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Abstract. We study the asymptotic behavior of the averaged diagonal matrix
elements of the Greens kernel for the Anderson Model on a one-dimensional strip
and for a set of special energies close to the center of the band.

I. Introduction

Let { be a positive integer and let 3)f be the one dimensional lattice strip of with /,
i.e., ζ}€ = TL x {1, . . . , /}, where TL is the set of all integers.

The Anderson model [1] on Q)€ is given by the random Hamiltonian
Hλ = - ±A + λ V on /2(^), where

(Δκ)(x) X (Δλ^nOO
ye&t

with
_ Γ 1 i f x-;;e{(0,l),(-l,0),(l,0),(0,-l)}

^ )x y 10 otherwise,
and

( V ύ ) ( x ) = V ( x ) u ( x ) 9

where {V(x)}XG2f are i.i.d. real random variables with common distribution μ
whose characteristic function will be denoted by h and λ is a real number.

Let m be a positive integer, Λm be the discrete rectangle [ — w, m] x {1, 2, . . . , < }
and Hm λ denote the Hλ restricted to /2 (Λj) with boundary conditions u (x) = 0 for
all x φ A m. Let x, y e fy , η > 0 and let δx , δy e /2 (β^ be the delta functions at the
points x and y respectively. We shall use the notations

Hntλ-E-iη

( ( 0 9 j ) 9 ( 0 , j ) , E

wherej = 1, . . . , t and E { - } denotes the expectation with respect to the disorder.

Ji(E+iη)= lim Έ{GΪ,((QJ),(OJ),E+iη)},
m-* + oo
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It is a consequence of the "de la Vallee Poussin" theorem [2] that the
\imJJ

λ (E+ίή) exists for almost all £eR and all λ φ 0. Under some mild

regularity conditions for h Klein, Lacroix and Speis [3] have shown that the limit
above actually exists for all £eR and it is a smooth function of E for all λ φ 0.

The boundary value of /{ (E + iη) described above contains a lot of infor-
mation about the random Hamiltonian Hλ. Note for example that under the
hypothesis of Theorem 1 of [3] the authors showed that the integrated density of
states Nλ(E) is absolutely continuous and

while similar results are true for the summation of the Lyaponov exponents (see
[13]).

One striking and important aspect of the behavior of the lim J{ (E + iη\ 7=1,
n°

. . . , £ as λ approaches zero is the apparent sensitivity of its asymptotic expansion
on the location of energy E in relation to the spectrum of the free Hamiltonian H0 .
This was first discovered by Kappus and Wegner [4] who showed that in one
dimension if μ has mean zero the leading coefficient of the straighforward
perturbation expansion in λ proposed by Thouless [5] was inadequate if E = 0.
Derrida and Gardner [6] found that the same phenomenon occurs for the next to
leading coefficient in the case E = ± $ and actually conjectured that similar
"anomalies" occur for all energies of the form E = cos πp/q with/? < q relatively
prime. This was shown by Bovier and Klein [7].

The significance of the special energies mentioned above lies in the fact that for
these values the free Schrόdinger propagator is cyclic (see [6, 7]). In fact the
presence of this cyclicity is directly responsible for the failure of straightforward
perturbation expansions while it is exactly the same property that makes the
modified ones proposed in [6, 7, 9] amenable to rigorous treatment [8, 9]. It is
worth noting however at this point that the nature of these modified expansions in
the case where μ has mean zero [4, 6, 7, 8] is quite different than the one discovered
in [9] when the mean is different from zero and that one has to abandon in the
latter case the traditional perturbation techniques for isolated eigenvalues in
favor of a more general approach [9] where the harmonic analysis becomes much
simpler than the one used in [8].

Despite the fact that in one dimension the asymptotic behavior of Hλ is
completely understood, at least for the special energies mentioned above, very
little has been done for the case of one dimensional strips. In fact the only article
the author is aware of in that direction is a paper by Derrida and Zanon [10] where
a weak disorder expansion is derived for the Lyaponov exponents of the product
of random matrices when the unperturbed matrices have two degenerate
eigenvalues.

In this article we study the asymptotic behavior of lim J{(E + iη)J = ! , . . . ,/
*7|0

as λ approaches zero on a strip of size t. To make the harmonic analysis more
tractable we will use the approach of [9] and we will assume that the mean of μ is
different than zero. We also restrict ourselves to the set of energies for which the
free Schrόdinger propagator becomes cyclic (see Corollary 3.4) and which we now
introduce through the following definition.
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Definition 1.1. We will say that an energy E is /-regular if and only if

\E\ < 1 + cos j—T- and it satisfies the equations
t H~ 1

E + COS -/^r = COS ̂  , k = 1 , . . . , /
/ + ! qk

for some sequence of pairs of integers (pk, qk)k = i,..., ̂  which can be assumed to be
unique by requiring that pk is relatively prime to qk for all k = 1, 2, . . . , /.

Trivially zero is /-regular for all / = 1,2, . . . . Moreover, one can easily verify
that the set of /-regular energies is dense in

(A nk \ . πk
- 1 +COS-J—:- , 1 +COS-,—

Our main theorem is:

Theorem 1.2. Let μ be such that its character is tic function h is infinitely many times
differentίable on (0, + oo) with h(ί\t) = 0[(1 + t2Γ"/2] for all i = 0,1,2,... and
some α > 0. If the first and second moments ofμ exist and they are both not equal to
zero, then for every £-regular energy E the function R 3 λ i—»lim J{(E + ίή) e C has

>7|0

an asymptotic expansion to any order at λ = 0 for all j =! , . . . ,/ .

We finish this section with a few words about the strategy of our proof as well as
the organization of the present article.

