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Abstract. In the first part of this paper, for each d > 2, we construct diffeomorphisms
of the d-dimensional ball which have zero entropy, one periodic orbit with period 2™
for each n > 0, no other periodic orbits, and a single invariant Cantor set which
has a continuum of possible but, in any case, simple geometric structures. These
diffeomorphisms are C™@-smooth, where 7(d) is a strictly increasing function of d,
which goes to infinity with d. The second part contains a more general result about
smooth maps obtained by an infinite sequence of surgeries, and further particular
cases.

General Introduction

This paper contains two parts.

— In the first part, we show how a few straightforward ideas combine to give simple
smooth maps at the accumulation of cascades of period doubling bifurcations, with a
smoothness which gets improved when increasing the dimension (Theorem 1). This
has the following consequence:

The minimal smoothness required to hope
for universality at the accumulation of period
doubling bifurcations increases with the dimension.

— The second part begins by a formulation of a general result, our Theorem 2,
which only needs obvious changes to the specific arguments used in the proof of
Theorem 1. Then, we give more applications of the general result, dealing with C?
diffeomorphisms of the two-disk with zero entropy having infinitely many periodic
orbits.

Here are three examples in C*-smooth dynamics with k& < oo which together,
serve as a general motivation to the present work. For simplicity, in this general
introduction, we only care about C* when k is an integer, which leaves aside many
interesting questions!
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Example 1 by A. Denjoy. The so-called “Denjoy counterexamples” [De], first discov-
ered by P.Bohl [Bo], are C!-diffeomorphisms of the circle which have an irrational
rotation number but no dense orbit.

Status of Example 1. Optimal. Another theorem by A. Denjoy [De] tells us that C?-
diffeomorphisms with topological dynamics similar to the above do not exist.

Example 2 by J. Harisson. The Seifert Conjecture asserts that every vector field on
the three sphere has either a critical point or a periodic orbit. P. Schweitzer [Sc] used
Example 1 to get C'-counterexamples to the Seifert Conjecture, and J. Harisson later
constructed C?-counterexamples [Hj].

Status of Example 2. Unknown. One does not know if there exists a C>-counter-
example to the Seifert Conjecture.

Example 3 by J. Franks and L.S. Young. In [BF], R. Bowen and J. Franks constructed
a C''-smooth embedding of the 2-disk with:

(i) zero entropy,

(ii) one periodic orbit with period 2™ for each n > 0 and no other periodic orbit,
(iii) a single invariant Cantor set,
(iv) a non-wandering set completely described by (ii) and (iii).

Recall that a point P is non-wandering for the map F’ if for any neighborhood U
of P, there is a positive n such that F*(U)NU # (. The set of non-wandering points
of F' is the non-wandering set of F’; it is denoted by (2(F’).

Because of the status of Denjoy’s counterexamples (also recall that in 1976, the
best result about the Seifert Conjecture had the very same smoothness as given
by Denjoy’s theory), the question arose whether the Bowen-Franks example also
had optimal smoothness. Then J. Franks and L.S. Young constructed a C* example
satisfying (i), (ii), (iii) and (iv). It is the main new idea of this later method that we
plan to extend to any dimension d > 2, so that when d increases, we get smoother
and smoother “challengers” to the real analytic d-dimensional examples adapted from
[GST]. This new idea in [FY] consists in performing two period doubling bifurcations
in the first approximation to the map they construct (it will become clear why this
trick is so helpful).

The examples in [BF] and [FY], as well as the last ones we shall construct in Part
I, do have all their periodic points hyperbolic. Some of these examples are built with
the Kupka-Smale property, which means that all periodic orbits are hyperbolic with
transversality of any pair of invariant manifolds of periodic points. Since all examples
naturally carry a filtration corresponding to the hierarchical method of construction,
the transversality part of the Kupka-Smale property, if not built in, is always easily
obtained by local surgeries which are arbitrarily smooth (see below and [GST]).

