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Abstract. By examining the lattice gauge approximation we show that the small
volume limit of the 2-dimensional Yang-Mills functional integral is the natural
symplectic measure on the moduli space of flat connections.

0. Introduction

The subject of this paper is the small volume limit of the 2-dimensional Yang-Mills
functional integral. By examining the lattice gauge approximation, we show that
this limit is precisely the natural symplectic measure on the moduli space of flat
connections. This answers affirmatively a question raised in [S2].

We begin by placing this result in context. Let I1 be a compact orientable
surface of genus g > 1, G a compact Lie group with finite center, and P -• Σ
a principal G-bundle. We suppose further that Σ is endowed with a volume form ε,
and G is equipped with a bi-invariant Riemannian metric with total volume 1. For
any connection A on P, we associate the curvature FA. (See [A-B] for details).
We have

for some ad(P) valued function fA. The Yang-Mills functional is defined by

be the affine space of connections on P. We are interested in the partition
function

,ε,fc,P) = J

where k2 is a coupling constant. More precisely, the object of interest is
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where the sum is over representatives P of all topological equivalence classes of
principal G bundles. Note that if G is simply connected, then all principal G bundles
over Σ are trivial, so that

Z(Σ9ε9k) = Z(Σ9ε9k9P)

for any fixed P.
One difficulty is that this integral cannot converge because the measure

is invariant under the infinite dimensional gauge group

Nonetheless, for the time being we follow [Wi] and examine the desired properties
of Z. If φ is any diffeomorphism of Σ9 then φ pulls back stf{P) to j^(π*P), and
DΛ(P) to DA(π*P). Thus

Z(Σ9 φ*ε, fe, φ*P) = Z(Σ9 ε, fe, P) .

Summing over P, we learn that for any diffeomorphism

φ\Σ^Σ

we have

Moreover, by a Theorem of Moser [Mo], if ε1 and ε2 are volume forms on Σ such
that

= vol(ε2)

(where volfe) = JΓεf) then there is a diffeomorphism φ such that

φ*ε2 = εί .

Therefore, the partition function depends only on

v = vol (ε)

and we can denote it by

Z(Σ9 v, k).

Fix a volume form ε0 with vol(ε0) = 1. Then

where

Since, for any veR+
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we have

and
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Z(Σ,v,k)= J
si

where si is the disjoint union

sf =

Thus, Z depends only on ί fc2. For simplicity, we will set k = 1 and write

Let

be a ^ invariant functional. For example, if y is an oriented loop in Σ9 one can take

g{A) =f(Ty(A)),

where Γy(^) is the parallel translation operator around the loop y, and/is any
function on G constant on every conjugacy class. Then we can consider

, v)

The measures

are rigorously constructed in [F2] and [S2] (in the case that g =f(Ty) for a large
class of γ). See also [Fl] and [SI] for the case Σ = S2.

In this paper we examine lattice approximations to the Yang-Mills functional.
Let 9 be a partition of Σ into polygons such that each face is contractible. Let V, E,
F denote the space of vertices, edges and faces, respectively, of 9. Choose an
orientation for each edge and face. We approximate the space si by

For αe,δ/(^)(we will use a small α to denote an approximate connection), e e £, we
think of α(e) as parallel transport along e. In this case, the gauge group is

where acts on αes/(έ?) by sending α(e) to

y(eί)α(e)y~1(e0),

where e0 and e1 are the vertices at the tail and head, respectively, of e. To each face
u, we associate pU9 the ε0 area of w, and Tu, the parallel translation around the
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boundary of u. Now define for each ae<stf(έ?\

e™M=Y[K(υpu,TU9l), (1)
ueF

where

K(t, x, y): R+ x G x G - > R

is the heat kernel of G. (The definitions and properties of K are reviewed in Sect. 1).
We then consider

Z(Σ9v90>) = j γ u Λ )

where 2)a is the natural product measure on

As shown in [Wi] if ^ ' is any refinement of ^ ,

Z(Σ9Ό9P) = Z(Σ9Ό9P'). (2)

Now let

be any gauge invariant function. For example, if γ is any closed loop which is
a union of edges in 99 and / is any function on G which is constant on every
conjugacy class, we can let

g(a) =f(Ty(a)),

where Ty is the parallel transport operator around y. We can then consider

9 v 9 g 9 P ) = J

Again, if 9' is any refinement of ^ , g extends in a canonical way to a function on
') and

In [S2] (see also [Dr]) it is shown that for any g, v and &>,

Z(Σ,v,*)

where the right-hand side is the infinite dimensional integral defined in [F2] and
[S2] (applied to the canonical extension of g from s/(0>) to sί\

In [S2], Sengupta asks for the limit as v -> 0 of the measure

9A—-—e-
YM»{A).

