
Commun. Math. Phys. 149, 433-462 (1992) Communications JΠ

Mathematical
Physics

© Springer-Verlag 1992

Perturbation Theory for Kinks

David M.A. Stuart*
Mathematics Department, U.C. Davis, Davis, CA 95616, USA

Received July 2, 1990; in revised form August 26, 1991

Abstract. In this paper we prove the validity of formal asymptotic results on
perturbation theory for kink solutions of the sine-Gordon equation, originally
obtained by McLaughlin and Scott. We prove that for appropriate perturbations,
of size β in an appropriate norm, slowly varying in time in the rest frame of the kink,

the shape of the kink is unaltered in the L°° norm to 0(ε) for a time of 0 ί - 1 . The

kink parameters, which represent its velocity and centre, evolve slowly in time in
the way predicted by the asymptotics. The method of proof uses an orthogonal
decomposition of the solution into an oscillatory part and a one-dimensional
"zero-mode" term. The slow evolution of the kink parameters is chosen so as to
suppress secular evolution of the zero-mode.

Section 1. Introduction and Statement of Results

In this paper we prove the validity of formal asymptotic results due to McLaughlin
and Scott (1978) and Karpman and Solov'ev (1981) for appropriate nonlinear
perturbations of the sine-Gordon equation:

θττ -θxx + sinθ + εg = Q. (1.1)

More precisely, we prove the existence, for long but finite times, of solutions to
this equation which approximate travelling waves of the unperturbed equation,
with parameters evolving slowly in time under the action of the perturbation εg.
The travelling waves of interest are uniformly moving kinks. Kinks are members of
a two parameter family of solutions of the unperturbed equation:

Q (1.2)
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given by θ = θκ( —~U ~ } for we(-l, 1), CeR. Here θκ is the C°° function

2nπ + 4arctanez (1.3)

which solves θ'ί = sin θ with boundary conditions

θκ-+2nπ, Z->-oo; ^ -> 2(n + l)π, Z-> + oo (1.4)

for n e Z. The energy and momentum in the field at time T are given by integration
of the corresponding densities:

+ i02 + ( l _ c o s θ ) (energy), (1.5)

p = J θτθx (momentum) . (1.6)

Evaluating these for the kink solutions we find for m = 8, E = -

P = . so that the kink obeys the energy momentum relationship for

a relativistic particle E2 — P2 + m2. We therefore refer to m as the mass of the kink,
which is to be thought of as a particle-like object in a background radiation field.

We remark that the solutions of interest are not square integrable themselves
due to the boundary conditions at spatial infinity. The natural space for solutions is
θeHιoc(R\ θτeL2(R). However it is part of a general philosophy expounded in
Parenti et al. (1977) that more can be said, namely that the boundary conditions are
preserved in an L2 sense. To be precise we have the following local existence
theorem:

Theorem. Consider initial data 9(0, X)eH}oc(R)θτ(Q9 X)eL2(R) for (1.1) with the
property that

(θ(Q,X)-θκ(X))eL2(R)

assume further that g is a smooth function of Γ, X, θ. Then there exists a unique local
solution Θ(T, X) such that

(θ(T,X)-θκ(X))eL2(R)

and such that T-*(θτ, θx)εL2(R) 0 L2(R) is a strongly continuous map.

Proof. See Parenti et al. (1977) or Martin (1976).

A method which is useful for the understanding of nonlinear waves is to
decompose the solution into solitary (spatially localised) and radiative compon-
ents, and then study the interaction between them. For the case of the sine-Gordon
equation, the method of inverse scattering yields, at a formal asymptotic level, very
detailed information on this decomposition. This is useful for understanding the
asymptotic behaviour of solutions at large times (see e.g. Novikov et al. (1984) or
Eckhaus (1980)), and perturbation problems (Maclaughlin and Scott (1978)). One
of the reasons for interest in kinks is that (together with breathers) they dominate
the large time behaviour of solutions to the initial value problem, due to the
dispersive character of the radiation component. To be more precise the radiation
component decays like ~ T ~ 1/2, i.e. as the Klein Gordon equation, whereas the
kink (solitary component) does not decay at all (see also Stuart (1991)). These
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analyses suggest questions which can be asked about solitary waves in general
(non-integrable) wave equations. The case of the non-linear Schrόdinger equation
has been discussed in Weinstein (1985) and Soffer and Weinstein (1990). In particu-
lar, in the latter paper dispersive properties of the linear equation are used to
prove stability and scattering results for solitary waves and radiation on an infinite
time interval. The case of the kink is in some ways simpler, although being
one dimensional the effects of dispersion are weaker, and not sufficient to give
results globally in time. There are two interesting stability questions for kinks
which can be given mathematically rigorous answers without using inverse scatter-
ing information: stability of kinks with respect to perturbation of the initial
data (see Henry et al. (1982)), and stability with respect to perturbation of the
equation, which is the problem addressed in this paper. Before stating the theorem
and giving the proof we give a discussion of the general features of these two
problems:

Stability with Respect to Initial Data. Here one considers the initial value problem
for the sine Gordon equation with near kink initial data:

θττ ~ θxx + sin θ = 0 0(0, X) = Θ0(X) 0Γ(0, X) = 00, T ( X ) - (1-7)

The crucial point (Benjamin (1972)) is that the appropriate kind of stability is form
stability, i.e. stability modulo translation. To express this mathematically, consider
the distance function for ι//eHϊoc(R):

\\ψ - τcθκ\\Hι ,
ceR

where τc is the translation operator: τcψ(x) = ψ(x + c). Form stability is rigorously
expressed in the following theorem which states that this distance function is
non-increasing:

Theorem (Henry et al. 1982). There exists a number r such that if 00, 00?Γ satisfy
θ0εHϊoc(R)9 00)XeL2(R), θ0ίTEL2(R) having finite energy (as defined in (1.5)) and,
most importantly, d(θo) < r, then there exists a unique global weak solution θ such
that (θ, θτ) 6 HIOC 0 ZΛ T -> (ΘX9 θτ) e L2 0 L2 is strongly continuous and
d(θ(T, ) ) < r VΓ.

Remark. One can picture the motion as being particle motion in an infinite
dimensional potential valley, motion along the valley corresponding to translation
of the kink and motion up the hills corresponding to the oscillatory radiation. This
is expressed mathematically by the following properties of the linearised equation.
The sine-Gordon equation linearised about a kink is

where L = — d% + cosθκ(X) has spectrum consisting of:

- zero as the unique eigenvalue, with eigenfunction θ'κ. This so-called zero
mode arises due to translation invariance, and its presence is the infinitesimal
version of the fact that the appropriate distance function for the stability statement
involves minimising over the centre of the kink. Notice that, from monotonicity of
the kink, θ'κ > 0 so it is a simple lowest eigenvalue.
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- continuous spectrum [1, oo). This gives motion in the subspace orthogonal to
the zero mode. This motion is oscillatory in time, not exponentially decaying (as for
corresponding parabolic problems), making the nonlinear treatment somewhat
subtle. It is important that the continuous spectrum does not reach zero - it starts
at 1 because of the fact that cos#x -* 1 as \X\ -» oo. This part of the spectrum
corresponds to radiation.

This has the consequence that for

ψeH1, $ψθ'κ = Q=>$ψLψ^$ψ2 (1.8)

which is important for this paper.

Remark. The process of minimising over the centre of the kink can be regarded at
an infinitesimal level, as forcing the motion into the oscillatory subspace by
appropriate choice of the modulation of the parameters.

Remark. The proof in Henry et al. (1982) does not depend on complete integrabil-
ity, and the theorem is stated for a more general class of nonlinearity. The result of
this paper goes immediately over to this class of nonlinearities.

Stability with Respect to Perturbation of Equation. It is the aim of this paper to
prove the modulational stability in an appropriate norm of kink solutions under
the action of an appropriate class of perturbations εg over an appropriate time
interval. Thus we consider an initial value problem for (1.1) with initial data close to
a kink, and ask for how long, and in what norm, does the solution look like a kink,
possibly with velocity and centre changing in time. Modulational stability means
the kink parameters are expected to evolve in time - see (1.20), (1.21). The
precise meaning to be attached to the word appropriate is part of the problem - see
the statement of the main theorem and the comments at the end of this section,
as well as the following discussion. The proof does not depend on complete
integrability and could easily be written out for the class of nonlinearities of the
equation considered in Henry et al. (1982). Before launching into the proof we
discuss why such a statement is expected to be true. As for stability with respect to
initial data, the basic point is the spectrum of the linearised operator L. In the
argument of Henry et al. one can heuristically think of stability as being due to the
possibility of choosing the centre of the kink (as a function of time) in such a way as
to push the linearised motion onto the oscillatory subspace, i.e. orthogonal to the
zero mode. We would like to do a similar thing, but there are two immediate
difficulties:

Question (a). The kink will presumably accelerate under the influence of the
perturbation, so as well as choosing the variation of the centre it will be necessary
to choose the variation of the velocity, presumably in such a way as to force the
linearised motion onto the oscillatory subspace. What are the equations for the
modulation of u,CΊ

Question (b). Even if the motion is confined to the oscillatory subspace, does the
perturbation produce a large response over long times? The answer to this leads to
the important heuristic requirement that the perturbation be slowly varying in the
Lorentz rest frame of the kink (see the end of this section for the most general types
of perturbation allowed).
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To answer these questions we first describe the basic strategy of the proof. We
make an ansatz for the solution

T

X-lu- C(T)

), Z = =_ , (1.9)

C(T) = C0(εT) + εC,

u(T) = u0(εT) + εύ(T) (^p= J!_ = Po(εT) + εp(T)) . (1.10)

The aim is to bound 0, w, C for times of 0 - by appropriate choice of the time\ f i /
variation of M, C. So we calculate the equation for θ by substitution into (1.1) as:

θττ - θxx + cosθκ(Z)θ=f™ + ε/(2) =f(T, Z, θ, C, C, p9 p, p), (1.11)

where the function / is written out explicitly in appendix zero. As noted above the
crucial point is the behaviour of the linearised equation - in particular the fact that,
orthogonal to the zero mode, the motion is oscillatory. This suggests the following
zero-mode/oscillatory mode orthogonal decomposition:

Θ(T, X) = a(T)θ'κ(Z) + Θ*(T, X) f Θ'K(Z)Θ*(T, X)dX = 0 . (1.12)

The strategy for the proof is now given by the following answers to the questions
above:

Answer to question (a). It turns out that an appropriate choice of — , — allows the
dT dT

supression of the dominant growth in α, i.e. in the zero mode. This can be seen by
projecting Eq. (1.11) in the two direction corresponding to the action of the
infinitesimal symmetries on the kink: θ'κ, Zθ'κ corresponding to translation and
Lorentz invariance. This leads to identities in appendix two which are used to
estimate α in the proof of the central Lemma 2.3. This calculation is a rigorous
version of a formal asymptotic argument for the modulation equations due to
McLaughlin and Scott which is outlined below, after the statement of the main
theorem.

Answer to question (b). To see how to estimate the oscillatory part, we notice the
fact that once the zero mode is excluded we can think of (1.11) as an infinite
dimensional version of the perturbed 1-D oscillator:

* X + X=f(εT) + εg(X]

which remains bounded for times of 01 - ). A proof of this which nicely general-
\ ε /

ises to our case is as follows—if we calculate the rate of change of energy
E = X2 + X2 and then integrate again, integrating by parts the / term, we find the
inequality

\E(T)\ g £(0) + E1/2(0)|/(0)| + \f(sT)\\EV2(T)\

T
+ ε$\f(εT')X-g(X)X\dT'
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from which long time boundedness of X can be deduced from GronwalΓs inequal-
ity, for suitable / g. To find an "energy" for our case, which allows a generalisation
of this proof, recall that if we consider the linearised equation about a static kink:

then the energy given by

p UT + OX -| ^v,o^/Kv/

j dX
-00 ^

is preserved. Next consider linearisation about a uniformly moving kink at speed
u - the relativistic version of this result is the conservation of the following
linearised energy:

E(T)= J — — h uθτθxdZ . (1.13)
-00 ^

It turns out (see Lemma 2.1) that for times of order -E is bounded if α is bounded,
ε

just as in **, as long as the perturbation is slowly varying in time in the rest frame of
the kink - this means it should be a function of Z, εT as described at the end of this
section in detail. This gives the answer to question (b). We emphasize that the
nonlinearity couples the zero-modes and oscillatory modes, so estimations of E, α
must be done in tandem. The significance of the quantity E stems from the
following proposition:

Proposition 1.1. There exists a number c such that:

|| θ(T) II ^ c || γ(T) \\ (\\ E1/2(T) \\ + || α(Γ) | | ) , (1.14)

where

110(7-) || = max {|0Γ(r)|2 + |0(r)|Hi}, (1.15)
Γ'e[0,Γ]

where \Θ(T)$ = $\Θ(T, X)\2 dZ and\θ(T)\2

Hl = \Θ(T)\2

2 + \ΘX(T)\2

2 and for functions
of time f:

| |/(Γ)||= max |/(Γ')| . (1.16)
T ' G f O . T ]

Proof. See Appendix 1.
Thus we see that to estimate θm H1 (and hence pointwise by Sobolev's lemma)

we only need to estimate E and α. The estimation of £ similar to ** is carried out in
Lemma 2.1, while in Lemma 2.3 we find equations for wr, Cτ which ensure α grows
slowly. These are the crucial steps which lead to the following:

Main Theorem. Let the perturbation g = g(θ) be a smooth function such that

g0(Z) = g(θκ(Z))eL2(dZ). Then for sufficiently small ε there exists T* = θί- such
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that for T ̂  7^ there is a unique solution to the initial value problem:

0ΓT-0M + sin 0 + e0 = 0, (1.17)

0(0, X) = 0*(Z(0)) + εθ(0, X\

ΘΓ(0, X) = , , 0i(Z(0)) + ε0τ(0, *) , (1.18)
x/1 - w(0)2

w/zm? (0(0, X), 0Γ(0, JT))e JFf x Θ L2, o/ ίΛe /orm:

r
X - $u- C(T)

Θ(T, X) = ΘK(Z) + ε0(Γ, X) Z = - ===== - , (U9a)

where 0eC([0, ΓJ, tf1), 0ΓeC([0, ΓJ,L2)

C(3Γ) = C0(εΓ) + εC

u(T) = u0(εT) + m(T) =>p= — = Po(εT) + εp(T)

with p, ύ, C, —, —, | 0 | / f i ( R ) bounded independent of ε, and t/0, C0 the solutions of
dT dT

the zeroth order modulation equations:

m^ = εw0(l - M§) f g(θκ(Z))ZΘ'κ(Z)dZ C0(0) = C(0), (1.20)
^ -00

+ 00

ιφo(l - wg)-1 / 2)τ = mpo.r = e J g(θκ(Z))θ'κ(Z)dZ u0(0) = «(0), (1.21)

where p0 = , is the momentum per unit mass and m = 8 is the mass of the kink
V 1 ~u°

defined in (1.5), (1.6).

Proof. This is carried out in Sect. 2. Derivation of certain identities and local
existence theory is in the appendices.

Remark. It will appear in the proof that one bounds not only || 0Ί| but also the

momentum p = —^=^ on the time interval [0, Γ#]. From this it follows that the
V 1 -u2

velocity is bounded away from one, i.e. the kink velocity cannot approach the speed
of light. The perturbation theory is not expected to be valid at the speed of light.
The perturbation theory is however valid near u = 0 which is not a preferred point
from the relativistic viewpoint. This is in spite of the fact that the asymptotic
derivation of the modulation equations due to McLaughlin and Scott (1978), which
is given below, degenerates at u = 0.

Remark. If the further condition is added that the initial data satisfies
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then strong differentiability in time of the solution can be deduced. Indeed one can
produce a smooth classical soolution for smooth initial data - see (Stuart (1990))
for full details. The basic point is that by Sobolev's lemma the solution is bounded
pointwise, so the growth in higher order Sobolev norms can be controlled.

Remark. The proof works for much more general types of perturbation, as de-
scribed at the end of this section. We also emphasize again that the proof works for
more general nonlinearities than sin, e.g. the class used in (Henry et al. 1982).