Status of Example 3. Not Optimal. One knows [GST] that there exist real analytic
embeddings of the 2-disk satisfying (i), (ii), (iii) and (iv). The method in [GST] is
not quite constructive, and it seems reasonable to believe that the best one can do
constructively is C3~¢, but in Part I, we shall show that the method of Franks and
Young gives constructive examples of increasing smoothness when working in higher
and higher dimensional balls instead of the 2-disk.
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L Rigidit'y, Smoothness and Dimension

A. Introduction and Statement of the Result

In this first part of the paper, we describe a simple method which yield C' 1+[va).
smooth embeddings of the d-dimensional ball with d > 2 with:

(i) zero entropy,

(ii) one periodic orbit of saddle type with period 2" for each n > 0 and no other
periodic orbit,
(iii) a single invariant Cantor set, which contains a small affine copy of itself, scaled
by any ratio chosen from an interval,
(iv) a non-wandering set completely described by (ii) and (iii).

We use the notation |z | for the integer part of x, and we notice that 14 |v/d] is not
an optimum choice for the smoothness. We choose this as an example of an increasing
function 7(d) which goes to infinity with d: this divergence is for us the main new
observation and 1 + L\/EJ allows the construction to be as simple as possible. We
will also briefly indicate how 1+ |/d| can be replaced by r(d) = d + 1 — ¢, where
€ is an arbitrary small positive number.

The main point is that all the Cantor sets we shall construct will have a simple
kind of scale invariance. In fact, generalizing to d > 2 the construction presented in
[GST] (i.e. by perturbing to a diffeomorphism of the d-dimensional ball the singular
fixed point of renormalization constructed by P. Collet, J.-P. Eckmann and H. Koch
[CEK]) one gets embeddings of the d-ball satisfying (i), (ii), (iii) and (iv) which
are real analytic. However the invariant Cantor sets constructed this way have a
complicated geometry, inherited from the complicated scaling function of the one
dimensional quadratic-like fixed point.

The existence of the simpler, hence “exotic,” examples constructed here, means
that one generally needs arbitrarily high smoothness to hope for complete rigidity,
or global universality, of the cascade of period doubling bifurcations. This simple
observation suggests a new perspective on the theory of dynamical rigidity.

The already mentioned works by Harisson [Hj] and Franks-Young [FY] and the
one by G.R. Hall [Hg] give examples of papers concerned with the question of
relationship between smoothness and dimension (see in particular the introduction
sections of these papers). Clearly the idea that:

“there are relations between the optimal smoothness
of some examples in dynamics and dimension”,

is not new. The new point of view that we like to convey here is that the recent concept
of Mostow-like dynamical rigidity [Su], called universality in physics [CEK,CT,Fe],
should play a crucial role in this central question of smooth dynamics. A naive
(and still imprecise) conjecture is that rigidity (accompanied by complicated scaling
geometry) prevails in any dimension when the smoothness is so high that self-similar
constructions cannot anymore be carried out: see [Tr] for related results in one
dimension.
We now state the main result of Part I:

Theorem 1. For any k > 0, there exists a small v > 0, a d > 2 and a C*-smooth
Kupka-Smale embedding of the d-dimensional ball with:
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(i) zero entropy,

(ii) one periodic orbit with period 2™ for each n > 0, which is a saddle, and no other
periodic orbit,
(iii) a single invariant Cantor set which contains a small affine copy of itself, scaled
1-2~ 1—7
1+2vd’ 1+2Vd
(iv) a non-wandering set completely described by (ii) and (iii).

by any factor in the interval , for any small v > 0,

Remark. These embeddings will be constructed as solutions of the functional equa-
tion:

G=A"10G" 04,

where A is an affine transformation with norm:

1-2.v 1—7v
1+2.vd 1+2.Vd|’

B. Proof of Theorem 1

To simplify the presentation, we first construct diffeomorphisms which badly fail
to be Kupka-Smale: they have continua of periodic orbits which form shells (i.e.
complements of d-balls in larger concentric d-balls), and act as translations on these
shells. The construction of these degenerate examples will be carried out in three
steps. In the fourth step, the non-hyperbolic periodic points will be removed as we will
transform the degenerate diffeomorphisms to Kupka-Smale embeddings. Altogether,
the proof has two main ingredients: a sequence of simple geometric constructions
and a pair of obvious and well known, but quite powerful lemmas, which we call the
Isotopy Cutting Lemma and the Norms Rescaling Lemma. These lemmas give us the
control of the smoothness we need and play also a central role in [GT].

