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Abstract. In this paper we prove the validity of formal asymptotic results on
perturbation theory for kink solutions of the sine-Gordon equation, originally
obtained by McLaughlin and Scott. We prove that for appropriate perturbations,
of size β in an appropriate norm, slowly varying in time in the rest frame of the kink,

the shape of the kink is unaltered in the L°° norm to 0(ε) for a time of 0 ί - 1 . The

kink parameters, which represent its velocity and centre, evolve slowly in time in
the way predicted by the asymptotics. The method of proof uses an orthogonal
decomposition of the solution into an oscillatory part and a one-dimensional
"zero-mode" term. The slow evolution of the kink parameters is chosen so as to
suppress secular evolution of the zero-mode.

Section 1. Introduction and Statement of Results

In this paper we prove the validity of formal asymptotic results due to McLaughlin
and Scott (1978) and Karpman and Solov'ev (1981) for appropriate nonlinear
perturbations of the sine-Gordon equation:

θττ -θxx + sinθ + εg = Q. (1.1)

More precisely, we prove the existence, for long but finite times, of solutions to
this equation which approximate travelling waves of the unperturbed equation,
with parameters evolving slowly in time under the action of the perturbation εg.
The travelling waves of interest are uniformly moving kinks. Kinks are members of
a two parameter family of solutions of the unperturbed equation:

Q (1.2)
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given by θ = θκ( —~U ~ } for we(-l, 1), CeR. Here θκ is the C°° function

2nπ + 4arctanez (1.3)

which solves θ'ί = sin θ with boundary conditions

θκ-+2nπ, Z->-oo; ^ -> 2(n + l)π, Z-> + oo (1.4)

for n e Z. The energy and momentum in the field at time T are given by integration
of the corresponding densities:

+ i02 + ( l _ c o s θ ) (energy), (1.5)

p = J θτθx (momentum) . (1.6)

Evaluating these for the kink solutions we find for m = 8, E = -

P = . so that the kink obeys the energy momentum relationship for

a relativistic particle E2 — P2 + m2. We therefore refer to m as the mass of the kink,
which is to be thought of as a particle-like object in a background radiation field.

We remark that the solutions of interest are not square integrable themselves
due to the boundary conditions at spatial infinity. The natural space for solutions is
θeHιoc(R\ θτeL2(R). However it is part of a general philosophy expounded in
Parenti et al. (1977) that more can be said, namely that the boundary conditions are
preserved in an L2 sense. To be precise we have the following local existence
theorem:

Theorem. Consider initial data 9(0, X)eH}oc(R)θτ(Q9 X)eL2(R) for (1.1) with the
property that

(θ(Q,X)-θκ(X))eL2(R)

assume further that g is a smooth function of Γ, X, θ. Then there exists a unique local
solution Θ(T, X) such that

(θ(T,X)-θκ(X))eL2(R)

and such that T-*(θτ, θx)εL2(R) 0 L2(R) is a strongly continuous map.

Proof. See Parenti et al. (1977) or Martin (1976).

A method which is useful for the understanding of nonlinear waves is to
decompose the solution into solitary (spatially localised) and radiative compon-
ents, and then study the interaction between them. For the case of the sine-Gordon
equation, the method of inverse scattering yields, at a formal asymptotic level, very
detailed information on this decomposition. This is useful for understanding the
asymptotic behaviour of solutions at large times (see e.g. Novikov et al. (1984) or
Eckhaus (1980)), and perturbation problems (Maclaughlin and Scott (1978)). One
of the reasons for interest in kinks is that (together with breathers) they dominate
the large time behaviour of solutions to the initial value problem, due to the
dispersive character of the radiation component. To be more precise the radiation
component decays like ~ T ~ 1/2, i.e. as the Klein Gordon equation, whereas the
kink (solitary component) does not decay at all (see also Stuart (1991)). These
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analyses suggest questions which can be asked about solitary waves in general
(non-integrable) wave equations. The case of the non-linear Schrόdinger equation
has been discussed in Weinstein (1985) and Soffer and Weinstein (1990). In particu-
lar, in the latter paper dispersive properties of the linear equation are used to
prove stability and scattering results for solitary waves and radiation on an infinite
time interval. The case of the kink is in some ways simpler, although being
one dimensional the effects of dispersion are weaker, and not sufficient to give
results globally in time. There are two interesting stability questions for kinks
which can be given mathematically rigorous answers without using inverse scatter-
ing information: stability of kinks with respect to perturbation of the initial
data (see Henry et al. (1982)), and stability with respect to perturbation of the
equation, which is the problem addressed in this paper. Before stating the theorem
and giving the proof we give a discussion of the general features of these two
problems:

Stability with Respect to Initial Data. Here one considers the initial value problem
for the sine Gordon equation with near kink initial data:

θττ ~ θxx + sin θ = 0 0(0, X) = Θ0(X) 0Γ(0, X) = 00, T ( X ) - (1-7)

The crucial point (Benjamin (1972)) is that the appropriate kind of stability is form
stability, i.e. stability modulo translation. To express this mathematically, consider
the distance function for ι//eHϊoc(R):

\\ψ - τcθκ\\Hι ,
ceR

where τc is the translation operator: τcψ(x) = ψ(x + c). Form stability is rigorously
expressed in the following theorem which states that this distance function is
non-increasing:

Theorem (Henry et al. 1982). There exists a number r such that if 00, 00?Γ satisfy
θ0εHϊoc(R)9 00)XeL2(R), θ0ίTEL2(R) having finite energy (as defined in (1.5)) and,
most importantly, d(θo) < r, then there exists a unique global weak solution θ such
that (θ, θτ) 6 HIOC 0 ZΛ T -> (ΘX9 θτ) e L2 0 L2 is strongly continuous and
d(θ(T, ) ) < r VΓ.

Remark. One can picture the motion as being particle motion in an infinite
dimensional potential valley, motion along the valley corresponding to translation
of the kink and motion up the hills corresponding to the oscillatory radiation. This
is expressed mathematically by the following properties of the linearised equation.
The sine-Gordon equation linearised about a kink is

where L = — d% + cosθκ(X) has spectrum consisting of:

- zero as the unique eigenvalue, with eigenfunction θ'κ. This so-called zero
mode arises due to translation invariance, and its presence is the infinitesimal
version of the fact that the appropriate distance function for the stability statement
involves minimising over the centre of the kink. Notice that, from monotonicity of
the kink, θ'κ > 0 so it is a simple lowest eigenvalue.
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- continuous spectrum [1, oo). This gives motion in the subspace orthogonal to
the zero mode. This motion is oscillatory in time, not exponentially decaying (as for
corresponding parabolic problems), making the nonlinear treatment somewhat
subtle. It is important that the continuous spectrum does not reach zero - it starts
at 1 because of the fact that cos#x -* 1 as \X\ -» oo. This part of the spectrum
corresponds to radiation.

This has the consequence that for

ψeH1, $ψθ'κ = Q=>$ψLψ^$ψ2 (1.8)

which is important for this paper.

Remark. The process of minimising over the centre of the kink can be regarded at
an infinitesimal level, as forcing the motion into the oscillatory subspace by
appropriate choice of the modulation of the parameters.

Remark. The proof in Henry et al. (1982) does not depend on complete integrabil-
ity, and the theorem is stated for a more general class of nonlinearity. The result of
this paper goes immediately over to this class of nonlinearities.

Stability with Respect to Perturbation of Equation. It is the aim of this paper to
prove the modulational stability in an appropriate norm of kink solutions under
the action of an appropriate class of perturbations εg over an appropriate time
interval. Thus we consider an initial value problem for (1.1) with initial data close to
a kink, and ask for how long, and in what norm, does the solution look like a kink,
possibly with velocity and centre changing in time. Modulational stability means
the kink parameters are expected to evolve in time - see (1.20), (1.21). The
precise meaning to be attached to the word appropriate is part of the problem - see
the statement of the main theorem and the comments at the end of this section,
as well as the following discussion. The proof does not depend on complete
integrability and could easily be written out for the class of nonlinearities of the
equation considered in Henry et al. (1982). Before launching into the proof we
discuss why such a statement is expected to be true. As for stability with respect to
initial data, the basic point is the spectrum of the linearised operator L. In the
argument of Henry et al. one can heuristically think of stability as being due to the
possibility of choosing the centre of the kink (as a function of time) in such a way as
to push the linearised motion onto the oscillatory subspace, i.e. orthogonal to the
zero mode. We would like to do a similar thing, but there are two immediate
difficulties:

Question (a). The kink will presumably accelerate under the influence of the
perturbation, so as well as choosing the variation of the centre it will be necessary
to choose the variation of the velocity, presumably in such a way as to force the
linearised motion onto the oscillatory subspace. What are the equations for the
modulation of u,CΊ

Question (b). Even if the motion is confined to the oscillatory subspace, does the
perturbation produce a large response over long times? The answer to this leads to
the important heuristic requirement that the perturbation be slowly varying in the
Lorentz rest frame of the kink (see the end of this section for the most general types
of perturbation allowed).
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To answer these questions we first describe the basic strategy of the proof. We
make an ansatz for the solution

T

X-lu- C(T)

), Z = =_ , (1.9)

C(T) = C0(εT) + εC,

u(T) = u0(εT) + εύ(T) (^p= J!_ = Po(εT) + εp(T)) . (1.10)

The aim is to bound 0, w, C for times of 0 - by appropriate choice of the time\ f i /
variation of M, C. So we calculate the equation for θ by substitution into (1.1) as:

θττ - θxx + cosθκ(Z)θ=f™ + ε/(2) =f(T, Z, θ, C, C, p9 p, p), (1.11)

where the function / is written out explicitly in appendix zero. As noted above the
crucial point is the behaviour of the linearised equation - in particular the fact that,
orthogonal to the zero mode, the motion is oscillatory. This suggests the following
zero-mode/oscillatory mode orthogonal decomposition:

Θ(T, X) = a(T)θ'κ(Z) + Θ*(T, X) f Θ'K(Z)Θ*(T, X)dX = 0 . (1.12)

The strategy for the proof is now given by the following answers to the questions
above:

Answer to question (a). It turns out that an appropriate choice of — , — allows the
dT dT

supression of the dominant growth in α, i.e. in the zero mode. This can be seen by
projecting Eq. (1.11) in the two direction corresponding to the action of the
infinitesimal symmetries on the kink: θ'κ, Zθ'κ corresponding to translation and
Lorentz invariance. This leads to identities in appendix two which are used to
estimate α in the proof of the central Lemma 2.3. This calculation is a rigorous
version of a formal asymptotic argument for the modulation equations due to
McLaughlin and Scott which is outlined below, after the statement of the main
theorem.

Answer to question (b). To see how to estimate the oscillatory part, we notice the
fact that once the zero mode is excluded we can think of (1.11) as an infinite
dimensional version of the perturbed 1-D oscillator:

* X + X=f(εT) + εg(X]

which remains bounded for times of 01 - ). A proof of this which nicely general-
\ ε /

ises to our case is as follows—if we calculate the rate of change of energy
E = X2 + X2 and then integrate again, integrating by parts the / term, we find the
inequality

\E(T)\ g £(0) + E1/2(0)|/(0)| + \f(sT)\\EV2(T)\

T
+ ε$\f(εT')X-g(X)X\dT'
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from which long time boundedness of X can be deduced from GronwalΓs inequal-
ity, for suitable / g. To find an "energy" for our case, which allows a generalisation
of this proof, recall that if we consider the linearised equation about a static kink:

then the energy given by

p UT + OX -| ^v,o^/Kv/

j dX
-00 ^

is preserved. Next consider linearisation about a uniformly moving kink at speed
u - the relativistic version of this result is the conservation of the following
linearised energy:

E(T)= J — — h uθτθxdZ . (1.13)
-00 ^

It turns out (see Lemma 2.1) that for times of order -E is bounded if α is bounded,
ε

just as in **, as long as the perturbation is slowly varying in time in the rest frame of
the kink - this means it should be a function of Z, εT as described at the end of this
section in detail. This gives the answer to question (b). We emphasize that the
nonlinearity couples the zero-modes and oscillatory modes, so estimations of E, α
must be done in tandem. The significance of the quantity E stems from the
following proposition:

Proposition 1.1. There exists a number c such that:

|| θ(T) II ^ c || γ(T) \\ (\\ E1/2(T) \\ + || α(Γ) | | ) , (1.14)

where

110(7-) || = max {|0Γ(r)|2 + |0(r)|Hi}, (1.15)
Γ'e[0,Γ]

where \Θ(T)$ = $\Θ(T, X)\2 dZ and\θ(T)\2

Hl = \Θ(T)\2

2 + \ΘX(T)\2

2 and for functions
of time f:

| |/(Γ)||= max |/(Γ')| . (1.16)
T ' G f O . T ]

Proof. See Appendix 1.
Thus we see that to estimate θm H1 (and hence pointwise by Sobolev's lemma)

we only need to estimate E and α. The estimation of £ similar to ** is carried out in
Lemma 2.1, while in Lemma 2.3 we find equations for wr, Cτ which ensure α grows
slowly. These are the crucial steps which lead to the following:

Main Theorem. Let the perturbation g = g(θ) be a smooth function such that

g0(Z) = g(θκ(Z))eL2(dZ). Then for sufficiently small ε there exists T* = θί- such
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that for T ̂  7^ there is a unique solution to the initial value problem:

0ΓT-0M + sin 0 + e0 = 0, (1.17)

0(0, X) = 0*(Z(0)) + εθ(0, X\

ΘΓ(0, X) = , , 0i(Z(0)) + ε0τ(0, *) , (1.18)
x/1 - w(0)2

w/zm? (0(0, X), 0Γ(0, JT))e JFf x Θ L2, o/ ίΛe /orm:

r
X - $u- C(T)

Θ(T, X) = ΘK(Z) + ε0(Γ, X) Z = - ===== - , (U9a)

where 0eC([0, ΓJ, tf1), 0ΓeC([0, ΓJ,L2)

C(3Γ) = C0(εΓ) + εC

u(T) = u0(εT) + m(T) =>p= — = Po(εT) + εp(T)

with p, ύ, C, —, —, | 0 | / f i ( R ) bounded independent of ε, and t/0, C0 the solutions of
dT dT

the zeroth order modulation equations:

m^ = εw0(l - M§) f g(θκ(Z))ZΘ'κ(Z)dZ C0(0) = C(0), (1.20)
^ -00

+ 00

ιφo(l - wg)-1 / 2)τ = mpo.r = e J g(θκ(Z))θ'κ(Z)dZ u0(0) = «(0), (1.21)

where p0 = , is the momentum per unit mass and m = 8 is the mass of the kink
V 1 ~u°

defined in (1.5), (1.6).

Proof. This is carried out in Sect. 2. Derivation of certain identities and local
existence theory is in the appendices.

Remark. It will appear in the proof that one bounds not only || 0Ί| but also the

momentum p = —^=^ on the time interval [0, Γ#]. From this it follows that the
V 1 -u2

velocity is bounded away from one, i.e. the kink velocity cannot approach the speed
of light. The perturbation theory is not expected to be valid at the speed of light.
The perturbation theory is however valid near u = 0 which is not a preferred point
from the relativistic viewpoint. This is in spite of the fact that the asymptotic
derivation of the modulation equations due to McLaughlin and Scott (1978), which
is given below, degenerates at u = 0.

Remark. If the further condition is added that the initial data satisfies
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then strong differentiability in time of the solution can be deduced. Indeed one can
produce a smooth classical soolution for smooth initial data - see (Stuart (1990))
for full details. The basic point is that by Sobolev's lemma the solution is bounded
pointwise, so the growth in higher order Sobolev norms can be controlled.

Remark. The proof works for much more general types of perturbation, as de-
scribed at the end of this section. We also emphasize again that the proof works for
more general nonlinearities than sin, e.g. the class used in (Henry et al. 1982).

