Mathematical
Physics

© Springer-Verlag 1992

Regularization and Convergence
for Singular Perturbations

H. Neidhardt! and V.A. Zagrebnov?>*

! Technische Universitit Berlin, Fachbereich 3 Mathematik, MA 7-2, Strasse des 17. Juni 136,
W-1000 Berlin 12, FRG

2 TInstituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001
Leuven, Belgium

Received April 16, 1991; in revised form May 1, 1992

Abstract. We present an abstract result on removing regularization for singular
perturbations in the operator theory. Our main result concerns singular perturbations
which are not (formally) semibounded from below.

1. Introduction

For very singular and nonpositive potentials —V, V' > 0, in quantum mechanics it
may happen that the Schrodinger operator H = — A — V makes no sense, i.e., it
is not essentially self-adjoint on Z(—A) N Z(V). Further, if we formally define the
Schrédinger operator on Z(—A), then H is not semibounded from below. However,
one can choose a regularizing sequence {V, }2°, of bounded potentials such that
V..f — V fasn — oo for certain elements f € Z(V') and the corresponding sequence
{H, }52, of well-defined Schrédinger operators, i.e. H, = —A —V,, such that the
limit s-nlirr;o (H, — 271, Im(2) # 0, exists and defines a self-adjoint operator which

can be understood as a regularized Schrodinger operator for the problem H = — A-V
[4, 5,7, 8, 13]. It is interesting to note that the regularizing sequence {V,, }5° , itself
chooses the “right” regularized Schrodinger operator or, in other words, that the
singular perturbation itself forces the “right” operator.

The present paper has the aim to clarify this phenomenon on an abstract operator-
theoretical level. Thus, the paper is closely related to [8]. The main result of [8]
(Theorem 1) say that if

(i) the regularizing sequence {V, }2°,, Z(V,)) D Z(V), satisfies V,, < V,
(ii) there exists a dense subset & C Z(A) N (V) such that

VA <allAfIl +0lfll, a<l, b<+4oco0, feZ, )
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IV = Vfl < aAfl + 0,6, lim o= lim b, =0 feP, @

n—oo

(A — V)| has finite deficiency indices (m,m) . 3)

(iii) there exists {c, }°2, lim ¢, = o0, such that the spectrum of H,, = A -V,
contained in (—o0, —c,,) consists of at least m eigenvalues (counting multiplicities),
then the sequence {H,, }22, converges in the norm resolvent sense to the Friedrichs
extension Hy of (A — W|Z as n — oo. In addition, it is shown that the operators
H, | & are uniformly bounded from below.!

In the following we show that these conditions can be relaxed. For example, it
is not necessary that the involved self-adjoint operators are self-adjoint extensions
of a common symmetric operator with finite deficiency indices (condition (ii) (3)).
However, provided that this holds, our results can be improved essentially, as can be
seen in the third section. Moreover, it becomes clear that the notion of an admissible
regularizing sequence is crucial for the problem. Further, it turns out that it is enough
to consider closed symmetric forms.

The problem of approximation and convergence was studied on the abstract level
in [3, 6, 9, 10]. These results were applied to singular perturbations semibounded
from below (see e.g. [11, 12]) and to the strong singular case with hard-core (see e.g.
[14] and the recent book [1] and references therein).

2. Regularization and Convergence

Let v > 0 be a closed symmetric form defined on a complex separable Hilbert
space h and let A be its associated self-adjoint operator, i.e. v(f, g) = (\//—1 1, VA 9,
f,g € Z2(/A) = dom(v). Let & be a dense subset of dom(v). Since v is a closed
symmetric form, the form v, given by

wif,9=vif9), fgeZ, 2.1

A

is closable. By © we denote the closure of 1. Obviously, we have o > 0,
dom(?) C dom(v), and
v|dom®@)=10. (2.2)

The associated self-adjoint operator of © is denoted by A.
Further, let v > 0 be a symmetric form such that

Y C dom(vy) 2.3)
VD < avlf, H+OIFIP, fe€Z, 0<ab. '
On account of (2.2) the relation (2.3) can be rewritten as follows:
o, ) <ad(f, H+0IfI?,  feZz, 0<ab, 2.4)

where v, = v | & is the restriction of -y to the subset &. But from (2.4) we
immediately obtain the estimate v, (f, f) < c@(f, /)+|fI|*), f € Z, ¢ = max{a, b},

