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Abstract. We give a new proof of the fact that the eigenvalues at corresponding
periodic orbits form a complete set of invariants for the smooth conjugacy of low
dimensional Anosov systems. We also show that, if a homeomorphism conjugating
two smooth low dimensional Anosov systems is absolutely continuous, then it is as
smooth as the maps. We furthermore prove generalizations of these facts for
non-uniformly hyperbolic systems as well as extensions and counterexamples in
higher dimensions.

1. Introduction

The main purpose of this paper is to present a new proof of the following Theorem
1.1. The new methods we use allow us to make some generalizations, which have
not appeared before, among them Theorem 1.2 and Theorem 1.3.

Theorem 1.1. Let f g be two Ck, k = 2, 3,. . . , oo, ω Anosov dίffeomorphίsms of
a compact two dimensional manifold M (respectively σu φt two Anosov flows of
a three dimensional manifold) and h a homeomorphism of M satisfying:

hof=goh (1.1)

(respectively h © σt = φt o h). If the Lyapounov exponents at corresponding periodic
orbits are the same, then heCk~ε.

Theorem 1.2. Let f g (respectively σt, φt), h be as in Theorem 1.1 and the manifold
M be two (respectively three) dimensional If h,h~x are absolutely continuous with
respect to Lebesgue measure then, h,h~γ are Ck~ε.

Remark. We emphasize that Theorem 1.2 claims only that conjugacies which are
both continuous and absolutely continuous are smooth. Since transitive Anosov
systems preserving a smooth measure are Bernouilli, one could use Ornstein's
theorem to produce absolutely continuous conjugacies between any two Anosov
systems with the same metric entropy. They will, nevertheless be discontinuous in
general.
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The strategy of all the proofs of Theorem 1.1 in the literature I am aware of
consists of two steps: First to prove that the conjugacy is smooth along the leaves of
the stable and unstable foliations - with some uniformity. Second, invoke a regular-
ity result that allows to conclude that any function with this property is actually
smooth (provided that the foliations have some mild regularity assumptions which
will have to be verified for the stable and unstable foliations of Anosov diffeomor-
phisms).

The regularity lemma needed for the second step was proved first in the case
k =f= ω as Lemma 2.1 of [LMM]; alternate proofs can be found in [HK, Jol, Jo2,
L12]. [Jol, Jo2] require only properties of the foliations which are well known for
Anosov diίfeomorphisms, the other proofs require properties which are verified for
k Φ ω in [LMM] Lemma 2.4. The first part of [L12] contains a full treatment of the
case k = ω.

The regularity of the conjugating homeomorphism along the leaves was proved
by [LM] in the case k φ ω and in [L12] for analytic systems. Both papers use,
roughly the same geometric idea for this step, the main differences being a different
bootstrap of regularity and a different smoothing method in [L12] that could
preserve analyticity.

In a recent paper [Po2], M. Pollicott provided an alternative proof of the
regularity along leaves based on the theory of zeta functions and Gibbs states that
worked for geodesic flows in surfaces of negative curvature. (See also [Pol]).

The first goal of this paper is to simplify further the arguments of [Po2] in such
a way that we only use the theory of Gibbs states - so that the method works for
transitive Anosov systems, not just geodesic flows. In doing so, we have to remove
the use of smooth invariant measures as well as the use of C 1 + α regularity of stable
and unstable foliations, a reuslt which, in spite of several claims in the literature, is
not true for Anosov flows in general, as found out by Plante [PI].

The basic idea is to show that, as soon as a conjugacy between two Anosov
systems is regular enough so that it has to send S-R-B measures into S-R-B
measures, the densities along stable and unstable leaves are also preserved. Since
these densities are smooth, the conjugacies should be smooth along the leaves.
Performing the argument with enough care will prove that they are uniformly
smooth so that the conjugacy is smooth.

We point out that, nevertheless, we inherit some of the features of Pollicott's
method, notably that the smooth Livsic's theorem is not invoked and that we do
not require a preliminary smoothing. This leads to some technical advantages. For
example, we can treat situations in which the hyperbolicity is non-uniform and
obtain results that roughly say that except for sets of arbitrarily small measure, the
absolutely continuous conjugating homeomorphisms are smooth in the sense of
Whitney. In that generality, the regularity result needed is more delicate and
we will need to discuss modifications of the proof in [Jo2] to adapt it to our
situation.

We will prove the following theorem which is a generalization of Theorem 1.2
for non-uniformly hyperbolic systems:

Theorem 1.3. Let f g be two Ck diffeomorphisms, k = 2, 3,. . . , oo, of a two
dimensional manifold M preserving absolutely continuous measures μf,μ9 respec-
tively. Assume that, with respect to these measures, f and g are ergodic and have
non-zero Lyapounov exponents. If h is a homeomorphism satisfying hof=goh,
assume either:
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i) Both h Una h~x are absolutely continuous with respect to Lebesgue measure, or
ii) The Lyapounov exponents of (/, μf) are equal to the Lyapounoυ exponents of
(g, h * μf).

Then, for every ε > 0, we can find a closed set Ωε a M whose complement has
Lebesgue measure less than ε such that

h\aeCk~\ fc-^aeC*-'.

We also mention that, as a corollary of the method of proof, we also obtain
a version of the smooth Livsic theorem for non-uniform hyperbolic systems.
Namely:

Theorem 1.4. Let f be a Ck diffeomorphism k = 2, 3,. . . , oo of the compact
manifold M which preserves a measure μ absolutely continuous with respect to
Lebesgue. Assume that, with respect to this measure, f does not have a zero
Lyapounov exponent. Let φ: M -• R be a continuous function solving

φof-φ = η (1.2)

with η e Ck. Then, for every ε > 0, we can find a closed set Ωε <= M whose complement
has Lebesgue measure less than ε such that φ| -ϊfc-ε

Remark. Since the sets in which the function are regular are not open - in typical
situations they will be nowhere dense, the statements of regularity of functions are
to be understood in the Whitney sense. The main part of the proof will be
a regularity lemma for functions defined on such sets. This regularity lemma can be
used to generalize the theory of [LMM] to Axiom A rather than uniformly
hyperbolic manifolds. We plan to address these issues in future works.

Remark. Notice that, contrary to the Livsic theorem for uniformly hyperbolic
systems, we do not have a result that gives sufficient conditions for the existence of
a solution of (1.2) by the vanishing of cocycles on periodic orbits.

Using this, we immediately have: .

Corollary 1.5. Let f μ be as in Theorem 1.4. // μ has a continuous density p(x),
bounded away from zero, then, for every ε > 0, we can find a closed set Ωε c M
whose complement has Lebesgue measure less than ε such that p\ΩεeCk~1~ε.

Proof By the invariance of p, we have ln(p(/(x))) — lnp(x) = ln(det((D/(x))). •

In a subsequent section, we investigate analogues of Theorem 1.1, Theorem 1.2
in higher dimensions.

We prove a rigidity statement showing that conjugacies smoother than a criti-
cal regularity are as smooth as the maps. (For the partially hyperbolic case, the
regularity statement requires to exclude a set of arbitrarily small measure.)

We also show that in dimension greater than or equal to four, in general, there
are no local invariants around periodic orbits whose vanishing implies smooth
conjugacy. Indeed, we construct examples of systems which are topologically
conjugated and such that, around every periodic orbit, we can find neighbour-
hoods which are smoothly conjugated. Nevertheless, the systems are not Ck

conjugated for some k. These results show that the hypothesis of a minimal
regularity in the rigidity results cannot be dropped.
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3. Preliminary Results and Notation

In this section we set the notation and recall without proof - but with precise
references to the literature - several facts which we will need later. In this prelimi-
nary section we will discuss only Anosov systems. Some, but not all, of the results
we discuss have an analogue for non-uniformly hyperbolic systems. Some of these
generalizations will become useful in Sect. 5, where we will discuss them in more
detail.

We recall that an Anosov diffeomorphism / in a manifold M leaves invariant
two foliations Ws(f\ Wu(f\ whose leaves are characterized by

For a flow σ, besides the stable and unstable foliations defined as above, we can
also consider the center-stable and center-unstable invariant foliations
Wsc{σ\ JVuc(σ) which include the direction of the flow in the leaves. (When there is
no possibility of confusion, we will drop the index that tells which diffeomorphism
or flow the foliations correspond to.) The local pieces of the foliation will be
denoted by:

W«f) δ = {y\d(fn(y)Jn(x)) <δ,n>0},

W ^ δ = {y\d(Γn(y)J-n(x)) <δ,n>0}.

The definition makes it clear that a topological conjugacy between two different
Anosov diffeomorphisms (or flows), sends the leaves of each of the foliations for one
system into the leaves of the corresponding foliation of the other.

These foliations, nevertheless, have several regularity properties which are more
than topological. We will use that if the diffeomorphism or flow is Cfe,
k = 1 . . . oo, ω, the leaves are Ck and that the jets of the leaves are Holder.

The definition of Holder continuity of jets can only be done using patches of
coordinates. We will denote by JX(Φ, N\ the /c-jet of the function Φ with range in
the manifold N at a point x. (We will use only Jk

x if the function and the space
are understood.) When k is a finite number \\JX\\ can be defined naturally if
there is a metric on the manifolds. When k = ω, we can take several norms,
depending on an parameter η > 0, roughly, the size of the analyticity domain,

\\Jx \\η — Z j i = O H J xW1! IK"

In a coordinate patch, we can identify a jet with a sequence of i-linear
symmetric forms, i = 1,. . . , k in R" - the expressions of the derivatives in this
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coordinate system - and subtract them. The case k = oo we can define not a norm
II Tk — Tk\\

but a distance d(J«, J?) = YΓ-o , Γτfc L 2 " "
* ; Δ ι - ° 1 + || J* -Jk\\

This allows us to define continuity and Holder continuity of jets and give the
space of Holder jets a norm

\\Jk\\c* = sup\\ Jk-Jk\\/d(x,yr.