We first use the supersymmetric replica trick (see [11]) to express lim J{(E + iή)
n°

in terms of the unique eigenvector, corresponding to the eigenvalue one, of a
bounded operator defined on an appropriate Hubert space. Then we find
explicitly the set of equations the coefficients of the formal perturbation expansion
of the eigenvector mentioned above would have to satisfy. Finally we prove that
these equations have a unique well defined solution which defines a series that is
actually asymptotic.

The next section is devoted to the development of the formalism which permits
us to implement the first step of the above outline. In Sect. Ill we compute the
perturbation expansion and we prove, up to a key technical estimate, that it is
asymptotic and in the last section prove this crucial technical estimate.

II. The Supersymmetric Transfer Matrix

In this section we introduce a supersymmetric formalism similar to the one used by
Klein and Speis in [11] and explain how one can use it to study the boundary value
of J\(E+ iη), j = 1, . . . , t as η approaches zero.

For the benefit of those who are unfamiliar with this framework it is worth
mentioning that this formalism is essentially harmonic analysis of multicompo-
nent complex valued functions whose components satisfy certain differential
equations that can be canonically described through an appropriate superposition
of commuting and anticommuting variables (super variables).

Even though one could, on a purely technical level, introduce all the necessary
structure without the use of Grassman-algebras (anticommuting variables) it is
our experience that such an approach lacks any kind of intuition or insight and we
will not use it here. We also would like to point out that despite the fact that our
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definitions look different from the ones used in [1 1] the proofs of our propositions
follow along the same lines as the ones in [11] and they will be omitted.

We start with the following definitions:

Definition 2.1. Let ( be a positive integer. Let Λ(R2<f) denote the Grassmans
algebra over R2<f and let A1 (R20 be the vector space of 1 -forms in A (R20 The
superspace &f is defined to be the set of all ^-tuples Φ = (Φj , . . . , Φ )̂, where

and {ψi,Ψi}i=ι,...,t is a family of 1-forms whose non-zero elements form a
linearly independent set in ̂ (R2').

Let (Sf denote the set of strictly increasing finite sequences indexed by {1, . . .,/}
and taking values in {1, . . . , 2/}. We shall make use of the forms
{5r«}«6<P,eyl(R20, wherefore = {ι\, . . . , ι,} a {1, 2, . . . ,2t} Ψa is defined to be

(<j.\\a\(\ m times the formal determinant at the £ x ( matrix whose rows are the

/ιh, ...,/£.! and if- rows of the matrix

' ΨlΨl

ΨlΨl

1

0

. . ψιψ€

- ΨeΨt

0

.. ' 1

and where \a\ denotes the number of all the zfe's for which ik ^ /, k = 1, . . . ,/ .

Definition 2.2. Let / be a positive integer. A super function F is understood to be a
function F: &j->A (R2') of the form

where Φ = (Φ1? . . . , Φ,), Φf = (φί? y,, ^«)9 i = 1, . . . , Λ <P = (<Pι, . , φ/) and
^ ^s a family of complex valued functions defined on R2<f.

We will say that a superfunction Fis in Ck (̂ ) if and only if Fa is of class Cfc on
R2<f for all

Definition 2.3. Let / be a positive integer. We defined the integration over the
super space ̂  by the formula

(2.1)

where ar e Q€ is the identity sequence α7 (/) = / , / = ! , . . . , / .
We will say that a superfunction F is in L1 (JS?,) if Ffl e L1 (R2ίf) for all αe 0,.
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Definition 2.4. Let Φ, Φ' e ̂ . We define the inner product between Φ and Φ'
through the formula

£

<Φ,Φ'>= Σ Φt Φ't, Φ = (Φ1,...,Φ(), Φ' = (Φ\,...,Φ'e).

where Φ{ - Φ( = φ{ - φ( + ^(ψtψl + ψ{ψ{\ / = ! , . . . , / .
Let K£ be the cone at the positive semidefmite f x f matrices and let / be a

complex valued function which is of class C1 on Kf. We associate with / the
superfunction F defined by

= Σ daf(Aφ)Ψa9
(2.2)

where δf l, a = {il9 / 2 , . . . , /,} is the partial differential operator defined by the
formal determinant of an t x { matrix whose rows are the i1,..., //th rows of the
matrix

2ίdn ... ίdu

dij9 ίj = 1, . . . , f denotes the operator differentiation with respect to the variable
that corresponds to the i,j entry and Aφ is an / x / matrix defined by
(Aφ)ij = φ{ φj9 ίj = 1, 2, . . . , Λ

It is worth noting that if we set AΦ to be the f x £ super matrix defined by
(Aφ)ij = Φt - Φj, /, j = 1, 2, . . . , ( we can rewrite (2.2) as

F(Φ)=/(ΛΦ), (2.3)

where f(Aφ) is defined to be equal to its formal Taylor series, around the point Aφ

which coincides with the right-hand side of (2.2).
Let if (Kf) be the usual Schwartz space over jζ, . We shall denote by ίf (Jδf^) the

set of all superfunctions of the form F(Φ) =f(Aφ) with/e^^).
An important notion of the formalism developed so far is the one of

super symmetries. These are transformations of the superspace <g€ and are defined

by tUί = (cUίΦι, ,tU4Φ,)
where

b, δ^are arbitrary constants and ξ is a 1-form independent from {ψi,ψι}i=\ ..... ^.
One can define the action of Ubt ̂  ξ on a superfunction Fin a natural way through
(see also [14])

where it is implicitly understood that Fa(φ1 + 2bξψ1 +2bξψίy . . . , φf +2bζψj
+ 2bξψί) is defined to be equal to its formal Taylor expansion around (φ1 , . . . , φ^)
for a
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Definition 2.5. Let / be a positive integer. We will say that a superfunction
F:^-^Λ (R2<f) is supersymmetric it if is left invariant by all supersymmetries of

Theorem 2.5. Let £ be a positive integer and let F: £?f -> Λ (R2<f) be a superfunction
in !}(&ύ n C'(JS?,). Then the following are true:

2) If F is supersymmetric then

Remark 2.6. One can easily check that superfunctions of the form defined in (2.3)
are always supersymmetric.