' Notice that in [8] the operators H, | Z(A)NZ(V) were considered. However, it was proved that
D(A)NZ(V) =< under above conditions
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which shows that «, can be continuously extended to elements of dom(?). Denoting
the extended form by 4, dom(¥) = dom(?), it is not hard to see that % is relatively
bounded with respect to 7, i.e., we have

AL D < ab(f, H+blIfII?,  fedom@®), 0<a,b. (2.5)

We say that the symmetric form # is relatively compact with respect to ¥ if for
some A < 0 the bounded symmetric form B(f, g) = (A — N)~V2f, (A — N)~1/2g),
f,g € b, defines on § a compact operator. Notice that if this condition is fulfilled for
some A < 0, then it also holds for all negative .

The KLMN-Theorem [10, Theorem X.17] yields that the perturbed symmetric
form fi,,

1
belf9) =0(f,9) = —4(f,9),  f,9 € dom(f) = dom(?), (2.6)

is closed and bounded from below for x > a. We denote the associated self-adjoint
operator and the lower bound of fi,. by FIH and A, respectively.

d2
Example 2.1. Let A = — ) be the usually defined Laplace operator on the Hilbert

space h = L2(R"). We set
+o00
v(f,9) = / f@)g'(@) de ()

f,g € dom(v) = IGHA) = WZI(RI). Obviously, we have v > 0. Setting
7 = CR\{0}) we can identify the self-adjoint operator A, roughly speaking,
with the Laplace operator which satisfies at zero the boundary condition f(0) = 0.

More precisely, A is the Friedrichs extension of the closure A of the restriction A | Z.
We introduce the quadratic form -y, as follows:

+o0
1 1 _
Yo (fs9) = 7 / B f@g@yder, 0<a<2, (2.8)

f,g € dom(y,) = &. Using the corresponding considerations of [6, VI, Sect.4] we
find the estimate

Yo lfs ) < agu(f, £ + b ) fI*, feZ, 0<a<2, 2.9)

where a,, can be chosen arbitrary small if 0 < o < 2 and a,_, = 1. The estimate
(2.9) proves the estimate (2.3).

Definition 2.2. A sequence {7, }>>, of bounded non-negative symmetric forms on b
is called a regularizing sequence of y with respect to & C dom(vy) if
HO<y<p<...<7,<...<vand
(i) lim 7,(f, ) =, /), f € Z.
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The notion of a regularizing sequence was introduced by Nenciu [8].

Example 2.3. A regularizing sequence of v with respect to & of Example 2.1 can be
defined by

1 1
Yanlfr9) =7 / EE f@)g(@)dz, (2.10)
]Rl\[——— L

n’'n

fig €dom(y,,)=h0<a<2

Lemma 2.4. Let vy be a symmetric form obeying 2.3). If {7,,}52, is a regularizing
sequence of vy with respect to &, then {7, }° , is a regularizing sequence of 4 with
respect to dom(¥) = dom(?).

Proof. By (2.3) and (i) we find the estimate

Wlhs ) SAS, ) < e, H+IFIP),  f € dom®), (2.11)

¢ = max{a, b}, that verifies 0 < v, < v, < ... < v, < 4. Hence, the limit
lim «,,(f, f) exists for f € dom(%) and obeys the estimate lim -, (f, f) < A(f, f).
n—oo n—oo

By (ii) we have lim ~,(f,f) = A4(f, ) if f € Z.If f € dom(¥) = dom(?), then

n—oo

for any ¢ > O there is g € & such that c(v(f —g, f —g)+ || f — g*) < €%. On account
of (2.11) this yields that 7,,(f — g, f — g) < €2 uniformly in n = 1,2, .... Applying
the Schwarz inequality and standard € — § arguments we complete the proof. U

If {7, }o2, is a regularizing sequence of ~ with respect to &, then we can define
a perturbed family of closed symmetric forms {fi,; ,}52; by

B n(fr9) =0(f,9) — 'yn(f, 9, f,g¢€dom(i,)=dom(), (2.12)

k > a. On account of (i) the family {f, ,};2, is nonincreasing and bounded
from below by f,.. Moreover, since fi, > . we have B m = Mon=1,2,...
Denoting by {PI,”L} the associated family of self-adjoint operators we obviously get
flmn >H_>M\1,k>a.

