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Abstract. We study the asymptotic behavior of the averaged diagonal matrix
elements of the Greens kernel for the Anderson Model on a one-dimensional strip
and for a set of special energies close to the center of the band.

1. Introduction

Let ¢ be a positive integer and let &, be the one dimensional lattice strip of with 7,
ie, 9,=2Zx{1,...,¢}, where Z is the set of all integers.

The Anderson model [1] on &, is given by the random Hamiltonian
H,= —14+ AV on £*(2,), where

(Au) (x) % (A, yu(y)
with ’
1 if x—ye{(0,1),(—1,0),(1,0),(0, —1)}
0 otherwise,

Ay =

and
(Yu)(x) = V(x) u(x),

where {V(x)},.q, are i.i.d. real random variables with common distribution x
whose characteristic function will be denoted by # and 1 is a real number.

Let m be a positive integer, 4™ be the discrete rectangle [—m, m] x {1,2,...,¢}
and H,, , denote the H, restricted to £2(4,) with boundary conditions u(x) = 0 for
all x¢ A™. Let x, ye 9,, n > 0 and let J,, 6, € £*(Z,) be the delta functions at the
points x and y respectively. We shall use the notations

Gh s, . B+ = (4 3,).

1
JIE+in) = lim E{G,((0,)), 0.)), E+in)},

Hm,ﬁ.—E_i”

wherej = 1,...,/ and E{ -} denotes the expectation with respect to the disorder.
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It is a consequence of the “de la Vallée Poussin” theorem [2] that the
lirgl J{(E+in) exists for almost all E€eR and all A+ 0. Under some mild
nl

regularity conditions for 4 Klein, Lacroix and Speis [3] have shown that the limit
above actually exists for all E€IR and it is a smooth function of F for all A + 0.

The boundary value of J4(E + in) described above contains a lot of infor-
mation about the random Hamiltonian H,. Note for example that under the
hypothesis of Theorem 1 of [3] the authors showed that the integrated density of
states N, (E) is absolutely continuous and

d

1 3
E N,(E) = Im 11 n ; (E+in),

while similar results are true for the summation of the Lyaponov exponents (see

[13D). .
One striking and important aspect of the behavior of the lin(r)l JI(E+in), j=1,
nl

., Z as ] approaches zero is the apparent sensitivity of its asymptotic expansion
on the location of energy E in relation to the spectrum of the free Hamiltonian H,,.
This was first discovered by Kappus and Wegner [4] who showed that in one
dimension if u has mean zero the leading coefficient of the straighforward
perturbation expansion in A proposed by Thouless [5] was inadequate if E = 0.
Derrida and Gardner [6] found that the same phenomenon occurs for the next to
leading coefficient in the case E = +3 and actually conjectured that similar
“anomalies” occur for all energies of the form E = cos np/q with p < g relatively
prime. This was shown by Bovier and Klein [7].

The significance of the special energies mentioned above lies in the fact that for
these values the free Schrodinger propagator is cyclic (see[6,7]). In fact the
presence of this cyclicity is directly responsible for the failure of straightforward
perturbation expansions while it is exactly the same property that makes the
modified ones proposed in [6,7,9] amenable to rigorous treatment [8,9]. It is
worth noting however at this point that the nature of these modified expansions in
the case where u has mean zero [4, 6, 7, 8] is quite different than the one discovered
in [9] when the mean is different from zero and that one has to abandon in the
latter case the traditional perturbation techniques for isolated eigenvalues in
favor of a more general approach [9] where the harmonic analysis becomes much
simpler than the one used in [8].

Despite the fact that in one dimension the asymptotic behavior of H, is
completely understood, at least for the special energies mentioned above, very
little has been done for the case of one dimensional strips. In fact the only article
the author is aware of in that direction is a paper by Derrida and Zanon [10] where
a weak disorder expansion is derived for the Lyaponov exponents of the product
of random matrices when the unperturbed matrices have two degenerate
eigenvalues.