Z(Σ9 v)
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We answer this question by examining the lattice approximation. Witten proved in
[Wi] that

lim Z(Σ, v, 9) = vol M °/ # Z(G), (4)

where Z(G) is the center of G, Jί° is the moduli space of irreducible flat connec-
tions on P, and the volume of Jί° is that induced by the natural symplectic form on
Jί° (see [A-B, Go] and the remark at the end of this section). Witten proved (4) by
independently calculating both sides (compare (2.67) and (4.72) of [Wi]). We show
that this limit is true on the level of measures. That is, in this paper we prove

Theorem 1. For any gauge invariant function

we have

t. _ ._ _ 1 , ωn

lim. '»' ' φZ(G)y n\ '

where ω is the natural symplectic form on Jt°, and n = jάimJi.

Using (3) we learn

Corollary 2. The measure

^ 0 Z(Σ9 v)

is the measure

1 ωn

0 n\

Remark. We are using a different normalization for the symplectic form on Jί°
than that in [A-B] and [Wi]. Namely, if α, βeΩ1(Σ, adP) represent tangent
vectors to Jί°, [A-B] and [Wi] define a symplectic form ώ on Jί° by setting

( β ) $β

With this normalization, ώ represents an integral cohomology class. However, we
shall use the symplectic form

thus avoiding the spurious factors of 2π which would otherwise appear in each
formula.

1. The Heat Kernel on G

In this section we collect the necessary facts concerning the heat kernel on G. First,
we recall the definition. Let Δ denote the Laplace-Beltrami operator acting on
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functions. Then K(t, x, j;) is the fundamental solution of the operator

d 1 A1—A .
ut 2

That is, for all t > 0,

and

\im K(t, x, y) = δ{x - y),
ί->0

where δ(x — y) denotes the Dirac delta function on G centered at y. If {ft} is
a complete orthonormal set of eigenfunctions of A with corresponding eigenvalues
{λi}, then

i

We require the following well-known estimates on the heat kernel on a compact
Riemannian manifold M.
1) There are constants CΊ and C2 such that for any x, yeM and t near 0,

-dimM \x-y\2

K(t, x, y) < C t (1 + r~^)e ~C2^Γ . (6)

2) There is a neighborhood U of the diagonal

A c M x M

such that for (x, y)eU and ί near 0
— dimM |x — y\2

K(t, x, y) = (2πt)-Γ-β — S - ( l + O(ί)), (7)

where |x — y\ denotes the Riemannian distance from x to y.
We note that in [Wi], Witten takes a different approach, and defines

e-y*M= γi Γ{Tu,vpu),
faces u

where

Γ(TU9 vpu) = Σ(dim<x)χa(Tu)e-VJψL . (8)
a

The sum runs over all isomorphism classes of irreducible representations, dim α is
the dimension of the representation α and c2(oc) is the quadratic Casimir operator of
the group G.

To see that (1) and (8) are equivalent, let α be an irreducible representation and
let V denote the representation space. Choose an inner product on Fsuch that α is
unitary, and a basis for V which is orthonormal with respect to this inner product.
Then for each g s G, oc(g) is a dim α x dim α matrix. Denote the matrix elements by

1 < ij < dimα .
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By the Peter-Weyl theorem, the (dim α)2 functions

Φij(g) = v/dϊϊnά v^g)

are orthonormal eigenfunctions of A, each with the same eigenvalue

λ = c2iμ) .

Then

Σ [
ij

(9)

It also follows from the Peter-Weyl theorem that as α runs through all irreducible
representations, the functions

form a complete set of normalized eigenfunctions. Therefore, substituting (9) into
(8) (and then comparing with (5)) yields the desired equivalence.

2. The Proof of Theorem 1

(i) Restriction to Flat Connections. We call a connection ae <$#(£?) flat if, for every
face w,

Tu(a) = 1 ,

where Tu(a) denotes the parallel transport operator around the boundary of u. We
denote the space of flat connections by # \

Let N be any open neighborhood of $F. There is a c > 0 such that for all a φ N ,

inf |Γβ(fl)-l|>c.
faces u

Thus, using the estimate (6), there is a c> 0 such that for small v ,

J @ag(a)e ~ YM»(α) < e~φ = O(vn) for all n .