Step 1. The first approximation. Let D stand for the d-dimensional unit ball in R¢ for
d > 2, and D’? for the concentric ball with radius 1—+, so that the complement of D’ d
in D? in a thin spherical shell A, with radius +. The d coordinate hyperplanes split the
complement of their union in D'?, into 2¢ disjoint open regions D§,, 0 <1 <2¢—1.
Each of these regions contains a closed ball with radius:

e 1 -2y 11—~
T 1424 142.adl]

and there is enough room left to move rigidly any par of these balls, until they

exchange their positions, without touching the other balls, see Fig. 1.

We then define Fj, as any diffeomorphism of D? which:

preserves the boundary D¢,

— is the identity in the shell A,

— exchanges by translations the 2¢ balls D,

is a Morse-Smale diffeomorphism in M, = D*\{4,u |  D§,}, with exactly
0<i<2d—1

one periodic orbit with period 2™ for each n such 0 < n < d and no other periodic
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A d-dimensional
picture: IVl = 2avd

Y
a
v
a
Fig. 1 0 a

orbit in M. Furthermore, each of the periodic orbits is a saddle with a single unstable

direction.

—theset |J Dg; is an attractor for Fy, while the shell A, is an attractor for
0<i<2d—1

the inverse map Fj '

Nothing prevents F;, from being constructed as a C*° diffeomorphism. An isotopy
from Fj, to the identity map Id acting on D? is realized by a torus flow {¥*},_,,
which suspends Fj in the solid torus D? x S!. We choose this suspension so that for
all t with 0 < ¢ < 1, @' maps rigidly the Dg;i’s and leaves the shell A, pointwise
invariant. We write Fj, as the composition:

Fy = Fopay 0 Fopa_p 0. 0 Fy,
where Fy, is the restriction of the map w1/2" defined by:
d
Fo;z =y |D><{z‘/2d} :

1-2. 1-
The choice of the radius 7, in T corresponds to the following

v
two imperatives: 1+2.Vd 1+2.Vd
— 7 has to be small enough so that the isotopy moves the disks Dgn- rigidly for all
d>2,
— 1, has to be large enough to allow a good control of the C'*1V4l norms in the
construction of our model.

We postpone to the last paragraph of Part I, where we improve r(d)’s value, a few
hints on the way to improve the value of r(d) up to d + 1 — ¢ for any € > 0.

F, is represented in Fig. 2 in the cases when d = 2 and d = 3.
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Fig.2

Step 2. Renormalization. Let T; be the translation which carries D, to Dgl, R, be

an affine dilation which carries D¢ 0.0 tO D% and let us write R, = RyoT, '. We define
F| by:
- Fi(P)= FO(P) if P is in D and not in a DOz,
- F(P)= R} a0 Fy; 0 Ry(P) if P is in D;.

This new map F) is again a C*° diffeomorphism and has the three following
important properties:
1) F, has 2%¢ balls with the same radius 7, = (r,)> which are exchanged by
translations. We denote these disks D{,; j» Where 0 < 4,5 < 29 — 1. Here i means

that D¢, . belongs to Doz More precisely, D¢, . belongs to the complement in Dol
of a shell A, with radius 2—‘2 such that D, is also the exterior boundary of A¢,.

1;4,5 1;4,5

Furthermore:

F (Dug) 1(z+1)mod 24 (j+1) mod.2¢
and F acts on each shell A‘lil like a translation.
2) Fj is a Morse-Smale diffeomorphism in

M1=Dd\{AU U aiu U ot}

0<i<2d—1 0<i<2d—1,0<5<24—1

with exactly one periodic orbit with period 2™ for each n such 0 < n < 2¢ — 1 and
no other periodic orbit in M,. Furthermore, each of the periodic orbits is a saddle
with a single unstable direction.
3) The set U D¢
0<i<24—1,0<5<24—1
for the inverse map F|" !, and the set | Aﬁi is an attractor for the restriction of
0<i<2d—1
F to M, but an attractor for the restriction of the inverse map F; ' to  |J D§,;.
0<i<2d—1

A construction similar to the one giving F) in the cases when d = 2, is represented
in Fig. 2.