In this article we study the asymptotic behavior of hlm JI(E+in),j=1,...,¢

as A approaches zero on a strip of size /. To make the harmonic analy51s more
tractable we will use the approach of [9] and we will assume that the mean of x is
different than zero. We also restrict ourselves to the set of energies for which the
free Schrédinger propagator becomes cyclic (see Corollary 3.4) and which we now
introduce through the following definition.
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Definition 1.1. We will say that an energy E is Z-regular if and only if
nt

|E|<1+cos{,_*_1

and it satisfies the equations

E+cos/7f1=cos%, k=1,...,¢

for some sequence of pairs of integers (p;, ¢, )y =1, ..., Which can be assumed to be
unique by requiring that p, is relatively prime to ¢, for all k =1,2,...,7.

Trivially zero is /-regular for all #/ = 1,2, ... . Moreover, one can easily verify
that the set of /-regular energies is dense in

nk nk
<—<1 + cos m), 1 + cos m)

Our main theorem is:

Theorem 1.2. Let u be such that its characteristic function h is infinitely many times

differentiable on (0, + 00) with h(t) = O[(1+t*)~%?] for all i =0,1,2, ... and

some o > 0. If the first and second moments of u exist and they are both not equal to

zero, then for every {-regular energy E the function R — lifl(')l JI(E+in)eC has
n

an asymptotic expansion to any order at A =0 for all j=1,...,7.

We finish this section with a few words about the strategy of our proof as well as
the organization of the present article. '
We first use the supersymmetric replica trick (see [11]) to express litrol JI(E+in)
nl

in terms of the unique eigenvector, corresponding to the eigenvalue one, of a
bounded operator defined on an appropriate Hilbert space. Then we find
explicitly the set of equations the coefficients of the formal perturbation expansion
of the eigenvector mentioned above would have to satisfy. Finally we prove that
these equations have a unique well defined solution which defines a series that is
actually asymptotic.

The next section is devoted to the development of the formalism which permits
us to implement the first step of the above outline. In Sect. III we compute the
perturbation expansion and we prove, up to a key technical estimate, that it is
asymptotic and in the last section prove this crucial technical estimate.

II. The Supersymmetric Transfer Matrix

In this section we introduce a supersymmetric formalism similar to the one used by
Klein and Speis in [11] and explain how one can use it to study the boundary value
of Ji(E+in),j=1,...,¢ as n approaches zero.

For the benefit of those who are unfamiliar with this framework it is worth
mentioning that this formalism is essentially harmonic analysis of multicompo-
nent complex valued functions whose components satisfy certain differential
equations that can be canonically described through an appropriate superposition
of commuting and anticommuting variables (super variables).

Even though one could, on a purely technical level, introduce all the necessary
structure without the use of Grassman-algebras (anticommuting variables) it is
our experience that such an approach lacks any kind of intuition or insight and we
will not use it here. We also would like to point out that despite the fact that our
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definitions look different from the ones used in [11] the proofs of our propositions
follow along the same lines as the ones in [11] and they will be omitted.
We start with the following definitions:

Definition 2.1. Let 7 be a positive integer. Let 4 (R?*’) denote the Grassmans
algebra over R?/ and let A (IR*’) be the vector space of 1-forms in 4 (R?). The
superspace %, is defined to be the set of all n-tuples ® = (@4, . .., &), where
¢l=(¢i9y7iﬁvli)9 i=19"-5/9
p;eR? , i=1,...,¢,

and {y;,¥;}i=1,.. 18 a famlly of 1-forms whose non-zero elements form a
linearly independent set in 4'(R?").