Thus, up to errors which vanish to all orders in v, the integral Z(Σ, v, g) can be
replaced by

J @ag(a)e-γM»{a), (10)
aeN

where N is an arbitrary neighborhood of 3F.
(ii) Reduction to Non-Singular Connections. In this section we reduce the evalu-
ation of (10) to an integral over a neighborhood of the space of non-singular flat
connections. To each connection a e jtf and each face u we associate the parallel
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transport around the boundary of u so that

T: s/ -> Π G

u

The flat connections are precisely

We denote by J ^ s i n g the set of points in J* which are critical points of the map Γ,
and

The set J * 0 is an open dense set in 3F ([Go]). It follows from the implicit function
theorem that J ^ 0 is a smooth submanifold of J / ( ^ ) .

We express the integral (10) as a sum of 2 integrals: one over a neighborhood of
2F*™% and one over a neighborhood of J^ 0 . With this is mind, set

£ r ( ^ s i n g ) = U BΛa),
aeάFsine

where

and

Let

denote the normal bundle to J ^ 0 c j ^ . The exponential map takes ( J ^ 0 ) 1 to
Let

denote a neighborhood of the zero-section of ( # ' ° ) 1 with the property that

exp: v->«ί/

is a diffeomorphism. For r > 0, set

V Γ = V | j r o .

Then, for every r > 0

is an open neighborhood of J^, and thus

Z(Σ, 0, g) = lim f <?α#(α)έ>- YM»(α)

= lim J + lim J .
ϋ->0 52 r(J5 Γ S i n g)\exp(v r) υ-*0 exp(vr)
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Now, letting r -> 0,

Z{Σ, 0, g) = lim lim J + lim lim J .
r->0 v-+0 B2r(&'siΏ8)\exp(vr) r-*0 t;-» 0 exp(vr)

= lim lim /8 i n 8(2;, υ, g, r) + lim lim I°(Σ, v9 g9 r).
r->0 v-+0 r-+0 v->0

The proof is concluded by the following two lemmas.

Lemma 3.

1 wn

lim lim I°(Σ, v9 g9 r) = J g — .

Lemma 4.

r->0 ι;-*0

Before proving Lemma 3, we show that Lemma 4 follows from Lemma 3.

Proof of Lemma 4 (Assuming Lemma 3).

\I^(Σ9Ό9g9r)\^cI^{Σ9υ9l9r) .

Thus, Lemma 4 follows from

lim l im/ s i n g (Z, t;, 1, r) = 0 .
r->0 t>->0

Setting g = 1 in Lemma 3

= voi (^r°)

Thus

Z(Γ, 0) = lim lim / s i n g ( i ; , ϋ, 1, r) + lim lim I°(Σ9 v, 1, r)

= lim lim J s i n g (Σ, υ9 1, r) + V o l ( ^ 0 ) / # Z(G).

From Witten's calculation (4),

Z(Σ,0) = VolMr°)/#Z(G)

which implies the desired conclusion. D

Remark. We used Witten's calculation (4) to show that the singular flat connec-
tions do not contribute in the limit. To prove this directly from the definition of
jsing r e q U i r e s information about the singular set and the behavior of T near the
singularities. A proof along these lines can be constructed using the results of
Goldman in [Go]. In particular, Goldman proves the essential fact that all
singularities of T are at worst quadratic.
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(iii) Proof of Lemma 3.

I°{Σ9v9g9r) = J ®ag{a)e-™M .
exp(vr)

Using the exponential map, we pull the integrand back to vr. The natural volume
on vr is the product of the volume form on J^? and the volume form on the fiber.
Denote this volume form, at

by

Then, at

where

So

(a,b)

d

exp* 3) a =

h(a, 0) =

(a)dvolVa(b)h(a, b),

I°(Σ9Ό,g9r)= J dvol^y f dyolVag(expa(b))h(a,b)e-γM°^b» .
ae&°r beva

Now from (7)

Γ \G\ |TM(expαft)-l | 2Ί

e-YMv(e*Pa(b)) = γi(2πvpu)-^~e- 2 ^ (1 + 0{υ)\

where \G\ = dimG, and

| Γ M ( e x p » ) - 1| 2 = |[^ΓM(α)](fo)|2 + O(\b\3) .