Proposition 2.5. Let v be a symmetric form obeying (2.3). If {,,}52, is a regularizing
sequence of v with respect to &, then the family {PI w1 Of self-adjoint operators

associated with {fi,; , }7>| converges in the strong resolvent sense to H,_ for k > a as
n — oo, i.e.

s-im (A, -2 '=W,-27", zeC\[}\,0), a<k. (213
n—00 ’

Proof. By Lemma 2.4 we have lim v,(f,f) = A(f,f), f € dom(D), that
n—oo
yields nl—l—{lgo R, 5D = 0 s f € dom(g,). Since dom(f, ,) = dom(D),

n = 1,2,..., we get dom(ft,) = U dom(ys,, ,). On the other hand, fi,, defined
=1
on dom(ji,) is a closed symmetric form Hence, by Theorem 3.11 of [6, VIII] we

immediately obtain (2.13). O
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If {'yn oo | is a regularizing sequence of v with respect to &7, then besides (2.12)
it is possible to introduce also a family {1, ,,}52, of closed symmetric forms defined
by

1
Koo, 9) =v(f,9) — p Yulfs9),  f,g € dom(u, )= dom(), (2.14)

k > a. On account of (i) the sequence {1, ,, }52 , is nonincreasing too and, in addition

Pop Shpn, n=12,...,6>a. (2.15)
Let {H, ,}o2, be the family of associated self-adjoint operators. Then we obviously
get H, < Hn =12, .... However, in general, we cannot expect that the forms

{Bem ;’fl and, therefore, the operators {H, ,}52, are bounded from below and,
moreover, that {H,_, }7° | converges in the strong resolvent sense to H,. However,
this is the contents of the above-described (see Introduction) phenomenon in quantum
mechanics. Consequently, to analyse this phenomenon in the frame of our approach
we have to restrict a bit the notion of regularizing sequence.

Definition 2.6. Let {v,}>°, be a regularizing sequence of ~ with respect to

2 C dom(v). The sequence {7, }52, is called D-admissible if for any nontrivial
f e # ={h€dom(v):v(h,k)+ (h,k) = 0, Vk € dom(?)}, we have

sup v, (f, f) =+ o0. (2.16)

To clarify this condition we note that the set dom(v) can be transformed into a
Hilbert space §,, by equipping dom(v) with the scalar product (-,-),,,

(f’g)yzy(f)g)—"(f’g)v f,gedom(u). (217)

The set dom(?) is obviously a closed subspace h, of h,. Moreover, we have
M = b, 0, b,. Notice that on account of Lemma 2.4 for & € dom(?) we always
have
sup v,,(k, k) = 4(k, k) < +00. (2.18)
n

Lemma 2.7. Let vy be a symmetric form obeying (2.3) and let {~y, }52 | be a regular-
izing sequence of y with respect to &. Further, let .7, = {h € dom(v):v(h,k) —
A(h, k) = 0,Vk € dom(D)}, A < 0. If {~,,}22, is D-admissible, then for any nontrivial
f e #,, A <0, the condition (2.16) is also satisfied.

Proof. Obviously, .Z, is a closed subspace of h,. Therefore, there are elements
hebh, o, 6 and k € f) such that f = h+ k, f € .Z,. Assuming h = 0 we get
fe dom(z/) and f = 0. Since sup v,,(h, k) = + 0o by definition, we obtain (2.16)
taking (2.18) into account. [

Example 2.8. Let us show that the regularzing sequence {~, }°, defined in Example
2.3 is D-admissible. By a simple calculation one gets that ./Z = {ze~|*l:2 € C'} and

1 1
Vanle 1 717l = 1 / ey 4o (2.19)

|z[*
RI\[_l’l]

n'n

asn—ooand 1 <o <2.