More generally, assume we have constructed F,, which has %" balls

Da., igyits...,in €XChanged by translations according to:

1.s,; 1s an attractor for F}, the shell A is an attractor

F,(D

mo,n, )_ n(zo+1)mod2d .,(in+1)mod.24 * i
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Then we set:

L LN s 2d" 2dn—1.~

gm;ig, %y, ... ,1,) =%+ 2 i+ ... +(29) Ty s
and:
— gl/edhn

Rsigyityin = ¥ / | Ddx {gmiig it in)/@yn} 5
we denote: ,
= Tytniigsir,...,in) the translation which carries Di;o,o,...,o to Dg:io,il,...,in
and:

— Rpy,..0 the affine dilation which carries Dy o to D?,
and we write:

_ —1
Ry nsigirennin) = Br:0,0,...,0 © Tgtniig v, oovin) -

This allows us to simply define F, ; by:
- F,,(P)=F,(P)if Pisin D and not in a D2

17390,81 5000 °
-1
—_ = o) o
FnH(P) R(g(n;io,il,...,in)+1)mod.(2d)("+1) F, Rg
in D¢,

For each m, the map F,, constructed by this inductive process is again a C'™°
diffeomorphism: the shell A, and its successive reduced copies Afmo’il’m?in allow

the surgery which transforms F,,_, into F, to be arbitrarily smooth. Furthermore,
for each m, let us define the set:

TR TI (n;z’o,i,,...‘,in)(P) if P is

M, =D\ {40 |J aiu..

0<i<2d~1
d d
U U An;i07il;~~win—1 U U Dn:zo,i1,~-~,in} :
[10<ip<2d—1 [10<ip<2d—1

Then the map F,, restricted to M, , is a Morse-Smale diffeomorphism with exactly
one hyperbolic periodic orbit with period 2™ for each n such0 <n < (m+1)-d—1
and no other periodic orbit. Again:

— Each of the periodic orbits is a saddle with a single unstable direction.
— The set U D'l’ilﬂoﬂlvu,in is an attractor for F , the shell A is an attractor
[10<i, <2d—1
: -1 d
for the inverse map F ' and each of the sets of the form U An;ig,il,...,ln_p
[10<ig <241
is an attractor for the restriction of F,, to M, , as well as an attractor for the restriction
: ~1 d
of the inverse map F,.! to U Diiginreeesin—pr*
[10<i, <2d—1

The next thing we want to understand is the smoothness of the map F' obtained

as the limit of the F}’s.

Step 3. Limit and Control of the Smoothness. The sequence {F, } is made of C'*°
diffeomorphisms, but has no chance to converge in the C*° topology. The problem is
of course on the small scales, where Fp differs from Fp +1 as p becomes unbounded.

However:
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Claim.

{F,,} is a Cauchy sequence in the C' 1+1vVa) topology.

This claim insures that our example (the limit F' of {F] } in the C'* Lval topology)

is a Cl*+1Vdl diffeomorphism of the disk. Assuming that the Claim is true, to prove
Theorem 1, it only remains to get rid of the degenerate orbits and to treat the
transversality of the invariant manifold crossings. Hence we postpone the proof of
the claim which is the only small analysis part.

Step 4. Kupka-Smale Embeddings with the Right Non-Wandering Set. When d = 2,
an easy modification of our construction yields Kupka-Smale diffeomorphisms with
properties (i), (i) and (iii): it is enough to change F;, by imposing a rigid rotation
with irrational rotation number 6 in the annulus A,, and by imposing a rigid rotation

L : 6 . :
with irrational rotation number — in each of the 4 disks D3,,. These changes then

propagate by self-similarity, using obvious modifications of the isotopies, but all this
is not enough to give us property (iv) of the theorem.

A naive generalization to arbitrary dimensions of the same modifications would
not even yield Kupka-Smale diffeomorphisms when d # 2, but we shall present a
two point procedure working for all d > 2.

Remark. Each of the following points should be accompanied by a modification of
the flow ¥* which yields the isotopy, whose detailed construction is left to the reader.

Point 1. We change Fj, to Fjj by modifying F:
— first in the neighborhood of a shell A,, so that D be mapped inside itself (recall
that we had arranged the shell A, to be a repeller),
— then in the neighborhood of | Dg;i, so that the image of M, is not contained
0<i<2d—1
in itself, but in MyU  |J A%, (recall that we had arranged the shells A¢; to be
0<i<2d—1
attractors on one side, and repellers on the other side).
These changes then propagate by self-similarity. At this stage we have gotten rid
of all degenerate periodic points, but might have introduced heteroclinic tangencies.
Notice that these modifications of the map F{ to Fyj could be made arbitrarily small
in the C° topology: radially for Ay in D? and for A{, in D,, this corresponds to
modifications as illustrated in Fig. 3.

