the L0 0 — L2 estimates with weights related to
the generators of the Schrόdinger group. It is conjectured that the global existence
of small amplitude solutions for the initial value problem of the Maxwell-
Schrόdinger equations could be proved through the L00 — L2 estimates with
weights related to the generators of the Poincare group and the Schrόdinger group,
although the Poincare group and the Schrόdinger group are not necessarily
compatible.
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