578 H. Neidhardt and V.A. Zagrebnov

Since {~,,}22, is a family of bounded non-negative symmetric forms on b, a family
of bounded non-negative self-adjoint operators {V, }°, corresponds to it. Using this
family, the self-adjoint operators FIn and H,, can be represented by

A

H,,=A- % V,, 9H,)=2A), n=12 ..., (2.20)

and
1 i
Hﬁ,n =A- - V., @(Hn,n) =9(4A), n=12,..., (2.21)

k > a. Let us introduce the families of bounded non-negative self-adjoint operators
Tp = A=NYVA-N)" and T,, = (4 - NV, (4 - N2
n=12,..., A<0.

Lemma 2.9. There is a A < 0 and an open set @ C (a,+00) such that (7 C oTy )
for every n. = 1,2, ... if and only if \ € o(H, ) for any k € (@ and every
n=12 ...

Proof. The operator H, , — A obviously admits the representation
1 ,
(Hyp = Nf = VAN~ Ty )WA=Xf,  fe€D(A), (2.22)

n=12,..., A<0.
If @ C o(T) ,) for every n = 1,2, ..., then the representation (2.22) yields
A€ o(H, ,)for k € @ and every n = 1,2, ....

1
Assume now that A € p(H,_ ) for any K € @ and every n = 1,2, .... Since — V,,
’ K

1
are bounded operators for every n = 1,2, ..., there are A\, < A — — ||V, || such that
K

K,n

1

H -\ =A--V, —X\ >1I (2.23)
K

for k € @. Furthermore, the identity

1
(A= NF D) = (Hyp — AP+ ((; VoA, — A) /, f)
X (H,, ~A\)f,f),  f€dom(A)=dom(H,,), ke, (224)

yields that (4 — A)’/z(H,w —A,,)"1/2 is a bounded operator for every n = 1,2, ...,
and k € @. Consequently, the operator

VA= XH, , - VA=)
— 1 H,,—X 1
p—

A=A V Hm,n_)‘n Hl;,n_)‘ Hﬁ,n_)‘n

is well-defined and bounded for any x € & and n = 1,2,.... Taking the
representation (2.22) into account we find

(k=T "= -,1; VA-XNH,,-N"'VA-X (2.26)

vVA—-A (2.25)
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which shows that (k — T)\Yn)_1 is a bounded operator for kK € ¢ and N = 1,2, .. ..
Thus, we proved that @ C o(T} ,,) forn=1,2,.... O

In the sequel we need a certain modification of the Theorem 3.6 of [6, VIII].

Lemma 2.10. Let {T,}5°, be a nondecreasing sequence of bounded nonnegative
self-adjoint operator defined on some subspace € C Y. If

lim (T ,k, k)= (Tk,k), kect, 2.27)
and
sup(T,,h,h) =400, OFhehot, (2.28)

then for any open set <@ C C! obeying @@ C o(T,), n = 1,2, ..., and 7 C o(T) one
gets formula:

s- lim (T, —2) =T -2"'90, ze0. (2.29)
Proof. Since {T,,}2°, is nondecreasing, the sequence {(7}, +1)~'}°°, is nonincreas-
ing. Therefore, on account of Theorem 3.3 of [6, VIII] the limit s- lim (7,41 yl=X
exists. Obviously, we have nmee
T, +D'>X, n=12.... (2.30)
Then there is a sequence of contractions {I,}>2, such that
VX =TT, +D7"*, n=12 ... (2.31)
Let f € h. We have
sup (1, VX f, VX f) = sup (T,(T,, + D™V I f, (T, + D™ 2L

<sup | fIP < |17 (2.32)
n

Taking into account the decomposition NG f=k+h ket hechot, we find

IVT VX = VTl = IVl - (2.33)

Therefore, by (2.27) and (2.28) the sup ||\/T,,vXf|| = +oo if h # 0. This
n

contradicts to (2.32). Hence, h = 0. Consequently, we get %’(\/)—( ) C ¢ or,
equivalently, ker(vX) D h & ¢t Let us show that ker(vX) = h © ¢ To this end,
we have to show that £ € ¢ and

lim (7, + )" 'k =0 (2.34)
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yields k = 0. Since €T, +1 > €T, +el,0<e<1,n=1,2, ..., we find

lim ((¢T,,+ D) 'k,k)=0, 0<e<l. (2.35)

By the inequality (¢7}, + I)~! > I — T, we obtain
e(T, k, k) > (k, k) — (T, + ) 'k,k), 0<e<l, (2.36)

n=12,...,0r
1
sup (T, k, k) > - (k,k), O0<e<1l. (2.37)
n
Since € can be chosen arbitrary small, £ # 0 implies, in contradiction to (2.27), that
sup (T, k, k) = + co. Hence, k = 0 and ker(vX) = h O .