This definition depends on the choice of coordinate patches. It is well known
that, when k =j= ω, even if the norm changes when we change the coordinate
patches, all the norms one constructs in this way are equivalent. When k = ω it is
not difficult to show that if we choose another analytic coordinate patch, given
η>0wQ can find η'> 0 such that || J ? H, g C || J ? || ^.

For many purposes, the use of one equivalent norm in place of another causes
no difficulty. One exception is contraction arguments. In many of the cases, the fact
that the operators we need are contractions will require that the patches we take
have sufficiently small diameter. Such assumptions will appear in a finite number of
places and can be met.

We will also need some regularity properties of stable and unstable foliations.
We refer to [HPS, HP, S, Fel, Fe2] for the case of Anosov systems and to [Pe, Ru2,
FHY, PS2] for the case of non-uniformly hyperbolic systems which we will discuss
in Sect. 5.

The stable manifold theorem for Anosov systems that we will use reads:

Theorem 3.1. Let f be a Ck Anosov diffeomorphism {respectively σt an Anosov flow)

k = 1, 2,. . . , oo, ω, then, Ws

x>
δ, Wn

x>
δ (respectively Wc

x

s>δ, Wc

x

u>δ) are Ck manifolds.

The k-jets of the leaves are Holder with respect to x.

Following [LMM] we define regularity classes related to Anosov systems. (The
analytic case was discussed in more detail in [L12]; our present definition is not the
same as that in this paper, but for all purposes we consider it is equivalent.)

We say that a function φ: M i—• R is in C\{f), k = 1, 2,. . . , oo when the restric-
tion of φ to the leaves of Ws(f) is Ck and the /c-jets are C° on the manifold.
Similarly, we say that it is in C*\}) if the restriction of φ to the leaves of Ws'f is Cfc'α,
that is it is k times differentiable and the kth derivative is Cα. Furthermore, we
require that the fc-jets are continuous on the manifold. We say that φ is in
Cfif) when there is an analytic coordinate patch and a number η > 0 such that the
mapping x\-^J™(φ\Wχf R) is continuous if we topologize the space of jets with the
norm || ||^ defined above using the set of coordinates. All these spaces have
associated natural norms that make them Banach spaces. We will denote them by
|| | | c j ( / ) and if/ is understood we will omit it.

Using standard regularity theory of the stable and unstable foliations it is easy
to show that this definition is consistent. Moreover, if r ^ fc, Cr a Cr

s n Cr

u.
Since these regularity classes are well adapted to the dynamics, they play an

important role in many discussions of regularity. The regularity in these classes can
be related to more conventional regularity classes. For example, the same argu-
ment that proves that a function having continuous partial derivatives is C 1

establishes that C* n C* = C 1. A deeper result is the following.

Lemma 3.2. In the conditions above: k = 2,. . . , oo, ω, r ^ /c,
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This result is really a basic regularity result about functions restricted to
foliations and can be generalized to foliations satisfying some regularity properties
(that will have to be verified for the invariant foliations of Anosov systems).

Remark. We observe that, even in the case where the foliations are trivial,
C s Π C r

u Φ Cr. An example, due to Yudovitch can be found in [Kr]. From the point
of view of these regularity results, the most natural spaces are the Lipschitz spaces
Lipα or the Λa spaces. Unfortunately, they are not easy to use in dynamical systems
since they do not behave well under composition. So, parts of our arguments have
to rely on Ck for fee N even if for the regularity arguments, the most natural spaces
would be in other spaces. The techniques we use to prove these results when the
foliations are non-trivial rely on converse Taylor methods and hence Liρα seem
more natural.

The proofs of Lemma 3.2 in [LMM, HK, L12] use the following properties of
Anosov foliations:

Lemma 3.3. Let f be aCk Anosov diffeomorphίsm k = 1,. . . , oo , ω in the n dimen-
sional manifold M. One can choose mappings Λu from sufficiently small neighbor-
hoods in M to R" in such a way that:

1) An{Wn

x) = {(*!,. . . ,x n ) |x ! =cu. . . ,xu = cu}.
2) The mapping Λu is absolutely continuous and its Jacobian agrees locally with
a function in C*" 1 .

This lemma is proved for k Φ ω in [LMM]. For k = ω it is proved in [L12].
There are other proofs based on another idea [Jol, Jo2] that only use continu-

ity of the foliations - or Holder continuity. Unfortunately, these proofs do not
work to recover analyticity. We will discuss in more detail and strengthen the proof
of [Jo2] in Sect. 5 since this proof seems to be quite useful in the context of partially
hyperbolic systems.

We will also recall some facts about the S-R-B (Sinai-Ruelle-Bowen measures)
μ+, μ_. (As usual we will use μif) if there is risk of confusion.) These measures can
be characterized uniquely by different properties that we now describe. It is a very
deep theorem that, for transitive C 1 + α Anosov systems, each of these properties
implies the others. We refer to [Si2, Ru, BR, B] for the proofs of these equivalences.
Some of these definitions and equivalences extend to non-uniformly hyperbolic
systems. We will use some of these extensions in Sect. 5, where we will discuss them
in more detail.

Property 3.4. For any continuous function φ: M i—• R, the following identities hold
for almost all x with respect to Lebesgue measure:

lim-j- Σ Φ(f"(x)) = !φdμ+; lim i £ Φ(f'"(x)) = J φdμ. . (3.1)

For flows, there are similar definitions substituting for the sum in n, an integral
in the continuous time. We observe that, by the Birkhoff ergodic theorem, if there is
an absolutely continuous invariant measure it has to agree with the S-R-B
measures and be ergodic.

The following definitions were introduced in [Si2], where they were shown to
be quite useful. We have followed the notation of [LY1], since in Sect. 5 we will use
some results of this paper.



Smooth Conjugacy and S-R-B Measures for Hyperbolic Systems 295

Definition 3.5. Given a manifold M, a Borel measure μ and a foliation Won it and we
say that the measurable partition ξ is subordinate to the foliation W whenever for
μ a.e. we have:

1) ξ(x) c= Wx.
2) ξ(x) contains an open subset of a neighborhood of x in Wx in the submanifold
topology.

Definition 3.6. We say that ξ is increasing and subordinate to Wu{f) if it is
subordinate to Wuif) and

1) fξ refines ξ.
2) \J™=of~

nξ is the partition into points.
3) The biggest σ-algebra contained in P|^°=0/

nξ is the σ-algebra whose elements are
unions of Wu manifolds.

Analogous definitions can be made for Ws{f). It is also possible to generalize the
definition of increasing for flows by taking the same definitions as above with
/ replaced by a time one map.

Remark. We observe that if fig (respectively σt,ψt\h are as in (1.1) and ξ is
a partition subordinate (increasing) to Wu{f\ then, h(ξ) - the partition whose
elements are the images under h of the elements of ξ - is subordinate (increasing) to

Definition 3.7. We say that μx is the measure conditioned by the partition ξ if for
every measurable A a M,χγ-*μξ

x(A) is measurable with respect to the σ-algebra
generated by ξ and μ(A) = §μx(Ά)μ(dx).

Clearly, if ξγ refines ξ2 the conditional measures μξ

x

2 are absolutely continuous
with respect to μi1.

A very important characterization of S-R-B measures μ+ and μ_ is the
following:

Property 3.8. For every measurable partition ξ subordinate to Wu (respectively Ws\
μξ

+x (respectively μξ-x) is absolutely continuous with respect to the Lebesgue measure
induced by the Riemann metric on W" (respectively Wx).

We will denote by ω+^ the density of μξ

+x with respect to the induced Lebesgue
measure Wx and analogously for μ_.

When we have partitions which are increasing and subordinate to Wu, there is
a canonical way of obtaining "maximal" conditional measures.

Notation. For a difϊeomorphism fi we will denote by Ψnif)(x) the Jacobian of/"
restricted to the unstable foliation and evaluated at x. Similarly for unstable and for
flows. For flows, n above will be a real variable rather than integer and Ψ^{σ)(x) will
denote the unstable Jacobian of the time-n map. In general, the Jacobian may
depend on the metric. Nevertheless, for a periodic orbit x of period n9 Ψ"{f)(x) is
independent of the metric.

Notice that the chain rule and the invariance of the foliation give:

H(/ )W = "Π * « / ' ( * ) ) (3.2)
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In particular, the stable, unstable Jacobians are the same for all points in the
orbit.

Theorem 3.9. Let f be a Anosov diffeomorphism (respectively σt an Anosov flow) ξ an
increasing partition subordinate to Wu. Denote ξN = \f^=of~

nξ (respectively
ξN = \f^=oσ-nξ) then for μ + almost all x, for all y in PF",limiv_>ooω+^ = ω+x exists
a.e. with respect to Lebesgue measure. Moreover, for μ+ almost all x we have for all
y,zinWx:

lnω + z (x) - lnω + z ( j0 = lim (ln(Ψu-n(x)) - \n(Ψu-n(y)) = lnzl(x, y) . (3.3)

Analogous results hold for μ_ and the stable foliation.

Remark. Notice that in (3.3) the right-hand side does not depend on the partition
nor on the point x. Hence, the conditional densities ω + are unique up to multiplica-
tive factors and their quotients are natural geometric objects.

Proof. This result was - in other slightly different language -proved in [Si2] along
the lines of the proof that the measures μ+ and μ_ exist (Theorem 4, p. 28. ff. for
diffeomorphisms, p. 44 ff. for flows). In the language of [Si2], Ψl(f) is the potential
for the Gibbs measure μ+.