Formal Calculation of the Modulation Equations. We now present a formal calcu-
lation of the modulation equations from MacLaughlin and Scott (1978). The idea is
to use the basis of solutions to the linearised equation obtained from the inverse
scattering method (by differentiation with respect to the scattering data.) This basis
divides into "discrete" and "continuous" modes, the discrete modes being given by
differentiation with respect to the parameters u, C. The philosophy is that it is
important not to excite the discrete modes if the response is to be small, but the
continuous modes do not matter as they are oscillatory in time. Thus the modula-
tion equations are chosen to make sure that the error term / does not excite the
discrete modes. The discrete modes are given by differentiation with respect to the
kink parameters u, C which form the discrete part of the scattering data. This gives
two orthogonality relations for the error term / which give, to highest order in ε,
the modulation equations (1.20), (1.21). The calculation is most simply done by
writing Eq. (1.1) in first order from:

d ί Θ \ ( 0

dT\θτ) \dxx-sm( )

We now substitute in an ansatz corresponding to (1.9), which leads to the following
linearised equation:

d ί Θ \ ( 0 1\ / ΘKCC + θκuύ
*** ~ \ = \ + , Λ , M

dT\θτJ \-dxx + cosθκ(Z) OJ \g + ΘK,TCC + θκ,τuύ

Here we are considering Z, defined in (1.9), as a function of u, C, T with J^ u
thought of as a function of T only. We have two elements of the null space of this
linearised equation provided by differentiation with respect to u, C. We will apply
the Fredholm alternative; however the linear operator is not self-adjoint so we take
the null space of the adjoint operator instead. This leads to the following two
vectors:

κ,τ

We now require that the inhomogeneous term in *** be orthogonal to these
elements. This gives the modulation equations (1.20), (1.21). We remark that the
method is like a time-dependent Fredholm alternative; however the interesting
point is that the inverse scattering approach gives an enormous number of solu-
tions to the linearised equations, but only the two corresponding to n1, n2 are used
for the orthogonality conditions. This is because the other solutions are oscillatory,
and therefore supposed to be less excitable. This is only the case if the perturbation
is slowly varying in time. The result of the paper can be thought of as a rigorous
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I

justification for this time-dependent Fredholm alternative. Lemma 2.3 provides
a rigorous version of the above calculation, while the fact that the radiation
is not excited by slowly varying perturbations is expressed rigorously by
Lemma 2.1.

Summary of the Rest of the Paper. The heart of the paper is Lemma 2.3, which
gives an a priori estimate for the growth of the zero mode, α (defined by the
decomposition (1.12)), subject to the modulation equations (1.20), (1.21). Together
with the a priori estimate of the linearised energy E in Lemma 2.1, this gives, via
Proposition 1.1, an a priori estimate for θ for times of order 1/ε. These estimates
depend on identities which are proved in appendix two. There is a difficulty
however in that this a priori estimate is for the coupled ODE-PDE system formed

by the equation for θ, (1.11), and the modulation equations. These are coupled
because the full modulation equations for M, C, as opposed to w0, C0, contain 0(ε)
terms depending on θ. Thus to complete the argument it is necessary to prove the
local existence of solutions to this system in an appropriate norm for a continua-
tion based on an a priori estimate. It is also necessary to check that these solutions
satisfy the a priori estimate. This is done in appendix three.

Notation. Throughout this paper we use the following notation:

- The fast time variable is Γ, while ί = εT is the slow variable; these are not
treated here as independent variables, as in the multiscale method, but as alternat-
ives to simplify notation. A function of t with derivative bounded independent of
ε will be referred to as slowly varying. The same applies for spatial functions with
x = εX.

- For functions of time, / we use a dot to denote --— = — =/
ε di at

- We shall frequently use the change of variables

X-]u(*T')dT'-C(T) _π
z =

V 1 - "CO2

(1.22)

in which S is used to distinguish what is being kept constant on differentiation, i.e.
d d

~dS = ~dT z
- As usual we call γ = (1 — u2)~1/2. u represents the speed of the kink, and has

magnitude less than one; it is related to the momentum (per unit mass) by p = yu

and u = , in terms of which y = ^/\ + p2. The same notation with sub-

index 0 will be used for the 0(1) terms in the expansions (1.19).
- The mass and moment of inertia of the kink are defined by:

m = J 0'x

2(Z)dZ(=8), /= { Z2θ'l(Z)dZ . (1.23)
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We will use the norms for θ:

\\Θ(T)\\= max
Γ'6[0,T]

(1.24)

where \S(T)\\ = \\θ(T,X}\2dZ and \θ(T)\2

Hί = \Θ(T)\2

2 + \ΘX(T)\2

2, and for fun-
ctions of time /:

| |/(Γ)||= max |/(Γ')
7"6[0,Γ]

(1.25)

so in particular | | |^ | 2(y)ll = max [ 0,;τ]l0l2 Notice that dZ = ydX is used in the
definition of the L2 norm. For uniformly bounded momentum this is equivalent to
L2(dX).