Let A be an 2? x 2/ matrix. We define the action of A on superfunctions F
which we shall denote by AF through

be&t

where for a = {/\ , . . . , if } and b = {j1 , . . . , y,} Ab

a denotes the £ x ( matrix defined
by C4J)ktΛ = Aίkjh, k, h = 1, 2, . . . ,/. It is easy to check that for A, B It x If
matrices

= (AE)(F).

We now introduce the Hubert spaces mentioned in the previous section. Let
and AE be the If x 2t symmetric matrix defined by

w
where It is the £ x ( identity matrix and

E'. 1/2 o
1/2 --, '--,

\ \l/2
0

/2 Έ

One can easily verify by diagonalizing SE that if | E\ < 1 + cos -—- AE is positive
definite.

Let Qi,ΐ=ί,2 denote the vector valued operators, acting on smooth complex
valued functions which are defined on R2lf by

id
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where Mφk_f . stands for the operator multiplication by the variable φk_f . and we
have used the convention that a vector φ e R2/ can be written as φ = ((φ± x, φι2),

Let y (R2Ό denote the usual Schwartz space over R2<f. For every energy E with

\E\ < 1 + cos^—T- we introduce a sequence of positive norms || ||^,
V I 1

n = 1,2,3,... on y (R2/) through the following equations:
2<f 2

( i ι / ι i f ) 2 = Σ Σ
fcι,...,kn=l

Π
m = l

(2.4)

Definition 2.7. Let n and *f be positive integers and let E be a real number such that

\E\<\+ cos -̂ — . We define the supersymmetric Hubert space HnE to be the
V ~Γ

completion of the subspace of ^(JS?,) under the norm || ||B>£, where

Σ (IIG4/2(/0)βll£)2 + l*'(0)|2, Fe?(2f).
m = 1

Let t be a positive integer and let / be a compact set of — 1 — cos
π/ \ ^

1 + cos ^—T- ). One can easily check that
c i -i /

^7 I v n = L/ n ^7 ./ n

for all /e^(R20 and Λ = 0,1,2,... and that

for all Feίf(<£f) and w = 0,1,2,..., where Q and C/ are constants that depend
only on the set 7.

In view of relations (2.5) we can identify Hn E with the set of functions
F:&,-*A (R20 of the form

ae&t

where now {Fa}aE&f are in general elements of the completion of ^(R2^) under
I 11°I I I n

Let ̂  denote the usual Fourier transform on R2<f. We will be making use of an
operator on L1 (̂ ) which we will denote by the same letter 2F and is defined by

Let A be an { x t matrix. We shall also make use of the operator bA which acts on
superfunctions and is defined by

Let B be a 2 / x 2 / matrix. For convenience we view [B(Qί)]k, i = 0, 1,
k = 1, . . . , It as operators acting on &(&}) defined by

i = 0,1, k= 1,2, . . . ,2Λ

Through a straightforward computation one can easily verify that [B(Qi)]k

extends to a contraction from Hn+ί to //„ satisfying the intertwining relations

(2.6)
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for all z = 0, 1, k = 1, . . . , 2/, « = 1, 2, . . . and η ̂  0 where we have used the
natural extension

E+iη 1/2

1/2 \

\ 1/2
•- •••
1/2

and where

o

il

Remark 2. 8. lϊ\E\<\ + cos- — -it is not hard to verify that the norms we

introduced here are equivalent to the ones Klein, Lacroix and Speis used in [11].
The reasons why we have to use these, at least at first sight, complicated norms
should become clear towards the beginning of the next section.

We now proceed to explain how one can use the formalism we have developed
so far to study the averaged diagonal matrix elements of the Green's kernel
J\ (E + iη) for the Anderson Model on a one-dimensional strip. From now on and
until the end of the present article ̂ , unless otherwise stated, will denote the width
of the strip ̂  .

Using the supersymmetric replica trick we can reexpress E{G^((0,/), (O,/),
(see III.1 of [11]) as

(2.7)

Έ{G*((09j),(0,j)9E+iη)} = i!ψjΨj[(

x [T(Bλ(η) TE

for all η > 0, m = 1, 2, . . . andy = 0, 1, 2, . . . , where

<
Bλ (η) stands for the operator multiplication by f| h (λΦf) e ~ ηφ^ and we have used

i = l

the notation Φf = <Φ{, Φ,.), φf = φt - φi9 i= 1, . . . ,/.
The properties of the operator Bλ(η) TE are well understood for λ φ 0 and we

summarize them in the following theorem.

Theorem 2.9. Let η be a positive integer and let the distribution of the single sided
potential μ be such that its characteristic function together with all its derivatives up
to order n + \ are continuous on (0, + oo) with some decay at infinity. Then the
following are true:

1) Bλ(ή) TE extends to a bounded operator on Hn^for all Eε JR. and η ̂  0 with the
operator valued function {E + iη e C : η ̂  0} 3 E 4- / η \-+ Bλ (η) TE e Hη 0 being norm
continuous.
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2) The spectrum ofBλ(η) TE is discrete, zero is the only possible accumulation point
and 1 is a simple eigenvalue while the rest of the spectrum lies inside a disk centered at
0 and of radius strictly less than one for all λ φ 0, η ̂  0 and £eR.

Proof. See [11]. D

In view of the previous theorem we can now let m go to + oo and η approach zero
in (2.7) to obtain

lim J{(E+iη) = ι j Ψjψj ξE,λ(Φ) [(T(ξEfλ))(Φ)]dΦ9 j = 1, . . . , Λ (2.8)

where ξEt λ is the unique solution of the equation

ξλtE = ξλtE. (2.9)

The remaining two sections are devoted to the study of the vector valued
function

for λ close to zero and E /-regular.