Let P be the orthogonal projection from h onto ¢ = (%(VX))~. Since s-
lim (Tn+I)"I = X implies s- lim (Tn—l—f)_l/2 = v X, from (2.31) we immediately
n—00 n—oo
get

s- lim I' P=P (2.38)
n—oo
which yields
w- lim PI*=P. (2.39)
n—oo
Moreover, using PIT, =1, n=1,2, ..., by a simple calculation one gets that
s- lim PIf =P, (2.40)
n-—00

Using the representation /T, + IvVX = ¥, n= 1,2, ..., we find

IPLYfI? = |P/T, + IVX f|?
SWXT,+DVXEH<IfI?, feb, n=12.... 24D

Let n — oo in (2.41) and using (2.27) and (2.40) we get
IPfIP = VX@T+DVXS, ), feb. (2.42)

Therefore, choosing f € & we obtain P = v/ X (T'+1)v/X. Moreover, (B(VX)~ =t
immediately yields X = (T + I)~! © 0 which shows (2.29) for z = — 1. Now by
standard arguments we can extend the proof to a neighbourhood of z = —1 and
from this neighbourhood to an arbitrary open set 7' obeying the assumptions of the
theorem. [J

Let % (.) be the set of compact operators on a Hilbert space. Then the previous
lemma can be strengthened as follows:

Corollary 2.11. If in addition to the assumptions of Lemma 2.10 the conditions
T € % (8) and dim(h © &) < 4+ oo are satisfied, then the strong convergence in
(2.29) can be replaced by the operator norm convergence.
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n=1
T.(T,+ D7, n=12... where Iy o is the identity on h © & By T € % (¥)
and dim(h © €) < +o00 we find T,(T,, + D~' € £ _(h), n = 1,2, .... Using the
representation

Proof. Since {(T,, + I)7'}52, is nonincreasing, we get T(T + I)™' @ I,o, >

T+ D7~ {T+ D7 @0} =~ T, (T, + D' +{TT+ D' @ Ly}, (2.43)
we obtain
T, +D'—{T+D'®0}e £ (), n=12,.... (2.44)
Then applying Theorem 3.5 of [6, VIII] one finds

I-1I- lim (T, + D™ =T+ D' 0. (2.45)

To prove (2.29) for z € (7 it is enough to repeat the previous line of reasoning,
replacing the strong resolvent convergence by the operator norm one. [J

Theorem 2.12. Let y be a symmetric form obeying (2.3) and let {~,}>2, be a
regularizing sequence of vy with respect to 2. If {~y,,}>°_, is D-admissible and if there
is an open set (7 C (a,00) and a A < 0 such that A < 5\,€ and \ € Q(Hn,n)for any
k€@ andn=1,2,... then {H, ,}° converges in the strong resolvent sense to

H, for every k € @ asn — oo, ie.

s- lim (H, , —2) "' =(#

n—00 r

—2)7',  ze{AJUC\R!, ke@. (246

The strong convergence can be replaced by the operator norm convergence if the
symmetric form vy in addition is relatively compact with respect to the symmetric form
D and dim(.Z) < + oo.