Let @, denote the set of strictly increasing finite sequences indexed by {1, ..., ¢}
and taking values in {1, ...,2/}. We shall make use of the forms
{Y}aco,€ A(R¥), where fora = {i,...,i,} = {1,2,...,2¢} ¥,is defined to be

1
—r-,——(zl) qall times the formal determinant at the £ x £ matrix whose rows are the

)
iR, ..., % and if* rows of the matrix
[ Viyy - Wy
g = ViWy - YeWe 2/
1 0
o .1 )
4

and where |a| denotes the number of all the i’s for which §, </, k=1, ...,7.

Definition 2.2. Let/ be a positive integer. A super function F is understood to be a
function F: %, » A (R?*) of the form

F@)= ) F@)Y

acl¢

Where @ ((pl’“ . {) ¢ (¢l’ Wta 1) l ((Plyw -a(p[) and
{F,}4c0, s a family of complex valued functlons deﬁned on R,

We will say that a superfunction Fisin C*(%,) if and only if F, is of class C* on
R for all ae0,.

Definition 2.3. Let £ be a positive integer. We defined the integration over the
super space ., by the formula

—1) ¢
(F@)do =T [ Foi.00 TT @

where a; € 0, is the identity sequence a (z) =ii=1,...,7.
We will say that a superfunction F is in L!'(%,) if F el (R2%) for all ac0,.
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Definition 2.4. Let @, @' .¥,. We define the inner product between @ and @’
through the formula

2
<¢9¢’>=Z¢l¢:’ ¢=(¢1aa¢t’)’ ¢,=(¢’1’,¢;’)
i=1
where @, @, =¢;- ¢/ + F(Wiyi +¥iy;), i=1,....7.

Let K, be the cone at the positive semidefinite £ x £ matrices and let f be a
complex valued function which is of class C' on K,. We associate with f the
superfunction F defined by

F(D) =}, 0,f(d,) ¥, 22
ael¢
where 0,, a = {iy, i, ...,i,} is the partial differential operator defined by the
formal determinant of an £ x £ matrix whose rows are the i,, ..., i,’th rows of the
matrix .
r 2i611 e ialt
0 20
10¢1 10¢¢ 2/
1 0
0 e 1
{

0;j,1,j =1, ..., ¢ denotes the operator differentiation with respect to the variable
that corresponds to the i,j entry and A, is an /x/ matrix defined by
(A(p)ijz ;- ¢j9 17]= 19 29 e Z.

It is worth noting that if we set 44 to be the £ x £ super matrix defined by
(Ag)ij=D;- ®;,1i, j=1,2, ...,/ we can rewrite (2.2) as

F(®) = f(4o), 23)

where f(4,) is defined to be equal to its formal Taylor series, around the point 4,,
which coincides with the right-hand side of (2.2).

Let & (K,) be the usual Schwartz space over K, . We shall denote by & (&,) the
set of all superfunctions of the form F(®) = f(44) with fe & (K,).

An important notion of the formalism developed so far is the one of
supersymmetries. These are transformations of the superspace .#, and are defined

by
Ub,E,: = (Ub,5,§¢ls cees Ub,5,5¢¢’)
where
Up,5,e(P) = (9,4 208w+ 268y, W, — 4b9;&, i+ 4bp, )
b, b are arbitrary constants and ¢ is a 1-form independent from {y;, v;};=;, .. .-
One can define the action of U, 5 . on a superfunction F'in a natural way through
(see also [14])
(Up,5,eF) (B) = F(Uy 5, D),

where it is implicitly understood that F,(p, +2b&y, +2b&y,, ..., 0, +2b&y,
+2b¢&y,)is defined to be equal to its formal Taylor expansion around (¢, , . . ., ,)
for all ae0),.



554 A. Speis

Definition 2.5. Let £ be a positive integer. We will say that a superfunction
F: %, — A(R?*’) is supersymmetric it if is left invariant by all supersymmetries of

a

Theorem 2.5. Let £ be a positive integer and let F: ¥, — A (R?%) be a superfunction
in LN(%,) N C(£,). Then the following are true:

1) [(Uy,p,eF)(D)dD = [ F(D)dD.