III. The Asymptotic Expansion

In this section we show that under the hypothesis of Theorem 1.2 the function
*$Heλ^>ξλtEeHn E has an asymptotic expansion to any order in the disorder
parameter λ. We will assume the following technical result, the proof of which we
postpone until the last section.

Lemma 3.1. Under the hypothesis of Theorem 1.2 for every n strictly positive
integer there exists a constant M independent of λ such that

\\ξλ.EL+l.E£M\\ζl.EL.B (3-1)
for all λ Φ 0.

Through an explicit computation and Proposition IV.1.4 of [11] one could
easily verify that

(3.2)

and
(Bλ(Q)) (F) = (Έv { Vλbλu}

} (F), F superfunction,

where / Q _ / \

''-U "»')•
If is f x / identity matrix,

// 2λίΛ
Λ " v o i )'

U stands for — 1 times the f x f diagonal random matrix whose elements are (
independent copies of a random variable whose probability distribution is μ and
JEV denotes the expectation over the product space of these variables.

We are now ready to prove a proposition which provides the insight behind
Definition 2.7.
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Proposition 3.2. Let f be a positive integer. If\ E\ < cos + 1, then TE is an
isometry on HHίEfor all n = 0,1,2 ... . +

Proof. One can easily check that if Bv,..., Bn are square 2/ x If matrices and
£f, . . . , 5* are their corresponding adjoints, then

Σ Σ Σ Γί ΓΊ K**Λ) (β J]
αeCV fc ι , . . . ,k n =l i ι , . . . , i n = l L \ m = ι

(C

m=1
_ (3.3)

= Σ Σ Σ
n = l ί ι , . . . , ί π =l L \ m = ι

Γί Π K«^)(β JU ((B*A)(F)).]
L \ m = l / J

for all A square If x 2f matrices and all F, G e £f (&t). On the other hand, since ̂ E

commutes with bfε and J^ we get from relations (3.2) and (2.6) that if Fe «5^(JSf^),
then

2£ 2

Σ Σ Σ
ki kn^l ί ι , . . . , i « = l m = l

The result now follows from Eq. (3.3), Definition 2.1 and the fact that
<g*AE<gE = AE. D

For the study of the asymptotic expansion of ξλfE we will need the following
technical results.

Lemma 3.3. Let λ ^ 0 and let Cλ denote the operator Bλ(ϋ) efined through Eq. 3.1
for the case where μ is the Cauchy distribution with parameter one (i.e. h(r) = e~^).
Then

\(C T)k(F)](Φ) = ^KΦ,(

X f e^i<Φ,2PlPk^Φ'y+^i < Φ ' , 2 P 1 P f c i φ > ^ i i < Φ ' , 2P k -ιPk 1 Φ'>^φ/^jφ/

for all k = 1,2,... and FeL1 (JS?,), where {Pk}ke^ is a sequence of t x t square
matrices defined by

Pk \_(-2(SE+iλIe} -7Λ f-2(fB+iλIe) -I

Pk-J I Ie 0 ) \ Ie 0

k — 1 times

and If stands for the ( x ί identity matrix.

Proof. The proof is an immediate consequence of IΠ.2.3 and IΠ.2.4 of [3] and
IΠ.2.3of[ll]. D
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Corollary 3.4. Let E be ^-regular and let qE be the least common multiple of
qί9 . . . , q^, where qly ..., qf are the integer phases that appear in Definition 1.1.
Then (TE)qE = I on HntEfor all n = 0,l,... .

Proof. Let λ be a positive number. One can easily check (see also [9]) that the
matrices Pk, k = 0,1,. . . which appear in the exponent of the right-hand side of
Eq. (3.5) can be explicitly computed and are given by

Λ + ι = ((/ij2-//)"1 [(/i.A)*+2 - K/i.J*]'1], * = 0,1,. . . , (3.7)

where ΓE λ= — (δE + iλlf) — ]/(SE-\-iλI^2 — 1^. However since E + cos -=- — -,

k = 1, . . . , / are the eigenvalues of SE we conclude that (ΓE^}qE = I. Thus by
taking the limit as λ approaches zero from the right we obtain from relations (3.5)
that

Since TE is an isometry on Hn E, n = 0, 1, . . . the result follows. D

Corollary 3.5. Let E be ^-regular and let n be a positive integer.

for all FeHn E, k = 0, 1, . . . and λ ^ 0, where C is a positive constant that depends
only on n.

2) Let H^E = {FeHn,E*'F(0) = 0}. Then

for all Fe#M%, k = 0, 1, 2, . . . and 0 ̂  λ ̂  1, where as before M and C are two
positive constants that depend on n.

Proof.

1) It is enough of course to show the inequality for k = 1 . In this case it is easy to
see that if n is a positive integer and ae (ΰ€ we can conclude from Eq. (2.6) that

Σ Σ I ( Ίί K^A** + i;̂
. f c = l i . . . i = l I I V m = l / I I L2

for all λ ̂  0.
However if 0 ̂  λ < 1,

where G is 2/ x 2/ square matrix whose norm is bounded independently of λ. Thus
the proof of (1) follows from relations (3.3) and Definition 2.7.