If one assumes that the measures exist and are absolutely continuous, one can
establish (3.3) by looking at the formula for the change of variables and using the
theorem of differentiation of integrals. This is done in [LY1] (Proof of Lemma
6.1.1, pp. 553, ff) for diffeomorphisms with positive Lyapounov exponents with
respect to the measure μ. •

It is an important fact that for Anosov diffeomorphisms and flows and non-
uniformly hyperbolic systems, one can find increasing partitions subordinate to the
stable and unstable manifolds. It is even possible to find partitions that satisfy extra
properties. For Anosov systems - both flows and diffeomorphisms - it is possible to
find Markov partitions [B] that, besides being subordinate, enjoy other properties.
For non-uniformly hyperbolic systems, the construction of increasing partitions
subordinate to the stable and unstable manifolds can be found in [LS, LY1] for
diffeomorphisms.

There is still another characterization of S-R-B measures that emphasizes the
role played by the Lyapounov exponents at periodic orbits. Given a periodic orbit
o we will denote by T(o) the minimal period and by δ0 the natural measure of mass
T(o) invariant under time evolution on the orbit. For diffeomorphisms, δ0 will be
the counting measure on the points belonging to the orbit. For flows, it will be the
length of time spent in an interval.

We will denote by P e r ^ n ) the set of periodic orbits with period in [rc, n + 1) of
the flow σ. For diffeomorphisms it is just the points of minimal period n.

Property 3.10.

/i-»oo n oePer-(«)

where Zn is a normalization factor to make the total mass of the right-hand side one
and the limit is understood in the weak* sense.
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Proof. The fact that the measure can be approximated by the measure at periodic
orbits can be proved very easily using the thermodynamic formalism after using
Markov partitions and observing that μ+ is the equilibrium state for the unstable
Jacobian and μ_ for the stable. (See e.g. [Ru] for Axiom A diffeomorphisms, [BR]
for Axiom A flows.)

Once one uses Markov partitions and thermodynamic formalism, there is little
difference between diffeomorphisms and flows and the dimension of the space plays
no role. The use of Markov partitions for Anosov flows to apply to the thermo-
dynamic formalism is worked out in detail in [Si2], pp. 42-48. Some results are
claimed only for dimension 3 because at the time that [Si2] was written, Markov
partitions were known to exist for flows only when manifolds on which they were
defined were of dimension 3. Full details about how to construct Markov par-
titions for the Anosov diffeomorphism and flows in any number of dimensions were
worked out in [Bo, Ra]. One geometric, i.e. without Markov partitions, pedagogi-
cal proof of Property 3.10 for Anosov diffeomorphisms can be found in [Ne].

4. Proof of Theorems 1.1 and 1.2

In this section, we use the previously quoted results and prove Theorem 1.1 and
Theorem 1.2.

Lemma 4.1. Let fg be C2 transitive Anosov diffeomorphisms (respectively σt,φt

transitive Anosov flows) of an n-dimensional manifold M,h a homeomorphism of
M satisfying: hof= goh (respectively h°σt = φt°

n) V ^ne unstable Jacobian at
corresponding periodic orbits is the same then: h*μ+(f) = μ+(g) (respectively

Proof Observe that - both for diffeomorphisms and flows - a conjugating homeo-
morphism carries the natural measures on orbits to natural measures on orbits.
Using this observation and the hypothesis about Jacobians at periodic orbits (to
simplify the notation we only perform the calculation for diffeomorphisms):

h* Σ W ' r 1 ^ Σ (ψoif)r1κX)= Σ (ψf9)rιδp.
oe'Perψin) oePer{f](n) pePer(fHn)

Observe also that the hypothesis about unstable Jacobians also implies that the
partition functions corresponding to the two sums are the same. Dividing by them
and taking limits using Property 3.10, proves the lemma. •

Lemma 4.2. Under the hypothesis of the previous theorem, the restriction of h to
a leaf of the unstable foliation is absolutely continuous - with respect to Lebesgue
measures in the domain and the range. Moreover, we have:

\ω{l)

x(y)dy= f ω%x)(y)dy , (4.1)
A h(A)

where dx is the Lebesgue measure induced by the metric on W\ and A is any subset in
Wx.

Proof Equation (4.1) is just the translation in coordinates of the fact that if the
Gibbs measures are transformed into one another, so are the restrictions when the
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partitions are also transformed with h. The absolute continuity is an easy conse-
quence of this formula because if h(A) had measure zero, the right-hand side should
be zero, which can only happen if the measure of A is zero because the density is
positive. •

The following lemma is perhaps the most crucial step in the argument. We want
to prove regularity properties of the restricted densities.

Lemma 4.3. Under the assumptions and notations of Theorem 1.1 and Theorem 1.2,
let Au(x,y) be as in (3.3). For each point xeM introduce the function
A*(y) = Au(x9 y). Then, for r = 1,. . . , k — 1, ||./y(^£|w^> R)|| is bounded uniformly
in x, ye W^δ. Moreover, if r ^ k is finite, there will be a uniform modulus of
continuity for the functions defined on W^δ y\-+ Jr

y(A"(y)). When k = ω, we can
obtain uniform bounds in \\ \\η.

Corollary 4.4. For a Ck Anosov diffeomorphism, the densities of the restriction to
stable or unstable foliations of the S-R-B measures are Ck~ι.

Remark. Notice that we are not claiming that the function A(x,-) is in C£. As
a matter of fact it will come out of the proof that it cannot be extended in
a continuous way to the whole manifold.

Proof For the sake of simplicity, we will only consider the case of diffeomor-
phisms. Using (3.2), we can write

ln(Ψ»-n(x)) - ln(Ψ»-n(y)) = "^ [In ΨL^ΓKx) - In ̂ - i C T ι'()0)]
i = 0

So that to prove that the limit converges uniformly it is sufficient to show, by
Weierstrass' M test, that the terms of the sum can be bounded uniformly by
a convergent sequence.

Using the fact that / ~x is contracting when restricted to a W\ uniform factor
less than 1 and that the Ψu-1 (x) is uniformly Lipschitz (being Holder would suffice)
it is easy to show that the sum is bounded by an exponentially decreasing sequence.

We claim that if we take derivatives with respect to y term by term in the sum,
we will obtain a series that can be bounded uniformly by a decreasing exponential.
By Weierstrass' M test, the series of derivatives converges uniformly and is the
derivative of the sum. The estimates needed to obtain the exponential bounds are
the same as in [LMM], Lemma 2.2, p. 573, ff. Namely, it suffices to show that, using

/ d V
the chain rule, we can write I — In Ψu-ί of '(y) as a sum containing not more

\dyj
than n! terms, each of which contains not more than in factors. These factors consist
of derivatives of order at most n of In Ψu- x °f~i(y) and of / ~1. Moreover, each term
contains at least i — n factors of the form f~1'(f~j(x)). Since the latter can be
bounded by a constant strictly smaller than 1, and the derivatives of In f ^ can be
bounded uniformly. The result follows.

We point out that we will prove in more detail a more general result in Sect. 5.
The statement we will prove will include information about the modulus of
continuity.

The proof for k = ω is somewhat easier. We just observe that the functions we
are considering admit complex extensions. The stable manifolds are analytic
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immersion^ of the disk into the manifold and, hence, can be extended to a complex
extension of the disk. Likewise the Jacobians of / and its restriction can also be
considered in a complex extension. The size of the complex extensions can be
bounded uniformly over the manifold and the supremum in the complex extension
can be bounded uniformly as well as the Lipschitz constant for a sufficiently small
extension. The same argument used to show convergence can be used to show
uniform convergence of the sum in a complex extension and, hence, analyticity of
the sum. •

Remark. The proof that the function A is Lipschitz when / is C2 can be found in
[LY1], where it is also stated without proof that it is C 1. The function A is very
similar to the function Γ in [L12]. The arguments used there to study the regularity
work in our situation.

Lemma 4.5. Let f g be Anosov diffeomorphisms of a two dimensional manifold (σ, φ
Anosov flows on a three dimensional manifold) /z, k be as in Theorem 1.1 and Theorem
1.2. Assume moreover that W* has one-dimensional leaves. If h verifies

Remark. Analogous results hold for the stable manifold and for flows the proofs
are the same.

Proof. When the unstable foliation has one dimensional leaves, we can parametrize
patches of the unstable leaves by the Riemann length s. Then, (4.1) can be rewritten
(identifying in an obvious way functions of the manifold and functions of the
coordinates):

0 Λ(0)

This is a differential equation in integral form. Using the monotonicity of /z, we can
see it is equivalent to

ω^(s) = h'(s)co%$M(h(s)) . (4.2)

By Lemma 4.3, the coefficients are in Ck. By regularity theory of ordinary differen-
tial equations h will be Ck when restricted to a leaf of the unstable foliation.
Moreover, since the function defining the differential equation is uniformly Cfc,
h will be uniformly Ck when restricted to any leaf. Now we need to conclude that
h s Ck

u. This can be done by a closed graph argument. Take a sequence of patches of
leaves converging to another patch. The restriction of h to those patches are
uniformly bounded in Ck. Hence we can get a subsequence converging in the Ck~ε

sense. Since we know that h extends continuously, the limit of this subsequence
should be the restriction of h. Hence, there is a Ck~ε limit of the full sequence.

Out of these results it is very easy to complete the proof of Theorem 1.1.
By the hypothesis on the eigenvalues, we can apply Lemma 4.1 and, since the

manifold is low dimensional, the stable and unstable manifold will have one-
dimensional leaves so we can apply Lemma 4.5. Hence h should be in Ck n Ck

n and,
we just apply the regularity results mentioned before.

This finishes the proof of Theorem 1.1.
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Remark. Equation (4.2) was derived by brute force in [L12]. The motivation was to
get a method to bootstrap regularity more robust than that of [Lll]. The source of
inspiration was a very similar calculation done in [Pr]. The argument presented in
[L12] goes through for all one-dimensional foliations even if there is no natural
invariant measure. This plays a role in [L13].