Point 2. We change Fjj to F' by suppressing all possible non-transversality of the
invariant manifolds of the periodic points. Of course, no tangency was present when
starting with F}, since the invariant shells at each stage isolated successive hierarchical
levels of the construction. Since we are left with a filtration after Point 1, the situation
is easily handled by suppressing any degeneracy successively at finer and finer levels
of the construction. The filtration insures that the only tangencies which can occur are
between the unstable manifold of a 2™-cycle with the stable manifold of a 2™-cycle
with m > n.

The fact that one has to work at finer and finer scales is not an obstacle to
whatever smoothness we like: in order to suppress a degeneracy, the change, which
is performed in a fundamental domain, can be made as small as one likes. If we
choose these surgeries as being e.g. more than exponentially smaller when working
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Fig.3

at the exponentially finer successive scales of the construction, the Norms Rescaling
Lemma insures that we do not loose any of our control on the regularity.

We shall refer to the construction described in Points 1 and 2 as the Cleaning
Construction. O (Theorem 1).

Proof of the Claim. The truth of the claim itself depends on the fact that in the
YA nom, | |y, vay IF

m+1 — Fmllip|vg) decreases as C - I'™ for some

—|V/d] -log(o) + d - log 2
, ,

positive constant C, where I' = p® < 1, with oy =
_1-2.9+96
14+2vd

Of course, all the contribution to ||F,,,,., — F, |, +(va) comes from the balls

Do iy ...im » SiNCE this is the only place where the two maps differ (more precisely

the two maps differ in the complement, in these disks, of the small copies of the shell
Ap).

. —1 .
Up to the translations T ,,.; ;. ;. and T(g(m;io,il,__.,im)ﬂ)mod.4m+1 (which does
not contribute to ||. ||, for 7 > 1), the restriction of F,_, to D

and § < 7.

10,1 eesim is just a
rescaled copy of W'/4™| Dx{g(msigyy,....im)/4m}- 1t follows that the exponential decay
C-~™ of ||F, .1 — F,l, +|va) 1s a simple consequence of the two following

elementary but fundamental lemmas:

Isotopy Cutting Lemma. Let G be a C" diffeomorphism of the ball and G, an isotopy
going from the identity G to G, = G. Then there exists a constant K > 0 such that,
forall N >0and 0 <7< N:

G is1ym © Giyp)~' —1d ||, < K/N.

Norms Rescaling Lemma. Let G be a C" diffeomorphism of the unit ball D, and A
be an affine map sending another (not necessarily round) ball D’ with radius o to D.
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Then for any integer k < r:
14710 DPG o Ally < [DPGllp - o' *.

In our problem, when m is large enough, the Norms Rescaling Lemma implies
that || Fy,, = 1d| | gy = | DA+LVAD(E )|, Consequently, when estimating the norm
1Fpi1 — Frally +|va)» the Isotopy Cutting Lemma gives us:

K
”Fm;io,z’[,...,im - Id”1+|_\/EJ < W-
The Norms Rescaling Lemma then implies:

K

P _F, < O (Claim).
” m+1 ”H'L\/EJ (Zd)m . (%)m Lvd] (

About the Lemmas. Both lemmas are already implicit in [RT], and might as well be
older. The Isotopy Cutting Lemma (without the name!) is stated in a particular case in
[FY], together with a proof, which, up to a trivial rewording, covers all our needs. The
Norms Rescaling Lemma is a trivial computation hidden e.g. in the ||. ||, estimates
of [FY]. Our only contribution is to have isolated these statements. They are quite
useful:
— as powerful tools for self similar constructions,
— as simple guides in the approach to rigidity ideas.

Let us mention two ways to understand the Norms Rescaling Lemma:
a — affine self-similarity does not go along well with high smoothness,
0B — topological self similarity might need complicated metric rescalings to be realized
by very smooth maps.
For other applications, see also [GT] and the next part of the present paper.

Improving r(d)’s Value.

1. From standard estimates, it follows that ' is indeed slightly more regular that just
C'+1Val More precisely F is of class C'*LVdl+e for any o such that 0 < o < a,
and we notice that « is greater than one when d is large.