2) If \E\ < cos-^—^-, then by diagonalizing the matrix ΓE λ we get (see also
t -f" 1

Proposition 4.2 of [9]) that

edίλ^ \\ΓEtλ\\ ^ed2λ
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for all λ ̂  0, where d1 , d2 are two positive constants that depend only on E. Thus
we conclude from Eq. (3.7) that there exists constants C0, Af C > 0 such that if
kλ > C0, then

and

Let F be an element of H%tE. Using Theorem 2.5 we can rewrite (3.5) as

\(C T )k(F}\(Φ) = gKΦ,<£jE+iλjr*)Φ> + jμ<φ.2pic-ιPk *Φ>

x f [ei(* <φ' 2PlP* lφ/> + <φ/' 2PlPk~ 1 φ>) — 1] e*' <φ'» 2Pk- lPk~ lφ/> JF(Φ') ί/Φ'

for all fc = 1,2,... and
Recalling the notation of Definition 2.7 and using the bounds mentioned above

we conclude from Holders inequality and a straightforward computation that if
kλ> C

for all n = 1,2,... .
Thus we have shown the inequality for this case where k λ is bigger than a fixed

positive number so the rest of the proof follows now from part (1). D

Let E be /-regular and let qE be the least common multiple of the integers
qί9 . . . , q£ as discussed in Corollary 3.4. We can rewrite Eq. (2.9) as

Λ,£^,£ = 0, Λ Φ O , (3.8)

If for a moment we assume that ξλ,E has an asymptotic explanation on HntE,
n = 1,2, ... of the form

£A, £= Σ ί '̂ + MW"), ΛΓ = 0,1,2, . . . , (3.9)
fc = 0 W!

we can conclude that the coefficients {ζ^}ke^ should satisfy the equations

(3.10)
h=2 \ / λ = 0

where ^40 £ is the unbounded operator with H2 E as its domain and defined by

A = lim - = _ (Γί)*Mφ(Γjί)ί-*,
A-^0 Λ fe = 0

where Mφ denotes the operator multiplication by Φ\ + . . . + Φ} and μ0 is the
mean of the distribution μ.

At this point it should be clear that even at the level of formal perturbation
theory the operator A0tE plays an important role in the proof of the existence of an
expansion of the form (3.9). Fortunately one can study the nature of its ?pectrum
the properties of which can be described through the following theorem.
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Theorem 3.6. Let n be a positive integer and let E be ^-regular. Then

1) iAQtE viewed as an unbounded operator on Hn E with domain Hn+2 <= Hn E is
symmetric.

2) The Friedrichs extension of — A\^E is a positive self-adjoint operator on HnE

whose spectrum has the form

where C is some strictly positive constant C. Moreover zero is a simple eigenvalue
with eigenvector

<Φ,Γ£>0Φ>, (3.11)

while the rest of the spectrum is supported by the invariant subspace H% E.

Proof.

1) Let F, GeHn + 2,E
 and consider the equation

where <,>„,£+<* denotes the inner product of the Hubert space Hn^E+a and α is
sufficiently a small real number. Since Mφ is a bounded operator from Hn + 2,E

 to

Hn E we get, by differentiating both sides of the equation above with respect to α
and setting α = 0, that

~ (T*

' n,E '

However, since TE is an isometry on Hn E one can easily check that

s -Γ^1 - feΊ i
3~ (^£ί+α)^|α = o(^7) = ~H Σ (TE}<IE~1'MΦ(TE') CO = ^0,£(^)
^α L fe=o J μo

for all FeHn + 2,E
 and Λe proof of 1) follows.

2) Let FeH2+2iE. Then

= lim ||7~(C,?Γjg)te(/θΓ -

On the other hand Lemma 3.5 implies that the operator / — (CλTE)9E is invertible
on #„% for alU, 0 < λ ̂  1 and

where C is some constant independent of λ. Combining the last two relations
together we get that

It remains to show that ξ (

E

} as defined through (3.11) is an eigenvector that
corresponds to the eigenvalue 0. However this is a matter of a simple straightfor-
ward computation and is left to the reader. D
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We finish this section by presenting our proof for Theorem 1.2. Let E be
/-regular and let ξλtE be the unique solution of (2.9) such that ^,^(0) = 1 and let n
be a fixed but arbitrary positive integer. We will show that the function

has an asymptotic expansion to nth order at λ = 0 for all k = 0, 1, 2, . . . , and that
its coefficients { ζ ( E ) } i = ι , . . . , n satisfy the equations

&0)(0) = 1, &°(0) = 0, i = 1 , 2 , . . . , / i ,

4>.*&0) = o (3 12)

(ii + IMo.jίί" = ~ "Σ (" + *) (4 (^(0) £)«Λ # + ̂  Λ = 1 .
k=2\ K J \0λ Jλ = 0

We will use induction in ft.

Λ = 0.

Let FeHk+4 E and let GεHk E. Using Taylor's theorem we get

λ=c

for some c with | c | < | λ | . Replacing F by ξλί E we get

for some d with \d\ < \λ\. Since -̂r̂  (^(0) TE)qε is a bounded operator from

Hk+4,ε to Hk £, we get from Lemma 3.1 that

G l i f e , £ II SΛ, E l i f e , £

for all 0 ̂  λ ^ 1 and some M > 0 independent at λ. Since G was arbitrary we
conclude from Theorem 3.6 that

for all 0 ̂  A ^ 1 and for some M > 0 independent of λ. Thus ^j£ -> <^0) in Jϊfcf £

for all ^ = 0, 1, 2, . . . and the proof in the case n = 0 is complete.

n^n + 1.