Proof. Since v, > 0, we have A > 0 and A > 0. Taking into account (2.2) we get
the existence of an isometry W, W*W = I, such that

VA-Af=WVA-\f, fedom®)Cdom®), (2.47)
which yields
A-N'"2f=UA-N""2Wf, fey. (2.48)

The symmetric form

Bt 9) =A(A - N2 A - N2, fgeb, (2.49)

is, obviously, well-defined and, moreover, bounded by (2.5). By ’f’/\ we denote the
bounded non-negative self-adjoint operator associated with 3. Then by Lemma 2.4
we get

Jim oy (A=N"2LA-NTPH =500, febh, @50

which yields
s- lim T, =1T,. (2.51)

n—0o0
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Let us now calculate the limit
dim 5, (A= N72g,(A-N"2),  gep.
On account of (2.48) and (2.50) for any f € Ph, P = WW™, one gets
Jim oy, (A= NTV2Pf (A= N)TV2PS)
= lim 7, (A= N)7PW A= N7
=WV f,W* )= WI,W*F, f). (2.52)
If g L. 72(W), then by (2.48) we have

V(A =N"g (A= N7 = MA =N, (A= N7
= U(A=N"2g (A= NTPWE) = MA =N, (A= NTPW )
=@WH=0, feb. (2.53)

Hence g L.73(W) yields (A — \)~'/%2g € .%,. Applying Lemma 2.7 we obtain

sup 7, (A= N)"2g,(A = )"V = + 0 (2.54)

if gL 7B(W), g # 0. But (2.52) and (2.54) show that the assumptions of Lemma
2.10 are satisfied for {7} ,, };2; and € = 7(W). Therefore, applying Lemma 2.9 and
Lemma 2.10 we get

s- lim (Ty , — k) "' = (WHW* —r) "' @0 (2.55)

(with respect to the decomposition h = .72(W) @ .72(W)* ) or, equivalently,

s- lim (Ty ,, — k)" = W@\ —r)"'W*. (2.56)

Notice that xk € Q(T/\) is guaranteed by the assumption A < /A\N, Kk € @. Multiplying
the right- and left-hand sides of (2.56) by (A — A\)~!/2 and taking into account (2.48)
we obtain

s- lim (A—-N"YATy, —r) A -T2
=A-NV2T, —r)THA - NV (2.57)
Now taking into account (2.26) we get

s- lim (H,, - N"'=@#,-N"", (2.58)

which proves (2.46) for z = \. Using Theorem 1.2 and Corollary 1.4 of [6, VIII] we
complete the proof of the first part of the theorem.

To prove the second part we note that the relative compactness of 4 with respect to
¥ yields T/\ € % (h). Furthermore, by stability arguments (cf. Lemma 2.7) one gets
dim(h © ) = dim(%,) = dim(.#) < + oco. Applying Corollary 2.11 we find that
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the strong convergence in (2.55) can be replaced by the operator norm convergence.
With this the remaining part is obvious. [

To apply these results to our example we have to verify the existence of a real
number A < O and an open set @ C (0,00)(@ C (1,00) if @ = 2) such that
, a2 1 1
A€ Q(Hn,n) and for n = 1,2, ey K €. Hmn = —@'—E WXR]\[—%,%
In general, it is not easy to show this and needs additional efforts. However, the
situation becomes simpler if the operators A and A satisfy additional properties. In
the following section such additional conditions are introduced and investigated.

3. Special Case

In the following we make the additional assumption m = codim(dom(?)) =
dim(dom(v)/ dom(?)) < + oco. Under this additional condition Theorem 2.12 can
be strengthened as follows.

Theorem 3.1. Let vy be a symmetric form obeying (2.3) and let m = codim(dom(?)) <
+o00. If {,,}32 | is a D-admissible regularizing sequence of y, then for any k € (a, 00),
except a finite set of at most m points, there is a A < A, such that X\ € o(H,, ) for
sufficiently large n and s- lim (H, , — 2"V =, — 2" for € {A\}UC"\R".
The strong Convergencg _C);Z be replaced by the operator norm convergence if the

symmetric form ~y is in addition relatively compact with respect to the symmetric form
D.