2. To obtain 7(d) = d+ 1 —¢ for all € such that € > 0, instead of the 7(d) = 14 |[V/d|
we had gotten so far, it is enough to systematize the way [FY] improved on [BF]: more
precisely, it is enough to incorporate more and more period doubling bifurcations at
the level of the first approximation Fj; to get closer and closer to d + 1 which stays
unreachable by such surgical attempts. The computation goes as follows:

— Combining the Isotopy Cutting Lemma and the Norms Rescaling Lemma, one
would need n balls with radius o such that n - p¢ > 1 in order to get an F of class
C?1, but the same 7 - o% > 1 just means that there is not enough room in the unit
ball.

— In order to obtain C%t!=¢ it is easier to first remark that the Norms Rescaling
Lemma can be used as well for fractional powers. Then, in order to get an F' of class
C?+1=¢ we just need the number and radius to satisfy n - 0%~ > 1, and a system
of identical balls satisfying this last inequality can well fit inside the unit ball if 7 is
chosen to be large enough.
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II. A General Result and Some Applications
A. A General Result

There are many results similar to Theorem 1. In order to avoid more repetitions, we
formalize a general procedure which follows the steps of the proof of Theorem 1.

Let Z be a set of indices and let the set of 1-models {F,},., be a collection of
C diffeomorphisms of D¢, isotopic to the identity map Id,a on D?, and such that:
— D? contains n = n(z) small identical disjoint closed d-balls {D? ;}icio1 . a1}
with:

- Fz(‘Dg, )= Dz ,(j+1)mod. n(F)’

- F,|pa () is an isometry.

z,j\" #

— there are tubular neighborhoods:
- F,ofoD*in D\ { U DZ,},

0<j<n~—1
and:
- C,;ofeach dD¢ ;in D4\ {C,u U D¢}
0<j<n—1
such that:

- Flg, and F|Cz,j are isometries of C, and of the C, ;’s, with F(C,) = C

F(Cz,j) = Cz(j+1)mod.n’

and:

— C, is a repeller, and the C, ’s are attractors, at least marginally.

An isotopy from F' to the 1dent1ty map Idpa is realized by any suspension
{w! }o<t<i of F, in D4 x S'. We choose this suspension so that for all ¢ with

0<t<1, W maps isometrically C, and the D, 2. ’s. For any m > 0, we write F, as
the composition:

F2=Fz,m—1OFz,m—ZO"‘OFz,O’

where F’, ; is the restriction of the map !'/zl/ " defined by:
Fz,i = lpzl/mle{i/m} :
Now choose any pair (2, z;), and let R, , be an affine dilation which carries D?

20, [
to D,
This allows us to simply define [ = g(F 0 ) by:

— 99,5, (P) = F, (P) if P is in D% and not in a Dfo i
= Gz, (P) = Rz—ol(,+1)mod R0 F, ;oR, (P)if Pisin Dﬁo N

The set of 2-models is by definition the set of C* diffeomorphisms of D¢ which
can be constructed as g, . . They all are isotopic to the identity map Idq on D
The isotopy can be realized by a suspension {¥} .rtost<t Of gz in D? x S1; we
choose this suspension so that for all ¢t with 0 < ¢ < 1, W » maps isometrically C

and the C, ’s as well as the small coples of C, and of the Cz] ’s in the C

20,5
Consequently, understanding the 929,z S A8 1 models glued in 1-models, one can
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make an obvious generalization of the construction yielding the 920,21 ’s, and define
Gogr21m = g(FZO, 9.,,,) a8 a 2-model glued in a 1-model. Continuing inductively, we
obtain m-models for each m > 1.

For each m, the maps g, . constructed by this inductive process is again
a C'* diffeomorphism: the tubular neighborhoods C,, and their successive reduced
analogs CzOv-'»zp—l at each scale p, allow the surgery which transforms g,

into g, .. to be arbitrarily smooth.
The C, ;’s and the analog Czo,u-,zp_l, ;s at each scale p give the room to perform
the modifications corresponding to the Cleaning Construction (i.e. points 1 and 2 in

Part I), if necessary. For each m, we define the set:

s)ﬁm zMsm \ {CF1 UUCFl,i U U Cng ,,,,, b 2J U

I<p<m

U U(Cng ..... Fy ) ULkJDk(gFm,m,Fl)’

I<p<m-—1 j

and anything defined there will remain unchanged by further steps of the construction.