Let us assume that the result is true for n and let GeHk E. Using Taylor's
theorem as before we get

o = "

(ξλ,E) (3.13)
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for some | c \ < \λ\ . Substituting

ζλ,E = Σ ξ$>^ + o(λ*)
i = o i

into the equation above and rearranging the summations we get that for small λ

, λA0tE(ξλtE» + "Σ ^ Γ Σ 0) (-jπ (Bλ(0) TE)**} (££-'>)] + 0HtE(λ)
ί=2iι\_j=2 \vλj jλ=Q j

where On E(λ) contains all the other terms which are of order higher than λn + 2.
Using Eq. (3.12) we can now rewrite the equations above as

χn + 1 ^ λ,E , = o z , E y j ^ + 2 «, £ ^^

(«f)f|^(5Λ(0)Γ£)«Λ (ίί"+2-Λ)\ (3.14)

for some c such that | c\ < \ λ \ .
Let ξ(

E

+1} be the unique solution of

j=2 \VΛ /λ=0

We can now rewrite Eq. (3.14) as

Γ 1 / « ti \ 1 ~ Ί\
A I ^ V —F® \ — ^(n + i) \
^O.E o « + l l S A , £ — Z- 7 , S£ r M _ L l M ς £ /

L^ \ i = 0 Π / (n + l)l _]/ k,

= -(G,iα,Eμ)

The key estimate of Lemma 3.1 however allows us to estimate On^E (λ). Indeed
one can easily check in (3.13) that even though OHtE(λ) may apriori depend on G
has to satisfy the bound

II on,E(λ) h,E ^ Mμr 3 I I ξλtE \\ktE + \λ\n+2sλ

for all λ, 0 < \λ\ ^ 1 , some M > 0 independent of λ and where ελ converge to zero
as λ -+ 0.

Using this crucial bound above we get from Theorem 3.6 that

1 / i, —. A, γ t:\ \ 1

τ « H
k,£

for all λ, 0 < | A | g 1, and where M and εΛ are as before.
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Multiplying by | λ \n + 1 both sides of the inequality above and using the triangle
inequality we obtain that

(\ Λ / f l 3 I"(\-M\λ\
1 1

k,E

for all λ, 0 < | λ \ ̂  1, and where M, ελ are as before. Thus

in Hk,E for all k = 0, 1, ... as λ -> 0 and ^M + 1) = ξE

+1. D

IV. Interpolation Bounds

In this last section we derive the key technical estimate described in Lemma 3.1.
Since for λ away from zero the result follows through standard perturbation
techniques developed in [1 1] we restrict ourselves to the case where λ is very small.
Without loss of generality we can also assume, via a standard approximation
argument, that the first and second moments of μ are finite. Our proof is mainly
based on the Calderon-Lions abstract interpolation theory as described by Theo-
rem IX.20 of [12].

We begin by introducing a family of positive norms || | | f,&, c, n = 1,2, . . . ,

) through the following equations:/?,ce]R, \E\ < 1 + cos

( l l / l l £ 6 > c ) 2 =

v ~T~ 1

Σ

on

Σ
.. , i n = l

"ff (1 +
m= 1

φfY Γ "π [Λ|/2 (β J]*JΓ>1
|_m= 1 J

where we have used the covention φf = (φf) = 2, i= 1, 2, . . . ,

Definition 4.1. Let w, / be positive integers, let c, b be positive real numbers and

let I E I < 1 + cos - — - . We define the weighted supersymmetric Hubert space
t ~r 1

to be the completion of under the norm || || cn\
b

E, where

Let n be positive integer and let c, b be positive real numbers with | b \ < 1 .

As in Sect. II it is easy to see that if / is a compact set of f — 1 — cos
π/

1 + cos
'+1

C
f \

/ 1
\\ c,b <^
L,0 ̂

^ s~ι M 17 M c, fc
^ C/ || /* ||n;0
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for all Fe £/ (&s) and for some C/ , C} positive constants that depend only on the
set/.

Let σ be a real positive number we will make use of the operator Mσ which is
defined by

[Mσ(F)]a(φι, . . . , < ? „ ) = Π (1 + φtYFatoί, , 9>»),
i= 1

Lemma 4.2. Let h and α be as in the hypothesis of Theorem 1.2. Letj be a positive/>
integer, \ E\ < 1 + cos -—- and let FeHj E. I f k l 7 . . . , kj and iί, . . . , ij are two

v ~Γ -I

sequences with values in {1,2,..., 2 /} and {1,2} respectively, then for allλ,\λ\ < 1,
j; e IR flfld α' ^ α,

e->2 f JΠ [Λi/2 βij^ Mλ2(_W4) Xi/2 5A(0)
\ m = l

(4-1)

λ200(F),

where O0(F), . . . , Oe(F) are super functions that satisfy the inequalities

\\Qi(F)\Vίb

E^M \\F\\H

for all i = 1, . . . , ( and c, b positive real numbers some M independent of c, b and
F and where Uγ , . . . , Uf are the diagonal matrix elements of U.

Proof. The proof follows immediately from an explicit straightforward compu-
tation and is left to the reader. D

Lemma 4.3. Let E, h and α be as in the previous lemma and let n be a positive
integer, let us assume (for the moment) that the mean of the distribution μ of the
single sited potential is zero. Then

(4.2)

for all λ, \λ\ < 1, y elR, some M > 0 independent of λ and all FeHnίE and

|| (Bλ (0)) (F) |1 ϊb

E ^ (1 + MA2) 1| F \\ ϊb

E (4.3)

for all λ, \λ\ < 1 , b, c positive real numbers, some M > 0 independent ofc, b and all

Proof. Let c, b be two positive real numbers. Let y be an integer from {1, 2, ...,«}
and let kl9 . . . , kj-1 and *Ί, . . . , y/-ι be two sequences with values in
{1, 2, . . . , 2f) and {1, 2} respectively. Using Eq. (4.1) with α' = y = 0 we get that
if FeHjtE, then
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e~"2 fl(ί+b2 φfγ \ JU [Ak12 Qίm] km A\J2 B, (0)1 (F)
ί = l |_m=l J

= e~*2 Έv {π (1 + b2 φfY bλυ Γ Π1 [AH2 Qim] km A^2] (F)
(i=l \_m=l J

+ Π (1 + b2 φfY [λbίV(U! O1 (F) + ... + Ue O( (F)]
i=l

for all λ, I λ \ < 1. One can easily check now that by taking L2(JR.2^d2^φ) norm
both sides of the equation above and using Jensen inequality (4.3) follows easily
from Definition 4.1.