Proof. Let \, = info(H,), k > a. By the KLMN-Theorem [10, Theorem X.17]

we obtain the estimate 5\,(” > — 2 Hence \ = ir>1f A, is finite. Since 0 < v,, < 4,
K>a
n =1,2, ..., one obviously gets
info(d, )=3,,>5.>X, K>a, n=12 ... (3.1

Moreover, by (2.15) we find

Mon > Aop =info(H, ), &>a, n=12 ... (3.2)

K,n

Since dom(y,, ,,) = dom(v) and dom(f,, ,,) = dom(?) for k > a and n = 1,2, ..,
we get codim(dom(f, ,,)) = m. On account of u, ,, | dom(, ) = f, ,, for any
A < A, there exists an isometry W, such that

H,— A=W, \H,,-Nf, (3.3)

[ € dom(g,, ,,) C dom(y, ,,), which yields
Hyp =NV =(H, =N PW, o f, e, (3.4)
The last relation implies that m = codim(dom(2,, ,,)) = codim(%(W,m)) for k > a

and n = 1,2, .... Hence, the range of the projection @, , = I — W, nW;’jn is an
m-dimensional subspace.
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From (3.4) we obtain the following representation

He, - N =, — N
=H,,-N"Q. (H,,- N k>a, n=12... 35

Therefore, the resolvent difference (H, ,, — N «n— A" is an m-dimensional
operator for k >aand n =1,2, ....
Denoting by E, ,(.) the spectral measure of H, , we can introduce the integer

function 7, , = dim(E, ,((—o0, 5\)b), Kk >a,n =1,2, .... Further, we note that the

spectrum of ﬁn’n on the interval (—oco, \) is empty. Thus, applying Theorem 3 of
[2, IX, Sect.3] we find that 0 < Tem < m holds for any xk > aand n = 1,2, ...,

i.e., the spectrum of H, , on the interval (—oo, X) consists of at most m eigenvalues
counting multiplicities.

Taking into account Lemma 1 of [2, IX, Sect.4] it is easy to check that
a<k <k, n'>n>1. (3.6)

7Tf~z,n =S Wn/,nl 5

Since 0 < 7, < m, from (3.6) we get that the limit 7, = lim 7, always exists
’ n—o0 ’

for k > a and obeys 0 < 7, < m. Moreover, the function 7, is non-increasing on
(0, 00). Denoting by ./ the set of jump-points of 7, on (a, o), one can check that

P
V" consists of at most m points, i.e. /" = |J {nj}, 1 < p < m, which we assume
j=1
to be ordered as k, < K,_; < ... <k, < +o00. Notice that ./ can be empty.
Next we show that for any k € (a,00)\./" the conclusions of the theorem
hold. If x € (a,00)\/" we find 2 5,0 < j < p+ 1, and a € (a,oo) such

that ,,, < Kk < a < K;, where we have set k,,; = a and K, = +o00.

Note that on the intervals {(x;, J)}. the function 7, is constant. Suppose that

7. | (Kjr1, k) = 75§ = 0,1,2, ..., p. Since lim 7, , = m;, there is a real
n—oo

number n, such that n > n, yields 7, , = =, Moreover on account of (3.6) we

get m, , = m; for every K € (k,;,,0) and n > na.
Let {A) },7, be the eigenvalues (counting multiplicities) of H, . k € (k;,,),
n > n,, on (—oo, A) ordered by

—o0 < AD < AD < <A < & 3.7)

Then applying again Lemma 1 of [2, IX, Sect. 4] we see that the eignevalues {\(7),
can shift only to the left when  decreases and n increases, i.e.
)\(7"/) /\(T)

K,

r=12,...,

VR

(3.8)

ki < K <k <aandn, <n <n'. Consequently, choosing A from the interval

(Aa na,)\) we obtain that X\ € o(H,_,,) for x € % (kj41,0) and n > n,, . Applying
Theorem 2.12 we finish the first part of the theorem.

To prove the second part we equip the set dom(r) with the scalar' product
(., .),- Then the set dom(v) transforms into the Hilbert space b, and dom(?)

forms a closed subspace 6,, in h,,. Thus, applying Lemma 1.40 of [6, III] we find
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dim(#4) =m < +o0, 4 =ho, 6,,. Therefore, taking into account the relative
compactness of the symmetric form « with respect to £ and Theorem 2.12 we complete
the proof. O

Remark 3.2. In view of the geometrical meaning of the deficiency indices, it is clear
that the condrton codim(dom(?)) < + oo is satisfied if we require that & C Z(A)

and the closure A of the operator A | & has finite deficiency indices.