2) If F is supersymmetric then
[F(D)d® = F(0).

Remark 2.6. One can easily check that superfunctions of the form defined in (2.3)

are always supersymmetric.
Let 4 be an 2/ x 2¢ matrix. We define the action of 4 on superfunctions F

which we shall denote by AF through

(A(F), = ), det(4) F,, ael,,

bels

where fora = {i;, ..., i,}and b = {j,, ..., j,} A% denotes the £ x / matrix defined
by (AD.n = 4; k,h=1,2,...,/. It is easy to check that for A, B 2¢ x 2/

matrices
A(B(F)) = (4AB)(F).

We now introduce the Hilbert spaces mentioned in the previous section. Let
EeR and Ay be the 2/ x 2¢ symmetric matrix defined by

Sk &)
AE‘<€E L)

where I, is the ¢ x £ identity matrix and

ks Jn?

{
E 1)2
/\ 0
1/2
= | . oap|(f
12 E
One can easily verify by diagonalizing & that if | E| < 1 + cos {% Ag is positive

definite.
Let Q;, i = 1,2 denote the vector valued operators, acting on smooth complex
valued functions which are defined on IR? by

0= {[Q;]l [Qi]zz)a i=1,2,
i0
[Qi]kzm, k=1,...,/,

Qk=Moy_;;, k=¢+1,...,2¢0,
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where M ¢, _, , stands for the operator multiplication by the variable ¢, _, ; and we
have used the’ conventlon that a vector ¢ € R¥ can be written as ¢ = (911, ®12),

(@15 92))-
Let & (R*%) denote the usual Schwartz space over R For every energy E with

nt . ...
|E| <1+ cos— we introduce a sequence of positive norms ||,

£+1
n=1,2,3, ... on £(R*) through the following equation5'

>y |(Turean)n| e

(£ = Z )

..... kn—l ll,...,inzl

L2(R?¢, dzfq,)

Definition 2.7. Letnand ¢ be positive integers and let E be a real number such that

. We define the supersymmetric Hilbert space H, j to be the

4
|E|<1+cos/+1

completion of the subspace of ¥ (%,) under the norm || - ||, z, where

(1 Fln,e)* = Z Z(II(1‘1”2(1”))(,||m)2+IF(O)I2 FeS(Z,).

ae { m=1
Let ¢ be a positive integer and let I be a compact set of < 1 — cos 7 _f T

nl
1+cos/_H

). One can easily check that
CGlflIRsI Iz s
for all fe#(R?*)and n=0,1,2, ... and that
CillFlino = 1 Fllpg = Crll Flln,o 2.5)

forall Fe¥(¥,)and n =0,1,2, ..., where C; and C; are constants that depend
only on the set I.

In view of relations (2.5) we can identify H, ; with the set of functions
F: %,— A(R?*) of the form

F(®)= ) F(p¥

aely

where now {F,},., are in general elements of the completion of & (R?*/) under

(RN

Let & denote the usual Fourier transform on R?/. We will be making use of an
operator on L' (%,) which we will denote by the same letter & and is defined by

(FF),=7(F), FeL(Z).

Let 4 be an 7 x £ matrix. We shall also make use of the operator b, which acts on
superfunctions and is defined by

(b4F)o(p) = €47 (F)(p), peR¥.

Let B be a 2¢ x2¢ matrix. For convenience we view [B(Q))], i=0,1,
k=1,...,2¢ as operators acting on & (¥,) defined by

(BQ)(F))a = (B@)k(F)ay i=0,1,k=1,2,...,27.