Remark. The use of smooth invariant measures to prove smoothness of conjuga-
cies in one dimension appears also in [He, SS].

Remark. Results very similar to Lemma 4.2 could have been derived by the
scattering method of [Lll]. One essential ingredient of this method is a previous
smoothing, which forces some extra hypothesis. The method in [LM] requires that
the leaves of the stable and unstable manifolds are one-dimensional, the method
used in [L12] would require that the Anosov systems we consider are in the same
connected component of the set of Anosov diffeomorphisms.

Now, we proceed to complete the proof of Theorem 1.2.

Lemma 4.6. Let fig (respectively σt,φt), h be as in Lemma 4.1. Ifi h,h~γ are
absolutely continuous with respect to Lebesgue measure then, h*μ + (f) = μ + (g)
(respectively h*μ+(σ) = μ+(ψ)).

Proof. For any continuous function φ we have by the conjugacy equation:

^ Y Φ(on(Hχ))) = VΣΦ° Hgn(χ)).
i V n = 0 ^ n = 0

By the absolute continuity of h and Property 3.4, there is one x for which the two
limits exist and take the limit in (3.1). Then we have §φ°hdμ + (f) = \φdμ + (g\
analogously for μ_. •

Using this lemma, Lemma 4.5 and the regularity results we have proved
Theorem 1.2.

5. Proof of Theorem 1.3

The proof of Theorem 1.3 is more technical than the proof of the other theorems.
What we will do is to show that the partial regularity results along leaves hold for
large sets that have certain geometric structure, and then we will prove an analogue
of Lemma 3.2 for those sets.

We will start by recalling some facts from the theory of non-uniform hyperbolic
systems. Complete proofs can be found in [Pe, Ru2, Ka, FHY, LY1, LY2].

Using Osledec's ergodic theorem and some auxiliary constructions explained in
detail in [Pe2, Ru, Ka] it is possible to prove the following theorem (we have
followed the statement of [Ka] except for some minor modifications):

Theorem 5.1. Let f be a diffeomorphism as in Theorem 1.3. Let μ be any ergodic
invariant measure and let y + 9y~ be its Lyapounov exponents y + > 0, y _ < 0. Given
any ε > 0, we can find a set Ωε and a number I such that μ(M — Ωε) ^ ε, Ωε is closed
and, for each xeΩε we have: There exists a decomposition TXM = Es

x® E" in such
a way that, for all neZ+, meZ,
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1) IfveDfm(x)Es

x,

\\Df (fm(x))v\\ ί /exp(ny_)exp((n + \m\)ε)\\v\\ ,

\\Df-"(fm(x))υ\\ ^Γ1 exp(- ny.)exp(- (n + \m\)ε)\\v\\ .

2) If veDfm(x)Eu

x,

\\Dfn{fm(x))v\\ ^ /exp(ny + ) e x p ( - (n + \m\)ε) \\v\\ ,

\\Df-"(fm(x))v\\ ^ Z- expί- ny + )exp(+ (n + \m\)e)\\υ\\ .

3) // y(x) denotes the angle between EX,E", we have

4) The decomposition TXM = Es

x® Ex is continuous restricted to Ωε.

For each of the points in Ωε it is possible to prove an invariant manifold
theorem (see any of the references above, in particular [FHY]). The important
point is that, since the hyperbolicity constants are uniform in Ωε we can conclude
that the regularity properties of the invariant manifolds are uniform for all points
in Ωε.

Theorem 5.2. Let x be in Ωε as before, m be an integer and ds denote the dimension of
Es

x. Iff is C\ k = 2,. . . , oo , ω. We can find Ck mappings iT*fm(x): [ - 1 , l ] d s H+ M
in such a way that:

1) For all r ^ fc, r e Z || ^ > W ( J C ) | | c , ^ /wexp(εCrm).
2) τ T ^ w ( 0 ) =fm(x).

If we denote by Wsfί{x) the range of i^s

fm(x),
3) Tfmix)Wyi(x) = E'fmM.

5) There are numbers <S>0, C > 0 , ε > 0 independent of the point xeΩε such that:

yeWx>
δo lim -i logd{fN(x)JN(y)) < 0 and d(x, y) S δ

iv-^oo N

od(fN(x)JN(y)) ^ Cexp(y_ + ε)d(x9 y) and d(x9 y) £ δ .

6) The mapping defined on Ωεby X H iKx is continuous when the curves are given the
Ck~1 topology.

Remark. Ws

x'
δ is usually called the local stable manifold to distinguish it from the

global stable manifold Wx = Un°°=i/~π(^/"w) ^x i s a parametrization of the
stable manifold and is highly non-unique.

Proof. The proof - except for 6) - can be obtained by reading carefully most of the
statements of the stable manifold theorem. One only has to observe that the size of
the Ck norms only depends on the constants which enter in the definition of
hyperbolicity for one orbit. By the construction of Ωε, these constants are uniform
for all xeΩε.

The statement we know which makes most clear the dependence on the
constants is that of [FHY]. One niggling point, however, is that due to the method
of proof of [FHY] - using Irwin's method - the authors of this paper only obtain
that the Ws are Ck~ε. This loss of ε derivatives does not belong and the details are



302 R. de la Llave

worked out in other references such as [PS2]. The loss of ε derivatives will make no
difference in the arguments that follow.

The proof of 6) can be obtained by reading carefully the proofs in [HPS]. This
will allow to show that the mapping xv-*iVx with the curves given the Ck~1

topology is as differentiable as the mapping x\-^Es

x.
An alternative argument is to use the closed graph theorem. If we have

a sequence {xn} a Ωε with limxn = xeΩε, due to the uniform bounds in 1), we can
extract a subsequence xm in such a way that ΊV%

Xn converges in the Ck~ι topology
to a cetain iKx.^ Using the characterization of the stable manifold in 5), we can
conclude that Ψ~x = ϋ^s

x. It is an easy proposition in point set topology that when
all subsequences of a subsequence have the same limit and there is one convergent
subsequence, then the full sequence has a limit. •

Notation. If Ω is a set, we denote by

Whδ = U Wϊ'l Wnδ = U Wΐ* -
xeΩ xeΩ

As a corollary of the stable manifold theorem we have some sort of "local
product structure."

Corollary 5.3. Let xeΩε as before. For every yeΩε, d(x, y) ^ KΩε we have

W^δ n Wu

x>
δ * 0 , Ws>δ n W*>* # 0 .

Moreover, we can bound the length of the segments of Wx joining x to {Wx

yδ n W^δ)
and of W% joining x to (W^δ n Ws

y

iδ) by a constant times the distance of x to y.

Remark. Notice that one corollary of this theorem is that the length of the stable
unstable manifolds of x can be bounded uniformly from below when xeΩε. The
bound, nevertheless, could depend on ε.

If μ is an invariant measure and / has non-zero positive Lyapounov exponents,
Property 5) implies that the relation x « y, given by xe Ws

yf is an equivalence
relation. The partition into leaves W\ can fail to be a foliation because there can be
a non-empty set (but of measure zero) for which W% = {x}. Since the definitions
Definition 3.5 and Definition 3.6 use more measure theory than continuity, they
make sense in this generality, provided that one considers all statements a.e. μ.

The following is a particular case of theorems proved in [LS, LY1].

Theorem 5.4. Let f be a Cfe, k = 2, 3,. . . , oo diffeomorphism preserving an abso-
lutely continuous measure μ and having no zero Lyapounov exponent with respect
to μ.

1) There exist expanding partitions adapted to Wu.
2) For every expanding partition, the conditional measures μx

N are absolutely con-
tinuous with respect to the Lebesgue measure induced by the metric on Wx.
3) Equation (3.3) holds a.e. μ.

Proof. The existence of increasing partitions is proved in [LY1], p. 513 ff. The fact
that (3.3) holds in Lemma 6.1 of [LY1] and 2) can be read off from the arguments in
this paper. Actually this paper is the proof of the necessity and sufficiency of
condition 2) for the validity of Pesin's entropy formula, originally proved for
absolutely continuous invariant measures. •
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Now we can complete the proof of Theorem 1.3 under hypothesis i). By the
absolute continuity properties of h, μf, μ9 and the ergodicity, we have that
h%μf = μ9. Since h is continuous, h(Wδ

x

if)) = Wh[xf. As in the previous section, we
observe that the restriction of μf to lV"δ(f) is pushed by h into the restriction of μ9

to Wf'{9).
By the same argument as in the previous section, we can conclude that (4.2) is

valid. The following lemma states precisely the differentiability properties of the
functions appearing in (4.2).

Lemma 5.5. The functions Ax(y)9A
s

x(y) satisfying (3.3), can be defined for all xeΩε

and yeWs

x

tδ. Moreover, if the diffeomorphism is Ck, they are Ck~λ and can be
bounded uniformly in Ck~1, k = 2, 3,. . . provided that ε, δ are small enough.

Remark. Contrary to what happened in the case of uniform hyperbolicity, the
smallness conditions in ε, δ depend on k. So that even for a C °°/, we cannot
conclude a C °° analogue of our theorem.

Proof. As in Corollary 4.4, we can write

\n(Ψ^n(x))-ln(Ψ»-n(y)) = nΣ [In ^ ( / " ' ( x ) ) - In ̂ ( / " ' ( j / ) ) ] ,
i = 0

and we want to bound the supremum of the first k — 1 derivatives with respect to
y of each of the terms in the sum by an absolutely convergent series, which we can
choose uniformly in xeΩε.