Example 3.3. Proceeding with Example 2.1 and Example 2.8 we see that in this
case dim(dom(v)/dom(?)) = 1. Moreover, using Example 2.3 and again Exam-
ple 2.8 together with Theorem 3.1 we get that {H, ,}52, given by H, , =

? 11 1

—_———— - ), 1 < a <2, converges in the strong resolvent sense,
dz? Kk 4 |:c|°‘X N-+ %]( rlzas g &

o . oA ? 11 1
as n — 00, to the Friedrichs extension H, of | — — — — -

oo (ol
i2 " wdTe) | ®MOD

except at most for one value of the coupling constant —, k > O(k > 1 if o = 2).
K
However, this exceptional value can be exluced. To this end we note that the pertur-

1
I1<a<?2 a lativel t with respect
1 ]x[o‘ ]Rl\[ 7iH(sc) 53 re relatively compact with respe

to the usual Laplace operator A =

bations V,, =

Consequently, the negative spectrum

T dz2
of H, , consists of discrete eigenvalues (Theorem 5.35 of [6, IV]). Furthermore, the
exact lower bounds A, ,, = info(H, ,,) tend to minus infinity as n — oo for any

& > 0. This can be proven by srmple calculatrons with the corresponding quadratic
forms. Since A, ,, € o(H, ,), we obtain that A_ , is an eigenvalue for x > 0 and
sufficiently large n. This y1e1ds that for x > 0 and sufficiently large n the eigenvalues

), ,, are below the bound A = >0(%I“1ff » o(H,). Hence the integer-valued function
’ K if a=
Ty = dim(E, (-0, Db, k>0 1ifa= 2) equals one for sufficiently large
n. Obviously, this implies that 7, = lim n,_, =1forx >0 (> 1if a = 2).
n—oo

Therefore, the function 7, has no jump- pomts that excludes the above-mentioned
exceptional value of the coupling constant —. Hence for x > 0 (> 1 if a = 2) the
K

sequence {H, . }7° converges in the strong resolvent sense to H_asn — .
Since for 1 S o < 2 the symmetric form v, is relatively compact with respect
to the symmetric form 2, the strong convergence can be replaced by the norm
convergence.
Notice that the symmetric form v, _, is not relatively compact with respect to 2.
Hence, the question whether the strong convergence can be replaced in this case by
the norm convergence remains open.

4. Concluding Remarks

From Theorem 2.12 it follows that Nenciu’s conditions (ii) and (iii) of the Theorem
1 [8] can be relaxed, namely (cf. Introduction):

1. Condition (ii)(1) can be understood in the form sense.

2. Condition (ii)(2) can be replaced by the monotonicity of the regularizing sequence,
ie. -V, >—-Vand -V, - =V asn — + 0.

3. The condition (ii)(3) is not necessary in the abstract approach. However, under
such assumption foregoing conclusions can be obtained (see Sect. 3).
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4. The condition (iii) is a consequence of the relative compactness of v with respect
to the symmetric form ©. To this end, we note that by Theorem VIII. 20 of [9] the
norm resolvent convergence yields that for every continuous function ¢ tending to
zero at infinity we have ”SD(H,.;,n) - @(H’K)H — 0, k € @, as n — oo. Choosing ¢

with supp(p) C (=00, ) we obviously get lp(H, DIl — 0, x € &, as n — oo.
Hence, we find || E, ,,((a,b))|| — 0, k € @, as n — oo for each interval (a, b) with

-0 <a<b< /A\K. Therefore, for interval (a,b) obeying —oco < a < b < S\N
we find an n, such that n > n, implies E, ,(a,b) = 0. Consequently, there are

¢, < :\K, obeying lim ¢, = 4 oo, such that the spectrum of H, , is situated in
n—oo ’

(—o0,c,) U (5\,.C — €,+00) where € > 0 is arbitrary small.

In the paper [8] the importance of D-admissibility of the regularizing sequence
had not been clearly pointed out. Here we show that it is this notion that is the key
to the understanding of what is going on in [8] as well as to the abstract operator
formulation of the removing regularization theory for singular perturbations.

Finally we would like to stress that our conditions in the main Theorems 2.12 and
3.1 are almost necessary in the following sense: The only condition that is “more
than optimal” is the requirement that A € o(H,, ,,) must be satisfied uniformly with

. . 1
respect to small variations of the coupling constant —.
K
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