Theorem 2. a. {gzo,m]zM }. is @ Cauchy sequence in some C* topology, where
k > ki, = 1 always olds.

b. k., = 1 can be improved using the combination of the Isotopy Cutting Lemma, the
Norms Rescaling Lemma and, if any, the decay of all the C" norms ||F,,||, of F,, as
m — +00.

c. If all the C™ norms ||F,, ||, decay fast enough, then k = +oc.

d. The optimal smoothness k is not affected by the Cleaning Construction.

e. The non-wandering set $2(F__) of the limit map F__ is made of the disjoint union of
the pieces in the M, ’s coming from the .Q(gZO,“Jm)’s, a set of degenerate periodic
points at each level of gluing new pieces when passing fromg, .  tog, ..,
and a Cantor set. The degenerate part is destroyed by the Cleaning Construction.

Theorem 2 is proven by obvious adaptations of the arguments used to prove
Theorem 1. Details are left to the reader.

B. Some Applications

Our example in [GT] of a C? diffeomorphism of the two disk with infinitely many
Axiom A strange attractors is an application of Theorem 2 when all 1-models are a
same diffeomorphism with an Axiom A strange attractor and n = 4. Here, we shall
concentrate on maps with much simpler dynamics.

The periodic orbit structure of orientation preserving diffeomorphisms and embed-
dings of the two disk with zero topological entropy has been described in [GST].
Since, it has been asked whether infinite hierarchies of periodic orbits can coexist for
zero entropy embeddings of the two disk which would be smooth enough., It seems
to us that a complete answer to this question would involve much more theory than
attainable now. We have
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Py

n

Theorem 3. Let { } be any sequence of rational numbers written in reduced

form with Lo T There exists a C? diffeomorphism of the two disk, F, with zero

1
topological entropy, such that for all n > 1:

— F has a pair of periodic orbits O, = {M,,M,,...,Mp_} and O}, with the same
period P, =q, g, ..."q,,

— FPr splits O, in P, periodic orbits {O,, ;};c, p, with period q,,,, each having
pn+1

linking number with one point M, of O,,.

q'n+l
Theorem 4. There exists a Kupka-Smale diffeomorphism like in Theorem 1, with no
other periodic orbit and such that for all n > 1 the periodic orbits O,, is a sink.
Theorem 5 [Ka]. The examples in Theorem 3 and in Theorem 4 can be made C* by

letting Py go to zero fast enough when n — +o00.
n

Remark. Theorem 5 describes a situation, called ‘“‘unbounded renormalization”, which
is the most difficult case, still misunderstood, in the case of endomorphisms of the
interval or of the Riemann sphere.

From [GST] we also have:

Theorem 6 [GST]. The examples in Theorem 3 and in Theorem 4 can be made C'*

1
by letting Z—” be 3 for n large enough.

n
Hints for the Proofs of Theorems 3, 4, 5. If for all n large enough, ¢, > 3, we

associate a 1-model of F' to each ad in the form of the rigid rotation with angle &,
q'n n

modified in its Cp and C;’s according to the Prt1 one wants to plug inits D,(F)’s;

Tnt1
these are quite degenerate maps that can we fur?her modify to be Morse-Smale (i.e.
Kupka-Smale with finitely many periodic orbits) out of Cr UUCp ;. It then only
7 OF,

1
remains to apply Theorem 2 (see Fig. 4 when P _ T for each n):
q

n
— First, Theorem 5 is quite simple: slow rotations are good approximations of the

identity map, so that this result has been rediscovered over and over again. To our
knowledge however, it first appeared in [Ka].

1
— Then, we remark that if g,, > 3, g,, small disks of radius greater than — can fit in

the unit disk, so that the combination of the Isotopy Cutting Lemma andnthe Norms
Rescaling Lemma yields the C? result.

If infinitely often, we find a g,, < 3, we adapt the main idea of [FY] and introduce

Pr+i

1-models which combine to successive values and &, so that q,, | - g,, small

qn+ 1 dn

disks of radius greater than ———— can fit in the unit disk. Again, the combination
Ant19n

of the Isotopy Cutting Lemma and the Norms Rescaling Lemma then yields the C?

result.
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