We claim that

sup I D ^ - i t T ' O O ) ! ύ X e x p ( - γn)exp(εrn)rnr, (5.1)

where K can be chosen uniformly for all xeΩε.
In effect, we observe that if we take r derivatives and use the chain rule and the

rule for the derivative of products as often as possible, we obtain that the derivat-
ives we are bounding can be written as the sum of N(r9 n) terms, each of them
having not more than F(r, ή) elementary factors. Each elementary factor is a deriv-
ative oϊΨ^-x or of / " 1 evaluated at / ~ι(y\ i ^ n. The rule for products gives that
N(r + 1, n) ^ N(r, n)F(r, n) and by the chain rule, F(r + 1, n) ^ F(r, n) + n, so that
F(r, n) ̂  rn, N(r, n) ̂  nrr\.

We furthermore observe that if we call a "segment" a product of consecutive
factors:

each term consists of not more than r segments and r derivatives of order not
higher than r.

By 1) of Theorem 5.1 we can bound on W^,xeΩεsup\\S(iJ)\\ ^ exp(- (i -j)y
+ ε/). We furthermore observe that the total length of all the segments is at least

n — r + 1 since a segment containing segments of total length /, when we take
derivatives, produces segments which have length at least n — 1.

Using the triangle inequality, we have produced the bounds we claimed in (5.1).
This finishes the proof of Lemma 5.5. The same argument can be used to finish the
proof Lemma 4.3.

For the case of uniformly hyperbolic systems, we can perform the same
argument but take ε = 0 in the estimates. This establishes Lemma 4.3 except for the
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claim about the uniform modulus of continuity, which we now proceed to prove.
If ρ(t) is a modulus of continuity of Dk~γ Ψ^^y), that is:

sup \Dk

u'
1ΨίL1{y)Di-1ΨL1(yt)\^p(t)9

then, we can bound s u p ^ , ^ ) ^ \D^~1Au(y) — Dk~1Au(y')\ by summing the bounds
for each of the terms in the sum denning A in (3.3).

We observe that in the expression of Dk

n~
i Ψu- x (f~ny) obtained by applying the

chain rule and the rule for derivatives of the product as often as possible there is
one term which is [ D * " 1 Ψu-Δ(f~ny)Df-n(y)®\ and all the others involve deriv-
atives of order strictly smaller than k — 1. This first term has a modulus of
continuity p(t)λn.

Each one of the terms involving derivatives of order less than k — 1 will have
a modulus of continuity pf(t) = r(supr^k-1msix{ \\DrΨ||, Drf-1{y)})k-1λn'k\t\ as
can be shown using the facts that each of the functions appearing as factors in
a term are Lipschitz, the product rule for Lipschitz constants and that the Lipschitz
constant can be bounded by the supremum of the norm of the derivative.

Since we have shown that there are at most r\nr of those terms, the modulus of
continuity can be summed in n uniformly for all the points claimed. This finishes
the proof of Lemma 4.3. •

The same argument used in the proof of Lemma 4.5 allows us to conclude

Lemma 5.6. Under the assumptions of Theorem 1.3, if xeΩε as in Theorem 5.1, then
provided that δ is small enough, h\Ws,s is Ck,k = 1,. . . and, moreover, we can bound
uniformly \\ Jk(h\WSχs, M)| | .

Notation. We will denote by

xeΩe

and similarly for C^ or for Holder spaces.
The only ingredient we need to conclude the proof of Theorem 1.3 is an

analogue of Lemma 3.2. The main complication is that we only have control of the
regularity on [jxeΩε W^δ u W^δ, a set which has a complicated geometric struc-
ture.

The following is the main technical lemma that we will prove by a strategy
inspired by that of [Jo2]:

Theorem 5.7. Let Ω be a subset ofW and k be a natural number such that through
every point xeΩ we can find two functions: i^x, (respectively iV^)\ [—1, l ] u

(respectively [—1, 1]S)H-»RW with the following properties'.

i) iT8

X9 ITl are uniformly Ck.
ii) xh-tWlc, X M # ; are continuous when the mappings are given the Ck topology.

iii) Tx W"'δ is transversal to Tx Wx

 δ and the angle is bounded from below uniformly
in x.

Assume that x is a point in Ω such that we can find a sequence {xn} a Ω,
lim xn = x satisfying for some γ' < y < 1 and some β > 0,
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' '
u ό nWs δ lVa δ nWs δ)

<*(*, xo) ^ β

Let φ be a continuous function Ω h-• R satisfying:
v) For some yleR+ | | φ o # " ^ | | c k g A, \\φoirn

x

δ\\cu^ A uniformly inxeΩ.
vi) Let k! be such that k! ^ k,

(y/y')2k'y1/2 < I yfl/2(y/ϊ)2k' < 1

1) We can find a polynomial Pk

x of order k' in such a way that

\φ(y)-Pk

x(y)\SKί\x-y\k' (5.2)

whenever ye Whδ u JVudδ d(x, y) ^ β.

2) || Pk

x \\Ck' ^ ^2^4? where K2 is a constant that depends only on k, ε, y, y\ β and the
uniform bounds assumed in i)—vi).
3) If A is a subset of Ω where the constants γ9 y' and β can be chosen uniformly, the
mapping x\-^Px is continuous when restricted to A.

Remark. We emphasize that given k! < k, assumption iv) of Theorem 5.7 will be
verified if γ, y' are close enough.

Proof We will prove first the existence of Px for a fixed x.
To simplify the notation, we will omit the subindex x for P till we start

discussing continuity with respect to x. Since differences with the point at which we
are approximating appear frequently, we will change coordinates to that this point
is the origin. We will also assume that the point at which we are approximating is
the origin.

Following [Jo2], we will assume that the dimensions of the stable and unstable
manifolds are 1 so as to avoid notational complications. Moreover, this is the only
case of the theorem we are going to use in this paper.

Since the stable and unstable manifolds of x are Cfe, we can perform a Ck change
of variables so that they become the coordinate axes. Moreover, since the stable
and unstable manifold satisfy uniform Ck estimates, the fact that we will have to
choose different coordinates systems for different points will not change the
uniform estimates we claim.

The proof of this result will follow the general strategy of [Jo2]: we determine
PN as the limit of polynomials obtained by interpolation on grids which are
approximately of the form {(r\ rj)}fJ=N and truncating the terms of high order.
Our choice of grids has to be different from that of [Jo2] because we have control
of the function on a set with complicated geometry. This also complicates some of
the following arguments.

We will proceed by induction so that we will assume that PN exists (satisfying
property 2) with k! = N and will conclude that pN+1 exists and that it satisfies
property 2) with k! = N + 1. Moreover, by considering φ(x) — PN(x), we can
assume inductively that \φ(x)\ ^ K\x\N~ε.

Call ty = Ψ*x\
b' ni^x'f, and we will denote the coordinates of these points

by 0>lj and 9% respectively. We will also call &(N, M; AT, M') = {9tj\i =
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M, . . . , M + N, j = Mr, M' + N'}, where {x j^o is the sequence of points we
assumed in iv). When N = Nf and M = M' we will simply write (̂ΛΓ, M).

The following proposition is a quantitative version of the well known Lagrange
interpolation:

Proposition 5.8. Given a grid of the form {(xf, x2\ ί, j = 0, N} and a collection of
(N + I) 2 numbers atj we can find a unique polynomial P of degree N on each variable
in such a way that

P(xl,x]) = aφ i,j = N,N + M.

Moreover,

= \\a\\K({x}},{xj};R), (5.3)

where \\P\\ιifR = Yj\Pk\R^ is a weighted I1 norm, \\a\\ is the supremum of the

absolute values of the terms in the sequence.

Proof. Recall the Lagrange formula for the interpolating polynomial:

1 x>)-
x j - 4 )

Clearly, || x1 — x}> ||/i,Λ = JR + |x*1 and similarly for the factors with x2. Recall
that, || | | μ R satisfies the Banach algebra property: | |Pβ | |μ R ^ | |P| |,i R\\Q ||μ R.

•
Remark. For two dimensional interpolation grids which are cartesian products of
one dimensional grids, it is useful to think of the Lagrange formula as interpolating
a polynomial in x1 taking values in the polynomials in x2. The polynomials in x2

are obtained by interpolating on the vertical lines.

Remark. Notice that if we take R = supί>i7 {|x*|, |x 2 | } Equation (5.3) becomes
IIP \\II,R ^ II fly IIK, where K remains bounded if the ratios of the coordinates of the
points in the grid remain bounded even if the coordinates become close to zero.
This will be important when we consider the limit as the interpolating grid
converges to the origin.

The following is a version of Lemma 1 of [Jo2] that tells us that if a grid is not
exactly a product grid but is close enough to be a product grid - the grids for which
the Lagrange interpolation applies - we can still interpolate and obtain an
interpolating polynomial which is uniquely defined.

Lemma 5.9. Let &° = {(xj, x2)\ίj = 0, N} be a product grid such as those con-
sidered in Proposition 5.8. Let & = {pij\Uj = 0, N} be another grid of points such

that: Γ = s\xp\pij - (x}, xj)\ ^ 2 2 sup(|p y | , |(x» , x?)|). Then, given
Zly r±{{Xi j , |Xj j)

(N + I) 2 numbers atj it is possible to find a polynomial P such that P(Pij) = a^, and in
such a way that:

\\P\\ S \\a\\μKf , (5.5)

ΓN2K
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Remark. Notice that, unfortunately, the conditions we have to impose depend on
N9 the degree of the polynomial. This will make the discussion of a C °° version of
Theorem 1.3 somewhat complicated.

Proof. Notice that if P 1 is the polynomial obtained interpolating on the grid ^°
rather that on the grid ^, we would have I-P1^-) — atj\ ^ Γ sup \\ DP11|. For any
polynomial of degree AT, we have sup | |DP| | g ||P||μΛf2. Substituting (5.3) in the
last inequalities, we obtain:

We can now consider the polynomial P 2 which on the grid ^° takes the values
atj-P'ipij).