Using once again Eq. (4.1) with α' = α and jeR we get

Π [Ak/2 Qim]krn Mλ2(_iy+Λ/4} A^ Bλ(0) (F)
m= 1

x Γ ' Mλ,(.iy+Λ/4} (JU [Ak/2 Qim] A^ (F)
L W 1

Σ α \h'(λφϊ
i = ι L

λΈ0bλϋ Σ α h'(λφϊ)

where U is equal to — 1 times the £ x t diagonal random matrix whose diagonal
elements Uι , . . . , Uf are independent copies of the two sited gamma distribution
with parameters 1, α/4. The proof of (4.2) now follows as, in the previous case,
from Jensen inequality and Definition 4.1. D

Let n be a positive integer and let | E\ < 1 + cos - — - . We introduce a se-
v ~τ 1

quence of interpolating spaces L^E(t), 0 ̂  t ^ 1, k = 0, 1, 2, . . . inductively by
defining Lk

n E(t) to be the tih interpolation space between Lk

n~χ (t) and Hn+2 E>
whereL^(b) = Hn.E and L^E(ί) = Hn+2,E.

Lemma 4.4. Let n, E be as above, then Lk

n E(t) can be continuously imbedded in
(i-tn.ifor all k = 0,1, 2, ...and'

for all t, 0 ̂  t ^ 1, FeLk

nίE(t) and some M > 0 independent oft and k.

Proof. Lety* be an integer from {1, . . . , n}9and\Qtkίy . . . , k 3_^ and/ 1 ? . . . , ij-^ be
two finite sequences with values in {1, 2, . . . , 2/} and {0, 1} respectively. Clearly

Π [^2e
m = l
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and

Π
m = l

1/2,1

n + 2,E

for all Fey(^j) and some M > 0 independent ofy. Interpolating between the
inequalities above and taking into account that the tth interpolation space between
H\[2

E

Λ and H^ is H^1 we obtain that

\\F\\f έ^M\\F\\L^E(t,

for all Fε&(&g\ t, 0 ̂  t ̂  1 and some M > 0 independent of t.
The result now follows by iterating the procedure above and from the fact that

the /th interpolation space of jyJ/|[i-u-'« and 7/ί/l'1 is jyi/|[i-<ι-') fc+1]. D

For our next lemma we will need a rather smaller weighted supersymmetric
Hubert space Hn E m which we now introduce as the completion of ^(J^?) under
the norm \\- | |n f J B 'm, where

n + m

(imu,j2= Σ Σ (ii(Λi/2F)j?)2μr°<;-">+ι^(o)p
cteΘg j=ί

n,m are positive integers, \E\ < 1 + cos - — - and &0 denotes the characteristic
function of (0, + oo). * + l

We shall also make use of a sequence of the interpolating spaces 1̂  £>m(ί),
0 ^ t ^ 1, k = 0, 1, 2, . . . which are inductively defined by setting IϊntEtm(ϊ) to be
the /th interpolation space between Lk

n~Em(t) and Hn E 8w, where
^i.£.»(0) = #n,£,o and Zi>B.m(l) = H,,E>8a.

Lemma 4.5. Let α α«ύ? Λ έe αί /« ί/ze hypothesis of Theorem 1.2. For every m,n
positive integers there exists k0 positive integer such that

for all λ, \λ\ < 1. FeHn E energies E such that \E\ < 1 +cos-^ — -, ze{x
t ~τ 1

x = 0, 1, ^eR} and for some M positive constant independent of λ.

Proof. Let | E\ < 1 + cos - — - and let m, n be two positive integers. Consider the
V \ 1

operator valued function Gλ which is defined on the strip S = {x + iy, 0 ̂  x ̂  1 ,
through the formula

where M/ is the multiplication operator defined by

(Mc

λ(F)]a(φι,...,φn)= Π (ί+λ2φtγi*Fa(φι,...,φm),
i = l

Clearly Gλ(z) is a bounded operator on Hn E 8m for all ze*S and Gλ is norm
continuous on S while being analytic in the interior of S. Moreover through a
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straightforward computation similar to the one used in part (iii) of Proposition
I V.I. 4 of [11] one can easily show that

|| (Gλ(iy))(F) L,£,o = || (Gλ(iy)(F) ||B>£ ί M || F\\,,E,

\\(Gl(ί + iy))WL.E.Bm£M\\FL.*,
and

\\(Gλ(τfc-)(F)\\n,E.sm = e(τ^r)2 \\(TEBλm
2(F)L,E,sm^ M\\F\\ntEtSm

for all y e R, λ, \ λ \ < 1, FεHn>E 8m and some M> 0 independent of y and λ.
Interpolating between the first and second inequalities we get that

Interpolating between the last two inequalities we get that

i M || F\\ L

for all λ, I λ \ < 1, ̂ e£i,£,m(τf^r) and some M > 0 independent ofλ. Iterating this
procedure k times we obtain

|| (TEBλ(0))2k(F) \\L^m(-^r) ^ M* \\ F\\n,E

for all λ, I λ \ < 1, Fe Hn E and some M > 0 independent ofλ. Using essentially the
same arguments with the ones presented in the proof of Lemma 4.4, one can show
that #2£[1 ~(1 ~ί)k]' λ is canonically imbedded in Lk

n E m(t). Thus we conclude that if
we set k0 = I1^2-] + 1, then

for all λ, I λ \ < 1, FeHn E and some M > 0 independent of λ. Trivially the same
series of arguments could be applied for ez2TEMλ2(-iz+Λ/4}Bλ(0) TEBλ(0) and the
result follows. D

Lemma 4.6. Let n, E, k0, α and μ be as in the previous lemmas. Consider the
operator valued function Γλ which is defined on the strip Sλ= {x + iy : 0 ̂  x ̂  1/Λ,2,

through the formula

Γλ(z) = e

z2(ΓE5Λ(0)MΛ2(_z+α/4))
2 (TEBλ(0))2ko+1 ,

where k0 is the integer specified in Lemma 4.5 for the case m = \.
The following statements are true for all λ, 0 < \λ\ < 1:

(i) Γλ(z) is a bounded operator on Hn + 2 Efor all zeSλ.