- The perturbation term evaluated at the kink is denoted:

0o = g(θκ(Z)) -

To denote maxima over time we shall use the || notation as above.
- Finally we will work within the following finite energy subspace:

SK(T) = {(θ, θτ, θx, p, C)e C([0, Γ], L2(R))3

ΘC2([0,Γ])2:||0(Γ)||, \ \ p ( T ) \ \ £ K } .

(1.26)

(1.27)

It will be clear from the method of proof that the main theorem is valid under
the following conditions which are weaker than those in the statement above.

More General Conditions on the Perturbation. We can take far more general
perturbations than those given in the statement of the main theorem. For example
we may take g to be of one of the following forms:

first type g = g(εT, εX, θ) = g(t, x, θ) .

second type g = g(εT, Z, θ) = g(t, Z, θ),

where g is a differentiate function

0: R + x R x R - > R . (1.28)

We define in the first case

and in the second case

We assume further that there exists a time interval [0, T+ ] = 0, — , where t+ i

independent of ε, on which g, g0:

g(θκ + 60) -

ds
^ A „ (1.29)
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where A'is a number independent of ε, and for (θ, p)eSK(T+),

g(θκ + εθ) - g0
g(θκ + εθ) -

(TV) ^ C(K) .

(1.30)

These are easily seen to be satisfied for g as described in the statement of the main
theorem. Here p is the momentum defined in the previous notation sub-section. We
will carry through the proof for the second type of perturbation, as this is the most
extreme.

Remark (slowly varying perturbation). The interpretation of these conditions is that
the perturbation is allowed to be a nonlinear function of θ, and also to have
appropriate slow variation in time, and fast variation in space. This must be
interpreted with care. Any fast variation in space must be in the local Lorentz rest
frame, otherwise relative to the kink the time variation will appear to be fast. In the
notation we have been using, this means g takes either of the forms above or
a combination thereof. The second form, with g depending on Z, may seem strange
from the standpoint of perturbation theory - how can the perturbation know
where the kink is, and what its speed is? The answer is that asymptotic theories due
to Neu (1987), also discussed in Stuart (1991) give rise to perturbations of this
form.

Section 2

In this section we will prove the main theorem stated in the introduction. We recall
that we have made a "zero-mode/oscillatory-mode" decomposition of the error ^in
(1.12). We also recall from Proposition 1.1 that θ is estimated in H1 by £, α. The
estimation of £ is contained in Lemma 2.1, and that of α in Lemma 2.3, where the
modulation equations first appear. These lemmas rely on identities derived in
appendix two. Lemma 2.3 leads to a coupled ODE-PDE system for u, C, θ. Local
existence for this system is proved in appendix three together with the fact that the

growth of the momentum p = = yu is determined by A to O(ε) - see

Theorem 2.5. As remarked in the introduction, boundedness of the momentum is
needed for validity of the asymptotics. Combination of this local existence with the
basic estimates finally proves the theorem. We remark that although the results in
Lemmas 2.1, 2.3 are stated as a priori estimates for smooth solutions, they are valid
far more generally - in particular for the weak solutions to the ODE-PDE system
constructed in appendix three: see Theorem 2.5.

Notation. We define

W(T) =

Notice that ||E1/2|| ^ 1 +

\\El'2(T)\\'
Y =

\\E(T)\\

\ \ E l ' 2 ( T ) \ \ '
(2.1)

Lemma 2.1 (Spectral Estimate). Let θ be a smooth solution to Eq. (1.11) compactly
supported in space, with u, C smooth functions of time having \u\ < 1. Fix ε1 > 0 then
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i, c2 > 0, independent of ε, such that for ε < ε1:

l«ll + licil)}

g(θκ + εθ) -

g(θκ + εθ) - g0

Proof. This follows from the spectral identity, Lemma A2.1, by estimating all but
one of the integrals in a direct way using the formulae for / in (AO.1-3):