Formal Calculation of the Modulation Equations. We now present a formal calcu-
lation of the modulation equations from MacLaughlin and Scott (1978). The idea is
to use the basis of solutions to the linearised equation obtained from the inverse
scattering method (by differentiation with respect to the scattering data.) This basis
divides into "discrete" and "continuous" modes, the discrete modes being given by
differentiation with respect to the parameters u, C. The philosophy is that it is
important not to excite the discrete modes if the response is to be small, but the
continuous modes do not matter as they are oscillatory in time. Thus the modula-
tion equations are chosen to make sure that the error term / does not excite the
discrete modes. The discrete modes are given by differentiation with respect to the
kink parameters u, C which form the discrete part of the scattering data. This gives
two orthogonality relations for the error term / which give, to highest order in ε,
the modulation equations (1.20), (1.21). The calculation is most simply done by
writing Eq. (1.1) in first order from:

d ί Θ \ ( 0

dT\θτ) \dxx-sm( )

We now substitute in an ansatz corresponding to (1.9), which leads to the following
linearised equation:

d ί Θ \ ( 0 1\ / ΘKCC + θκuύ
*** ~ \ = \ + , Λ , M

dT\θτJ \-dxx + cosθκ(Z) OJ \g + ΘK,TCC + θκ,τuύ

Here we are considering Z, defined in (1.9), as a function of u, C, T with J^ u
thought of as a function of T only. We have two elements of the null space of this
linearised equation provided by differentiation with respect to u, C. We will apply
the Fredholm alternative; however the linear operator is not self-adjoint so we take
the null space of the adjoint operator instead. This leads to the following two
vectors:

κ,τ

We now require that the inhomogeneous term in *** be orthogonal to these
elements. This gives the modulation equations (1.20), (1.21). We remark that the
method is like a time-dependent Fredholm alternative; however the interesting
point is that the inverse scattering approach gives an enormous number of solu-
tions to the linearised equations, but only the two corresponding to n1, n2 are used
for the orthogonality conditions. This is because the other solutions are oscillatory,
and therefore supposed to be less excitable. This is only the case if the perturbation
is slowly varying in time. The result of the paper can be thought of as a rigorous
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I

justification for this time-dependent Fredholm alternative. Lemma 2.3 provides
a rigorous version of the above calculation, while the fact that the radiation
is not excited by slowly varying perturbations is expressed rigorously by
Lemma 2.1.

Summary of the Rest of the Paper. The heart of the paper is Lemma 2.3, which
gives an a priori estimate for the growth of the zero mode, α (defined by the
decomposition (1.12)), subject to the modulation equations (1.20), (1.21). Together
with the a priori estimate of the linearised energy E in Lemma 2.1, this gives, via
Proposition 1.1, an a priori estimate for θ for times of order 1/ε. These estimates
depend on identities which are proved in appendix two. There is a difficulty
however in that this a priori estimate is for the coupled ODE-PDE system formed

by the equation for θ, (1.11), and the modulation equations. These are coupled
because the full modulation equations for M, C, as opposed to w0, C0, contain 0(ε)
terms depending on θ. Thus to complete the argument it is necessary to prove the
local existence of solutions to this system in an appropriate norm for a continua-
tion based on an a priori estimate. It is also necessary to check that these solutions
satisfy the a priori estimate. This is done in appendix three.

Notation. Throughout this paper we use the following notation:

- The fast time variable is Γ, while ί = εT is the slow variable; these are not
treated here as independent variables, as in the multiscale method, but as alternat-
ives to simplify notation. A function of t with derivative bounded independent of
ε will be referred to as slowly varying. The same applies for spatial functions with
x = εX.

- For functions of time, / we use a dot to denote --— = — =/
ε di at

- We shall frequently use the change of variables

X-]u(*T')dT'-C(T) _π
z =

V 1 - "CO2

(1.22)

in which S is used to distinguish what is being kept constant on differentiation, i.e.
d d

~dS = ~dT z
- As usual we call γ = (1 — u2)~1/2. u represents the speed of the kink, and has

magnitude less than one; it is related to the momentum (per unit mass) by p = yu

and u = , in terms of which y = ^/\ + p2. The same notation with sub-

index 0 will be used for the 0(1) terms in the expansions (1.19).
- The mass and moment of inertia of the kink are defined by:

m = J 0'x

2(Z)dZ(=8), /= { Z2θ'l(Z)dZ . (1.23)