The previous argument shows that IPHPy) + P2(Pij) ~ βyl ^ (ΓN2K)2\\a\\.
If we construct a sequence of polynomials P 1 , P 2 , . . . , P",. . . such that Pn

interpolates on ^° the values atj - P1{pij) - P2(Pij) - - Pn~ί(pij)9 we will
have

\PHPij) + P2(Pij) + + Pn(Ptj) - atj\ g (ΓN2Kr\\a\\ .

Hence, we can prove inductively that ||Pn\\μ g {ΓN2K)n \\a\\. •

We now continue with the proof of Theorem 5.7.
We observe that the conditions i) of Lemma 5.9 are scale invariant. They depend

only on relative ratios of the distances to the origin of the points in the grid. This
scale invariance and the continuity of the stable and unstable manifolds with
respect to the base point when the base point ranges in Ωε shows that the
conditions of this lemma will be satisfied for all the grids @(N, M; N\M') provided
that we assume that β is small enough. (How small depends on N as well as on the
modulus of continuity of the foliations.) Therefore, if smallness assumptions on β in
Theorem 5.7 hold (we will later on show that all the smallness assumptions can be
met by choosing constants in an appropriate order), we can construct polynomials
of degree N on each variable and which agree with Φ on a grid.

We want to show that, as we shrink this grid to the origin, there is a well defined
limit. We will estimate the changes when we shrink both coordinates by a factor
and show that the changes can be bounded by a uniformly convergent sequence.
Properties of the resulting limit will be established by looking carefully at the
limiting process.

It suffices to obtain estimates of the effect of shrinking one of the coordinates.
The same argument applied with the role of the stable and unstable reversed will
establish similar estimates for the effect of shrinking the grid in the other coordi-
nate. By applying these two steps in succession we can shrink both coordinates and
the effect will be estimated by a uniformly convergent series.

If the grids we consider were exactly products, we could think of the interpola-
tion on the grid as interpolating a P(Xl) polynomial in x1 whose coefficients are
polynomials in x2. The interpolation is done by imposing P1{xj) = P2{x2% where
Pf(x2) is obtained by interpolating in x2 the Pf(xj) = φ(x}x2).

In view of the stability of Lagrange interpolation, to estimate the effect of
changing the x) in the grid it suffices to control the changes on P2{x2) Since the
xf are kept constant in this argument, it is plausible that only the smoothness
properties of the restrictions of φ to vertical lines matter.
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In our situation, the grids are not exactly products, but they are close enough
that the argument goes through.

Proposition 5.10. // pN>M'>N'>M> denotes the polynomial obtained by interpolating the
function φ using Proposition 5.8 or &(N9 M; AT, M') then we have

I r>N,M;N',M' nN,M+l;N,.
\ i — i

) N + 2
_μ ε\\pN,M;N,M +1 π

where R = s\xp{\x}\ \x2\} and C is a constant that depends on the ratios of the
coordinates of the grid but not on the absoloute scale, ε is a number that can be made
arbitrarily small by choosing β sufficiently small.

Proof In view of Lemma 5.9 it suffices to show that:

SUp \pN,M;N,

Notice that, by consruction of pN>M>N>M^ this difference is zero for
Pije^(N9 M; AT, M) so that we only have to estimate the difference on the points in
which the two grids differ. This is just the last row

\M + N

If W*^ t o) were a vertical line (xf, x2) we could use the classical estimates for the
error in Lagrange interpolation (see e.g. [SB] Theorem 2.1.4.1)

N + 2

(5.7)
{M + Z j , ,

These are the estimates we want to establish with ε = 0.
Notice also that it is posible to bound

sup \D>P\^R->\\P\\ιί9RK9

\x\ZR

where K depends only on the dimension.
Using Faa-di Bruno formula (see e.g., [AR] p. 3)

W{x)\ = Σ σN+2,q Σ
iι...iq=N + 2

^ Σ

Σ <rN+2,q\\PhκRRq<M+1)~q

If we parametrize the stable manifold W\^0) by x2, Po W$ Q) will not be
a polynomial but can be approximated by one up to errors which can be bounded
by the N + 2 derivative of P° ^ , o )
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Since W\Jίf0) converges in the CN+2 topology to a constant, we should have

l&Wlϊlotx^^εixDlx2^2-* . (5.8)

Hence in the neighborhood where Kx1, x2)\ ̂  R, this is bounded by εRN + 2~i.
Expresseed in components, (5.6) can be written as

Remark. Notice that in [Jo2] the bound that is used is slightly weaker since the fact
that the leaves are converging to the axis is not used.

We also note an easy Corollary of (5.3)

Proposition 5.11. If \φ(x)\ ^ K\x\N as in Theorem 5.7 then

II τ>N,M ||

Hence,

\PffM\^K(RN^M)N-i-j. (5.10)

Since we had β(γ)M ̂ RN,MS βyM we have

+ £ y pNM, (M+l)(ϊ+j'-ί-j)

i'+j'ύi + j

+ ε Σ p™,(
ϊ+j'>i + j

if i+j^ A T + 2

+ β Y pNMty(M+l)(ϊ+j'-i-j)

i'+j'ύi + j

+ s Σ pNM(γ')W+w+r-i-J) (5.11)

if i +j > N + 2.
Where, as before K depends only on the foliations and Ω and ε can be made

arbitrarily small by choosing a sufficiently small neighborhood.
From that, we claim that it follows by induction that:

if i+j>N + 2

Γ M

Σ
l_m = 0

M

ε Σ Σ l(y'
m = 0 Vj'

(5.12)

if i + j g J V + 2.
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Remark. Notice that, by assumption iii) in Theorem 5.7 we have that

/ \
,y\N + 2-i'-Γ i'+j'-i-j ^ N + 2-i-jl I \

^ 7
, v\N+2

N + 2-i-jl I < N + 2-i-j-l/2

Hence, (5.12) implies that all coefficients P?/M with i +j ^ N + 1 < N + 3/2
remain bounded (and, anon will show converge) and that Pf/M « y - 1 / 2 M when
i + j = N + 2. Similarly, when ί +j < N + 2

p/V,M < ]ζ (N+3/2-i-j)M

The induction claim (5.12) can be established very easily by observing that
(5.12) claims that the PfjM grow as sums of exponentials.

If the growth were as claimed, the R.H.S. of (5.11) could also be bounded by
exponentials. We only have to check that under (5.12), the dominant exponentials
in the R.H.S. of (5.11) are such that they reproduced the desired result.

Notice that the bounds we have claimed for \PfjM\ are really bounds for
Σm = o l ^ ' M + 1 - pυ'M\ s o t h a t i n t h e c a s e s t h a t t h e s e bounds are uniform in M, we
have really established that Pf/M has a limit as M -> oo.

We claim that the polynomials PN in Theorem 5.7 can be constructed as
P?j = l i m M ^ P ^ if i +j ^ N + 1, P$ = 0 otherwise.

We start by estimating the difference with the approximating polynomials. We
want to establish that

c i m ΊJN r)N,M\ <" jf (nN,M\N + 3/2 /c 1 0\
SUp *(x) — * ( x ) I = J^\K ) . ( J . I J J

Observe that:

00

SUD I P ^ — P ^ ^ I < V V | P ^ ' M — pN,M+luβN,M\ί + J

i + j = N + 2

We want to establish that each of these terms can be bounded by a constant
times (RN>M)N+1 + 1/2. Since RNM ^ βy/M it suffices bound by γ(

By (5.12) we have (up to constant, which we will not write)

Σ \p?f

M\(RN My+Jύ Σ

_ /(iY + 3/2)M

Under hypothesis v) of Theorem 5.7,



Smooth Conjugacy and S-R-B Measures for Hyperbolic Systems 311

Hence, this term can be bounded in the desired form.
Using (5.12) and the remark immediately after, we have

Σ \Pij\(RN>M)ί+j S ?-i/2M(flN,Myv+2 .
i + j = N+2

It suffices to observe that (1^*^1/2^-1/2 j s bounded by a constant.
If i + j < M + 1 we observe that by (5.9) we have

Using (5.12) we furthermore have

i'+j' = N + 2 i + ,

< Ky(N+3/2)m

This finishes the proof of (5.13).
Remember that by construction of PN'M(^>

ij) = φffij), i = M,. . . , M +
= M, . . . , M + N. Hence (5.13) implies

[iV + 2 l / 2 ] m + y (iV+3/2-l)m

Using (5.7), we can bound \PN(x) - φ(x)\ ^ K\x\N+3/2 whenever
xe W%δ.. u W%* with δ = i | ^ / | . From that, using Corollary 5.3 we can conclude
that \φ(y) - P(y)\ ^ K\y\N + V2 when | j; | < β9 yeΩε.

In effect, if yeΩε, by Corollary 5.3 we know that

for all of the xfx2 in the grid converging to that we used to construct the
interpolating polynomial.

We can consider ^(JV, M, N9 M') in such a way that y is the boundary element.
That is, we consider XM,. . . , XM + ΛΓ+IJ^M'J J^AΓ + N+I m such a way that
Wyδ intersects each of Wxfxi and W^δ intersects each of Wxf. Moreover, using the
uniformity in Corollary 5.3, we can find a constant such that given yeΩ ( ε ), \y\ < β
it is possible to find {(xf x2) i = M, M + 1,. . . , M + NJ = M\.M' + 1,. . . ,
M' + N) such that d(y, 0>tj) ̂  K\y\.

We now consider \φ — P\ws.*. By the estimates in (5.8) we have that this

function, evaluated at the N + 1 points Wyδ n W%* is smaller than K\y\N + 2.
By the assumption that φeC^ + 2 and the estimates on P we have that f—φ\w*'d

is CN+2 and we have bounds on the CN+2 norm, e.g., if we parametrize it by tlίe
coordinates.