(ii) Γλ is analytic in the interior of Sλ and norm continuous on Sλ .

(iii) Let FEHn9E then

and
\\(Γλ(iy))(F)\\n+2ιEίe°λ2\\F\\n+2<E

for all >> eR and M, c positive constants independent of y and λ.

Proof, (i) and (ii) are straightforward. Through an easy computation similar to
the one used in part (iii) of Proposition IV. 1.4 of [11] one can easily show that
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i i (Mλ2[Λ/4.(iy+1/λ2}]Bλ(0) TEMλ2[Λ/4.(ίy+ί/λ2)]Bλ(Q))(F) \\n+2,E

foraΆFeHΛtE9 A, 0 < |λ| < 1, y e Rand for some M > 0 independent of λ and y.
Thus the first inequality of part (iii) follows from the fact that TE and ^(0) are
bounded operators.

Let FeHnE from Lemma 4.3 we conclude that since TE is an isometry in

\\(Γλ(iy))(F)\\n+2,E ^ ιιv^λVW^A 2 (-t>>+ α /4)V^^λWΛ> " '\r)\\n+2,E

+ Mλ2\\F\\n+2ίE

for all A, 0 < \λ\ < 1 and some M > 0 independent of y and λ. Thus

+ Mλ2

for all λ, 0 < | λ \ < 1 and some M > 0 independent of j> and λ. The rest of the proof
now follows from inequality (4.3) and the fact that TE is an isometry. D

We finish this section by combing Lemma 4.4 and Lemma 4.6 into a proof of

Lemma 3.1. Let n be a position integer and let \E\ < 1 + cos- — -. Theorem
υ + 1

IX.20 of [12] and Lemma 4.6 imply that if the mean of the distribution μ is zero

II (TEBλm
2ko + \F) HzΛ^/4) ̂  ecιλ2 \\F\\n,E (4.4)

for all Fe L^E(uλ2/4), λ with 0 < \λ\ < 1 and for some positive constant cγ . On the
other hand, since TE is an isometry on Hn+2,E

 we conclude from Lemma 4.3 that

|| (Γ£5Λ(0))2*°+3(F) ||n+2ι£ ̂  £^2 II F||Π+2,E (4.5)

for all FeHn+2,E, λ, with 0 < | Λ , | < 1 and for some positive constant c2.
Interpolation between relations (4.4) and (4.5) yields

|| (TEBλm
2k^\F} ||L2)E(αλ2/4) ̂  ecλ2 \\ F\\L^E(Λλ2/4) (4.6)

for all FeL* E(aλ2/4), λ with 0 < \λ\ < 1 and where c = max(c1?c2).
Iterating this interpolation in the same spirit of the proof of Lemma 4. 5 we

obtain
1| F\\n,E

for all FeHntE and k = 0, 1, 2, . . . .
If £ > Iogl6/od2 however, we conclude from Lemma 4.4 that

) Hj/ί 1 ̂  M^ckΛ2 1| F||π,£ (4.7)

for all .Fe ffπ £ , A, with 0 < | λ \ < 1 . Thus we have shown that if μ is centered and
under the hypothesis of Theorem 1.2, there exists an M > 0 such that for every λ
with 0 < I λ I < 1 there exists an integer Pλ such that

) LVί 1 ̂  M I I F\\n,E (4.8)
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Now let once again ki9...,kn and / Ί , . . . , in be two finite sequences with values
in {1,2, ,..,2/} and {0,1} respectively. We will show that there exists an M
independent of these two sequences such that for all A, 0 < \λ\ < 1,

Π (4.9)

for all Fe Hn £ , and where Pλ is the same exponent that appears in (4.8). In view of
inequality (4.8) we need to study

[β,,]*, Γ Π [^Qίm}km((TEBλ(0)Y^^(F) \\
L m = 2 J

in the case k± ^ t. Indeed in this case the super function above is equal to

Π

An elementary computation however shows that the super function above is equal
to

(Γ-2Σ(^A1,[βJ,Ί Π [^/2βJfcm[(^^(θ))Pλ+1])(^)
\L j = e ' J m = 2 /

-kv^βj^f Π [A^EQim]k\BM(TEBMYλ(F).
L \ m = 2 / -I

Combining the latter with inequality (4.3) and (4.8) we can conclude that since TE

is an isometry (4.9) holds. Thus we have shown that there exists an M > 0 such that
for all λ, 0 < | λ \ < 1 there exists Pλ positive integer such that

||(Γ£^(0))^+1(^)L + ι,^M||F||π,£. (4.10)

Since TE and Bλ (0) are bounded operators on Hn + 2 and Hn we can rewrite (4.10)
as

|| (BM TEY^2(F) \\n+l<E ̂  M || F\\nιE (4.11)

for all Fe HnE, some M independent of λ and where Pλ is the same exponent that
appears in (4.10).

Notice that up to now the assumption that μ is centered was crucial. However if
μ0 is the mean of μ one can easily see that

\\(B^TE^+2(F)\\n + 1,E+λμo^M\\F\\n,E+λμo

for all Fe HntE+λμo,λ with | λ \ sufficiently small and some M > 0 independent of λ.
Thus we conclude from (2.5) that (4.11) holds in general and the proof of
Lemma 3.1 follows immediately from the definition of ξλtE. D
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