Through a straightforward computation one can easily verify that [B(Q))],
extends to a contraction from H, ., to H, satisfying the intertwining relations

[BQber. T = ~ibsg, (n [(BCE1iq) (@) (2.6)
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forall i=0,1, k=1,...,2¢,n=1,2,... and # = 0 where we have used the
natural extension

E+in 1)2
12
Frin= RERNT)!
12 E+in
and where
—2i8gy;, —il
(gE_H":( iIE+'I 0 )
Remark 2.8. If |E| <1 + cos /7:_/ i it is not hard to verify that the norms we

introduced here are equivalent to the ones Klein, Lacroix and Speis used in [11].
The reasons why we have to use these, at least at first sight, complicated norms
should become clear towards the beginning of the next section.

We now proceed to explain how one can use the formalism we have developed
so far to study the averaged diagonal matrix elements of the Green’s kernel
JL(E + in) for the Anderson Model on a one-dimensional strip. From now on and
until the end of the present article Z, unless otherwise stated, will denote the width
of the strip 9,.

Using the supersymmetric replica trick we can reexpress IE{G((0,,), (0, /),
E + in)} (see IIL.1 of [11]) as

E{G((0,)), 0./, E+in)} = i [ w;i7;[(B; (1) Te)" (Br, 2 ()]
X[T(B,(1) Te)"™ B, )(P)d®  (2.7)

forally >0,m=1,2,...and j=0,1,2, ..., where

(A1) (@) = &<® 20 [T h (i),

(Te(F) (@) = /@4 [ OO F(@)dd, FeL!(Z,),
(T(F))(®) = [ F(®)dbd, Fel'(Z,).

2

B, () stands for the operator multiplication by ]_[ h(A®Z)e~ "% and we have used
=1

the notation @2 = {(®D;, D,>, ¢? = ¢, ¢;, i = 1 L.
The propertles of the operator B,(#) T are well understood for 4 # 0 and we
summarize them in the following theorem.

Theorem 2.9. Let n be a positive integer and let the distribution of the single sided
potential u be such that its characteristic function together with all its derivatives up
to order n + 1 are continuous on (0, + c0) with some decay at infinity. Then the
following are true:

1) B, (1) T extends to a bounded operator on H, , for all E€ER and n = 0 with the
operator valued function {E +ine C:n 2 0} 3 E + in B, () Ty € H, , being norm
continuous.
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2) The spectrum of B, () Ty is discrete, zero is the only possible accumulation point
and 1 is a simple eigenvalue while the rest of the spectrum lies inside a disk centered at
0 and of radius strictly less than one for all A+ 0, =0 and EcR.

Proof. See [11]. O

In view of the previous theorem we can now let m go to + co and # approach zero
in (2.7) to obtain

Lilrg JE+in) =i[y§;Ep 2 @) (T s ) (DD, j=1,....¢, (28)
where £ ; is the unique solution of the equation
(B,(0)T) é}.,E = ‘f}.,E . (2.9
The remaining two sections are devoted to the study of the vector valued
function
RaA- ¢, peHg,

for A close to zero and E /-regular.

III. The Asymptotic Expansion

In this section we show that under the hypothesis of Theorem 1.2 the function
Rei—¢, e H, ; has an asymptotic expansion to any order in the disorder
parameter 4. We will assume the following technical result, the proof of which we
postpone until the last section.

Lemma 3.1. Under the hypothesis of Theorem 1.2 for every n strictly positive
integer there exists a constant M independent of A such that

forall 140 1€0elne e S M & pllne (3.1)
or a =+ 0.

Through an explicit computation and Proposition IV.1.4 of [11] one could
easily verify that

Te(F) = (€5bs, F)(F), EeR, Fell(Z)),

(3.2)
T(F) =, 7)(F) . Fel'(%,),
and
(B,(0))(F) = (Ey {V;b,4) (F), F superfunction,

where 7= (0 —I,)

=\, 0 )
L is £ x ¢ identity matrix,

v <1 2,1U)

N0 1)

U stands for —1 times the £ x £ diagonal random matrix whose elements are /
independent copies of a random variable whose probability distribution is x and
EE, denotes the expectation over the product space of these variables.

We are now ready to prove a proposition which provides the insight behind
Definition 2.7.