We claim that since this function is CN+2, and is small at N + 1 points it should
be small in the middle.

Proposition 5.12. Let x0 < < xN be points in the line. Assume that

XQ — X]y

xi xi+ 1
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Then

\φ(x)\ ί [ε + |x0 - Xs\N+2\\Φ\\c^K' ,

where K' depends only on K.

Proof. We denote by K' all constants that depend only on NK.
By Proposition 5.8 we can construct a polynomial P such that

P(Xi) = Φ(xt)

By (5.3) we have

Therefore φ — P vanishes at N + 1 points and its (JV + 2) derivative is bounded by
|| φ || + K'ε. Since obviously the Lagrange interpolation polynomial for φ — P is
zero, if we had proved the estimates (5.2) for the whole space, then we could apply
the easy version of the converse to Taylor's theorem that can be found in [AR, Gr].

Unfortunately, for general closed sets we need the full Whitney extension
theorem whose hypothesis requires

\φ(y) - φ(x) - (PN

x(y) - PN

x(z))\ S K\y - z\N+2 (5.14)

as y, z -> x. See [R] for an example where the extension theorem fails even if the
hypothesis we have established so far holds. So, we strengthen the arguments to
verify the Whitney condition.

We observe that, using Corollary 5.3 we can find [y9 z] = Wyδ n W^δ uni-
quely,

\φ(y) - φ(z) - (PN

x(y) - P?(z))| g \φ(y) - PN

x(y) - φ(ly, z]) - PN

x([y, z])|

+ \φ(z) - PN

x(z) - φ&y, zj) - P ? ( [ * z])\ .

The first term can be bound by \\φ — PN\\CN+2\y — [y,z~]\N+2 and the second
bound by \\φ — PN\\c»xi+2\z — [y,z]|N+2. Using the bounds we proved before
\\φ - PN\\ is bounded both in Cξ+ 2 and C? + 1 . Moreover, using Corollary 5.3 we
have that

Hence, we are done. This finishes the proof of Theorem 1.1.
This theorem applies without any modification to any other geometric objects,

e.g. homeomorphisms that, by taking coordinates, can be reduced to sets of
functions.

To conclude the proof of Theorem 1.3, the only thing that remains to be proved
is the following proposition from elementary measure theory which verifies that
a large subset of Ωε consists of points that verify condition iv) of Theorem 5.7:

Proposition 5.13. Let ε be any real number bigger than zero. Let Ωε be a set as in
Theorem 5.1. Then, for any εf > ε we can find a set Λε> in such a way that

1) Λz. c Ωε.
2) Its complement has measure less than ε'.
3) Λε> is closed.

4) For any y, y' and all β small enough, the condition iv) of Theorem 5.7 holds for all

points in Λε>.
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Proof. Let x be a density point of Ωε. Make a differentiable change of coordinates
in such a way that x is situated at the origin and the stable and unstable manifolds
are the coordinate axis. If y is a point, we will denote its coordinates by y1, y2.

We claim that for some conveniently chosen 1 < y < / , we can find a sequence
{xn} converging to x in such a way that all y < xl/xl+i < y'y < xl/xl+i < / .

In effect, fix numbers γx < 1 < y2. By the theorem of differentiation of integrals
by rectangles (see e.g. [Gu]) there is a subset - the subset oϊ "points of density" - of
Ωε with the same measure as Ωε all of whose points have the following property: If
0 is a point of density of the set Ωε, for any given εx > 0, we can find numbers α*, b*
such that for any rectangle 01 ah with corner at 0, width a and height b such that
a < a*,b <b*,y2b > a < y^b9 then μ{βah π Ωε) ^ (1 — ε1)μ(Rab\ where μ is
a measure equivalent to Lebesgue.

We also make the elementary observation that, for all &ah with y2b> a <yγb
denoting by ^α 6J:he set \xeMah\y2x

2 > x1 < y^x2, a/γ' < x1 < a/y, b/γ' < x2 < b/y},
we have that μ$ab ^ κμ&ab with K a constant that depends only on y9 y'9yί9 y2 and
which for some appropriate choices is strictly positive. Given any γ9 / , K can be
made strictly positive by taking yi9y2 close enough to 1.

Now we can construct the sequence converging to 0 claimed in Proposition
5.13 as follows: Pick the y's in such a way that K is strictly positive and find α*, b*
corresponding to εί = κ/2. Choose a point xoeΩ such that 0 < XQ < a*,
0 < XQ < b*9 y2xl > XQ < yxxo (such points can be shown to exist using the
theorem of differentiation of integrals). We assume inductively that we have
obtained points {xjf=o satisfying i < x} < a*9 i < xf < b*9 y2x

2 > xf < y\X2.

Then the set $xix2nΩε has positive measure, in particular it is not empty.
Choose Xjv + i a n y point in the set. By construction, the coordinates oΐ xN+ι satisfy
the inductive bounds. It is also easy to check that the ratios needed in the claim are
also propagated. This establishes the claim.

Using the fact that the stable manifold depends continuously on the point, we
can check that if we fix 7, y' a point of density will satisfy the conditions iv) of
Theorem 5.7 for some β. Therefore, taking β sufficiently small, we can ensure that
the set that satisfies the conditions has measure as close to that of Ωε as desired.

We also observe that a property of Lebesgue measure is that the measure of
a set is the supremum of the measures of its closed subsets. Therefore, we can
assume that the set for which Proposition 5.13 applies is closed. •

The argument given so far proves Theorem 1.3 for any fceN. To prove
Theorem 1.3 with k = 00 we observe that for any r e Z , we can obtain closed sets
whose complements has measure less than ε2~k on which h is Cr. On the intersec-
tion of these sets, h is C00.

This finishes the proof of Theorem 1.3 under hypothesis i). To prove it under
hypothesis ii), we just observe that it suffices to show that the only property of h we
have used is that it is continuous and that it transforms a measure satisfying Pesin's
entropy formula into another one that also satisfies it.

Unfortunately, it seems quite difficult to prove an analogous result using
invariants at periodic orbits. Notice that, for example, it is not clear even that
a system with positive Lyapounov exponents has only countably many periodic
orbits.

There are arguments in the literature that could imply that measures with
nonzero Lyapounov exponents can be approximated in the weak sense by
measures concentrated on periodic orbits. Nevertheless, it is not clear that the
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Lyapounov exponents on these measures approximate those of the limiting
measure. As it is well known, they should be lower semicontinuous with respect to
taking weak limits on the measure, but it is discontinuous. (I am grateful to F.
Ledrapier and L.-S. Young for explaining these examples to me.)

6. Extensions to High Dimensions

In this section, we show that there are several extensions of this circle of ideas to
higher dimensions, but that the situation is intrinsically more complicated as
evidenced by counterexamples.

6.1. Results in Higher Dimensions. The results of the previous sections can be
described as saying that if some Anosov diffeomorphisms are equivalent in some
sense, they are actually equivalent in an stronger sense. These results are usually
described under the name rigidity.

We will prove that all C °° Anosov diffeomorphisms and flows have the prop-
erty that sufficiently smooth conjugacies between them are C0 0. More precisely

Theorem 6.1. Let f g be two C r, reN u {oo} Anosov diffeomorphisms (respectively
σt9 φt be two Anosov flows) on a compact manifold. Then, there exists a κ ( / ) e N
(respectively κ(σt)) such that if

h°f=g°h (respectively hoσr = φt), (6.1)

and h,h~γ are Cκ, then h,h~x are Cr~ε. Moreover, κ(f) can be chosen to be constant
in C1 neighborhoods of Anosov diffeomorphisms.

Remark. Unfortunately, we do not know how to prove an analogous result for
k = ω except in the case that the manifold is two dimensional (See [L12].)

Remark. Notice that since h<>fn = gnoh, we have κ(f) ^ κ(fn).

Proof We will present the proof for diffeomorphisms only since the proof for flows
only requires a change of notation.

We recall that by the invariance of the stable and unstable bundles, we can write
Df(x) = Dfs(x)®Dfu(x\ where Dfs(x):Ex^^E}%l Dfu(x):E^^E}{Q, and
analogously for g.

Moreover, if h, satisfying (6.1) is C1, we have Dfo hDh = Dho gDg and, hence, we
also have a decomposition Dh = Dhs@Dhu, where Dhs(g(x)):Es

g{^\->Es

h{Q9

We claim that we can take K to be any number bigger than 1 for which it is
possible to find C > 0, λ < 1 such that:

sup II Df»,(x) ||« || Dfr(x) WύCλ" n > 0 ,
xeM

sup II Dfl(x) |Π| Df-"{x) II ύ Cλ'n n < 0 . (6.2)
xeM

Remark. Notice that the value of K defined by (6.2) depends oμly on the
Lyapounov exponents of /
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Remark. Notice that, using Mather's characterization of Anosov diffeomorphisms,
[Mat] the above relations are satisfied if the spectrum of the push forward /* acting
on continuous vector fields is contained in {zeC\rκ — ε < \z\ < r) u {zeC\rf <
\z\ < r'κ) for some 0 < r < 1 < r'.

Remark. Notice also that the spectrum of/^ is an invariant of C 1 conjugacy so
that, provided that we take κ> 1, we can assume that the hypotheses are verified
both by / and g.

It can be verified by a direct calculation that, if/ and g are C 1 conjugate, then
siφxeM ||Dfn(x) || < CsupxeM ||Dgn(x) ||. Actually, the way that the conditions enter
in the proof are really between the spectrum of / and the spectrum of g.

The fact that K can be chosen constant in open neighborhoods follows from the
well known fact that the spectrum of /* acting on continuous functions depends
continuously on / in the C 1 topology. It follows for a careful reading of most of the
proofs of the C 1 openness of the set of Anosov diffeomorphisms. See for example
[Sh], Prop. 7.6. (It is a non-trivial statement since the map that to / assigns /% is
discontinuous if we topologize /,. with the norm on operators on continuous
functions and / with the C 1 topology.)