Since dΓ | y α is invertible, we have b = Ypu where ldTu(a)](bu>) = 0 if u φ u;. Then

(ι;)) J dvoUo J
ae^o

r beva

~ 2 e

\ίdTu(ambu)\2 + 0(\b\3)

\G\\F\ \ldT(a)-\(b)\2

O(υ)) J dvoUo J dvolVag(cxpa(b))h(a,b)(2πυy 2 e 2,

where b = Y^y/PuK and va = {b\beva}. As v ->0

J
beva
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Thus, as v -+ 0

I°{Σ9v9g9r)= j^dwol^

so that

r—*0 v-*0 SF

Let t u . . . , ί|F||G| denote a basis for (kerdΓ(α))1. Then

x, | ί i Λ Λ ί | F | | G | l

We must now reduce this to an integral over Jl°.
First, we note that <S(0>)/Z(G) acts freely on J^ 0 , where Z(G) is embedded in

<g(0>) ( ^ G | F | ) along the diagonal ([Go]). Let s 1 ? . . . , slvllG{ denote a basis of the
Lie algebra of <&{&). Then the volume of the orbit through a is

#Z(G) |Si Λ Λ s m i G ) |

Thus, if

/ι:#-°->C

in any gauge invariant function, then

f . . t (VolG) |F |

 f _

^ o #Z(G) ^o

where, for any basis {r1?. . . , rk} of TaJί°,

\r1 A " ' A Γk A Sj(fl) Λ Λ
V(Γi Λ ' ' Λ r f c) =

I Si Λ Λ

Therefore

where, for any basis {rl9. . . , rk) of Γαey#0 ,

^ \rί A - - A rk A Siia) A Λ smG](a) A ίx Λ Λ tlFUG]\
V(Γi Λ Λ rk) = -

L Λ * * * Λ S| ϊ>Ί|G|||[dJ'(β)](ίi) Λ * * Λ [d7Xfl)](£|F||G|)l

(11)

(iv) Review of Reidemeister Torsion. Consider a differential complex

<€\ 0 -^ C° Λ C 1 Λ C 2 ̂  . . . -> Cn -• 0 ,

where each C ι is equipped with an inner product (as we will see, this is much more
than is needed for our later purposes). First, suppose ^ is acyclic. Then, we define
the torsion as follows. For each ι, let

ί ^ . - . X ^ (12)



50 R. Forman

be chosen so that

dt\9. . . ,dtι

m

form a basis for the image of d in C i + 1 . Then, for each i,

forms a basis for C\ The torsion of #, τ(#) is defined by

It is easy to see that τ is independent of all choices.
If ^ is not acyclic, then τ(^) is not a number, but rather a norm on

(where, for any vector space V, we write det Ffor ΛdimVV).
That is, if

{si,. . . ,s\.} c

are representatives in Cf of a basis of H\ then
i ί A A ΊΛ—1 At*~^

s l > > SU> c l 5 ? c m,> α c l ? ? aιmi-i

forms a basis for C* (with the t) chosen as in (12)). Now, for

_ _

we set

Πioddl S Ί Λ Λ s|. Λ ί i Λ ' ' ' Λ tm. A dt\~* Λ * • Λ έ/47-\ I
D

Πievenl S l Λ ' ' ' Λ 5*. Λ ί χ Λ ' ' ' Λ C Λ * 1 X Λ * ' ' Λ ^ 4 * - ! I

Again, τ is independent of our choice of ί's.
Now consider the following differential complex. Fix α e f 0 (eG | £ |),

where, for sεg ι n

d°(s) = s(a) (13)

and, for ίeg | £ |

d1(t) = [dΓ(β)](ί) (14)

Since Γ is invariant under the action of G,

For ae^°, dT{a) is onto, so that

= 0 .
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By standard duality

H°(Va) = 0 .

Therefore, τ(^α) is a norm on d e t i ί 1 ^ ) , defined by

r l A * * Λ rk A t1 A ' Λ ί|FNG| Λ d°S1 A Λ d°S\V\\G\\
9 \*-5)

|5i Λ Λ SiniGiH^ίi A ' ' ' A ι\F\\G\\

where: k = dimH1^), {ru. . . ,rfe} ^ k e r d 1 are representatives of a basis of
J t f 1 ^ ) , {s!,. . . ,5|F | |G | }isabasisofg | κ |, and{ ί l 5 . . . , ί,F||G|} is abasis of (kerd 1 ) 1 .

Notice that

and

Imaged 0 = span{si(α),. . . ,smGl(a)}

is the tangent space to the G-orbit of a. Therefore

Thus, comparing (11), (13), (14) and (15) we see

± J g{a)τ{Va)
°

Witten proved in ([Wi], (4.19) to (4.28)), that

where ω is the natural symplectic form on Jί°. Therefore

1 ωn

as desired. D
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