To prove Theorem 6.1 we will show that if h e Ck (g) and k^.κ, then h e Ck +1 (g).
Notice that, since h maps leaves of the stable foliation of g into leaves of the stable
foliation of / we can restrict (6.1) to stable leaves of / Denoting by D s ( / ) the
derivative of the restriction of a function to the leaves of the stable foliation of/ we
obtain differentiating the restriction of (6.1) to the stable manifolds of g,

Dk

sig)h(x) = [B 8 / o *]" 1 (^)*)o f l f(x)[D 8 ^]® f c + R(χ) , (6.3)

where R(x) is a polynomial in the stable derivatives of h of order up to k — 1. In
particular, it is a function in Cl{g). That is, there is an explicit formula for D^g)h(x)
in terms of Dk

ig)h(g(x)) and lower order derivatives of h.
We observe that, applying repeatedly (6.3) and the chain rule, we obtain:

+ Σ (Πl^nohΓiogJ-l-λtoRogJtoίft
j = 0 \ i = 0 / \i = 0

+ Σ l(DsfshhrHχ)R°gJ

j=o

Using (6.2), we see that the first term tends to zero uniformly in x, so that:

Dϊiβ)h(x) = Σ l(DsfJhhy1{x)RogS(χ)lDsg>]*k(x) (6.4)

Taking derivatives term by term in the series in (6.4), we obtain:

Σ ΰ.
J=o

+ ί(DJJ) o A] - x (x) (Dtlt)R) o gi(x)(Dtlί)g>)(x) lDs)gψk

l(Dsf
i)°hΓ1(x)R°gi(x)DsWsgψk . (6.5)
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Using that:

Ds[Dsgψk = X Dsg
j <g> ί ® D S ^ D S V ® ® Dsg>

ί = l

X D.0°0(x) • Dlgogι-1Djgog'ψ,gι)D,gι+1 i W
Ϊ = 1

(6.6)

]-1)W = i>s Π

i = 0

as well as the bounds (6.2), we obtain that the sum in (6.5) satisfies the conditions of
Weirstrass' M test so that it converges uniformly on the M. Therefore, it is
continuous in M and it is a bona-fide derivative of (6.4). Hence h is in C*^/ as
claimed. The process can be iterated till we conclude that heCr

s(g).
A similar argument with / and g replaced by / ~ \ g~* will prove that he Cr

s{g).
Using Theorem 5.7, the Theorem 6.1 is established. •

The same argument works for non-uniformly hyperbolic systems.

Theorem 6.2. Let f be Cr diffeomorphίsm, r e N u { o o } on a compact manifold M,
preserving a measure μif) equivalent to Lebesgue and such that it is ergodic with
respect to μ^f) and it has no zero Lyapounov exponents. It is possible to find
a K depending only on the Lyapounov exponents off such that iff g, h satisfy (6.1)
and h is Cκ. Then, for every ε > 0, we can find a closed set Ωε a M whose complement
has Lebesgue measure less than ε such that h\ΩεeCr~ε.

Proof We just observe that, if Ωε is a "good" set as in Theorem 5.1 the arguments in
the proof of Theorem 6.1 to bootstrap the regularity in the stable and unstable
manifolds work exactly the same on the local stable and unstable manifolds of this
set.

We can verify as in Proposition 5.13 that a subset of Ωε of measure as close to
that of Ωε as we like will have the exponential approximation property by points of
Ωε and, hence the proof of Theorem 5.7 goes through without change. •

6.2. Counterexamples. In this subsection, for every /ceN we construct pairs of
analytic Anosov diffeomorphisms in Td, d ^ 4 which are Ck conjugated but they
are not conjugated by any Ck + 1 diffeomorphism. They are thus, counterexamples
to several extensions of the theorems we considered in the previous sections. They
are also counterexamples to similar extensions of related results.

For example, the systems we construct here have analytic stable and unstable
manifolds yet they are not analytically conjugate to linear automorphisms of the
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torus. Flaminio and Katok showed in [FK] that all Anosov diffeomorphisms in
T2, T3 whose invariant stable and unstable foliations are C0 0 conjugate to linear
automorphisms. The examples here are also counterexamples to extensions of the
results of [LM] on Anosov diffeomorphisms on T2 to higher dimensions.

In [LM] it was shown that if two C0 0 Anosov diffeomorphisms of T2 are
topologically conjugate and the Lyapounov exponents at corresponding periodic
orbits agree, the conjugating diffeomorphism is C00. The diffeomorphisms we
construct in this section not only have the same Lyapounov exponents at periodic
orbits but also several other invariants of differentiable conjugacy vanish. The
stable eigenvalues of the return map cannot be expressed as the product of other
stable eigenvalues. Hence, by the Sternberg linearization theorem, the restrictions
of the return map to the stable (respectively unstable) manifolds of corresponding
periodic orbits are C0 0 conjugate in small enough neighborhoods. This shows that
in dimensions higher than 4 there is no set of local invariants associated to periodic
orbits that guarantee that all conjugacies between the diffeomorphisms are C0 0.

As far as we know, the situation is not settled for diffeomorphisms of T3.

Theorem 6.3. For any keN and any d ̂  4, there exist f g Anosov diffeomorphisms
of Td and an h, a Ck diffeomorphism of Td such that

foh = hog (6.7)

andhφCk+1.

Proof We will consider Td = T2xTd~2 and write a point of Td as (x, y) with
xeT2,yeTd-2.

We will take / of the form

f(x9 y) = {Ax, By)

with A, B Anosov linear automorphisms of T2 and Td~2 respectively and g of the
form

g(x, y) = (Ax, B{y) + euφ(x)),

where eu is an unstable eigenvector of B, φ: T2 -• R is a trigonometric polynomial,
which we assume is just c o s ^ ) .

If φ is small enough, we can invoke the structural stability theorem to obtain an
h which is close to the identity. This h will be unique among all the homeomor-
phisms C° close to the identity.

It is possible to obtain a representation of h by trying an h of the form.

h(x,y) = (x9y + euψ(x)). (6.8)

If we succeed in finding a solution of (6.8), we can use the uniqueness part of
structural stability to conclude that it is the conjugacy. We will show that, by
imposing conditions on the spectrum of A and B, we can get an h with the desired
regularity properties.

Substituting (6.8) into (6.7), we obtain the following equation for φ:

Beuφ(x) = φ(Ax)eu + euφ(x) (6.9)

Hence if Beu = λeu the equation becomes

λφ(x) - φ(Ax) = φ(x) .
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This equation can be conveniently analyzed using Fourier series.
If

in the sense of distributions, the conjugacy equation becomes

λφk - Φcu = Φk ,

where C = {A~X)\
If we choose φko for somejc0, the equation determines φk for all k in the orbit of

k0 under C. The choice of φko will be determined by imposing that \φk\->0 a s

\k\ -• oo. We now argue that such choices are sometimes possible.

If φ has any one Fourier components φko different from zero (and of course

φ-ko = φf0) then we can find a φ by setting φk = 0 for all kφ{±Cnk0}™=-00.
Fork= ± Cnk0,n^ 1 we set φk = 0. For n ^ 0 we set \j/±Cnko = ±λ~nΦ±k0.
These choices lead to a solution of the equation. Since ^ | ^ f c | < oo, the Fourier

series converges uniformly and φ is a continuous function. Moreover we observe
that φ is C° close to zero if | φko | is small.

If we denote the eigenvalues of A by μ, 1/μ, |μ| > 1 we claim that

logμ
φ e AΆ when α < = α clog λ

and does not belong to any Aa with α > α c, where Aa denotes the Lipschitz space
(see St, Kr]) which agrees with the usual Holder spaces for α e N and, for αeN,
Aa =3 Ck. The claim follows from the characterization of Aa spaces by the size of
their Fourier coefficients that can be found in [St] or [Kr]. Notice that
\Cnk0\ ^ Kμn. Hence, the non-zero Fourier coefficients of φ are exponentially far
apart.

If we take M, N hyperbolic automorphisms of T2 and Td~2 we observe that

taking A = Mn, B = Nm, α c = r̂ - where λ0, μ0 denote the eigenvalues of
mlog|/t0 |

M, N of largest and smallest absolute value, so that, by choosing n, m, we can
arrange to have α c in any point of a set dense in R. The claim of the theorem is thus
established.

Remark. The fact that φ is in Aa, oc < otc can also be established by observing that
iterating the cohomology equation we can write

φ(x)= ]Γ λ-in + 1)φ(AHκ).
n = 0

It is possible to use the chain rule to estimate the Aa norm of the terms of the series
and show that the series converges uniformly in A-a when α < α c .

Remark. Since w ^ = h{wff)\ w| ($ = h(ws

κ

if)) and the stable/unstable foliations
of / are analytic, we see that the stable/unstable foliations of g are at least as
differentiable as φ.

Actually, using the explicit formula for h, we can see that h maps an unstable
leaf for/into another unstable leaf for/ Hence, the unstable foliation for g is also
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analytic. This is in contrast with the result of [FK] who showed that the fact that

one foliation of an analytic diffeomorphism of T2 is analytic implies that it is

analytically conjugate to a linear automorphism. On the other hand, the stable

foliation is not more differentiable than ψ. This, again, can be seen by using the

explicit form for h and computing derivatives along unstable directions in T2 of the

stable leaves.

Remark. The same idea can be used to construct similar examples in manifolds

other than tori. One can use as product diffeomorphisms linear automorphisms of

nilmanifolds. In that case, the argument of lack of regularity is slightly more

complicated since one cannot compute with Fourier coefficients.
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