I JM(0T + uθx)dZ\ ^ const. ||β || ||y||4(l -

\$N(θτ + uθx)dZ\^ const. || θ\\ ί \ \ θ \ \ 2 + ε \\ θ\\ ~

I f Θ2(cos ΘK(Z) (Xs - u))x dZ I ̂  εconst. ||

f (0r + Θ2

x)(u + Xs)xdZ I ̂  εconst. || θ \\21| y \\2 \\ ύ \\ ,

J θτθx (εύ - (uXs)x) dZ I ̂  εconst. || θ\\2 \\ y \\2 \\ ύ || ,

Q^Xs is defined in (A2.1). The only term which is treated differently is the term
ίί/1(^r + uθχ) Since we want to obtain longtime behaviour using a Gronwall type
estimate a finite term in the integrand is unacceptable. However we can get rid of
this by integrating by parts as we did for the 1-D oscillator in the introduction, and
taking advantage of the fact that f1 is slowly varying in time, when Z is held
constant. Some care is needed because 6^is expressed as a function of Γ, X not Z, so
the relevant integration by parts formula is

τ ί f f l 5 / 1

-ε\iθ-^ - yuύ)βxdzdτ,

which leads to the estimate:

Zcoast.\\θ(T)\\{\\\g0\2(T)\\

+ εconst. J | | θ~|| |M|4{1 +

which completes the proof.

Corollary 2.2. Under the conditions of the previous lemma 3 c3 > 0 and a polynomial
F! in 4 variables, independent of ε, such that for ε < εlt

Y(T) ί 7(0) + c3(l + W(T)){\g0\2

• β f l
0

\\γ\\3 (

«ll, IICII, II«

\\ + \\C\\)}
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The coefficients of the polynomial depend only on

g(θκ + εθ) - ,
\\\go.,\(T)\\,\\\go\(T)\\9 — —^ (T)

£ 2

while c3 is a fixed number.

Proof. Follows by inserting (2.1) into the previous lemma, taking a maximum over
time, and then dividing by 1 + ||£1/2||.

We now see what is required. We want an estimate for α which can be
combined with this result to give an a priori estimate for the H1 norm of θ using
Lemma 2.1. We obtain this by choosing the time evolution of u, C in a particular
way, as given in the following lemma:

Lemma 2.3. Consider a smooth solution of the perturbed sine-Gordon equation
(1.11), compactly supported in space, for which the time evolution of u, C obey the
equations:

mC = u(l - u2) g(t, Z, θκ(Z))θ'κ(Z)dZ , (2.2)

m(yu\= J g(t,Z,θκ(Z))θ'κ(Z)dZ-εmy3uύC

-ε NΘ'κ(Z)dZ, (2.3)

where Gf> 2 are given in (A2.13-14), and N m(A0.2). Fix ε j > 0 then α, the coefficient
of the translation mode, defined in (1.12), satisfies the following inequality Vε < £].:

- ε ( l + y | ι i | ) J | 7 | 4 P 2 ( | ι i | , | ώ U C | )
0

g(θκ + εθ) - gϋ (2.4)

where c2 is a fixed number and P2 is a fixed polynomial whose coefficients do not
depend on ε.

Corollary 2.4. Under the hypotheses of Lemma 2.3 there exist a fixed number c4 and
" ' g(θκ + εθ) - gΰa polynomial P3, whose coefficients depend only on

that for ε < e^

(T) such

W(T) ^ | M | | ) ί l M I 4 P 3 ( I I C | ] , | | M | | , |I«Ί
0

\ \ θ \ \ 2 ( W + Y ) ) d T ' .
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Remark. The two important things about these estimates are, firstly, that an
ε appears before the integrand, and secondly, the 0(1) term is ~ E1/2 which does
not depend on α as far as the method of estimation goes. Notice that (2.2), (2.3)
reduce to (1.20)-(1.21) as ε -> 0.

Proof. The proof is divided into seven parts, of which the first three are devoted to
proving the following formula for α which does not depend on (2.2), (2.3):

T
— = - yu J Zθ'κ(θτ - uθx)dX + J J (yuZΘ'κf + yuH)dXdTf

y o

+ εy2uύ] J θ f f κ d X - B \ J (γC - y2uύZ)θθ'^dK
O-oo O - o o

Γ Γ +00

-s$muύy2a + ε\ J (G? θ + Gs

2θτ)dXdT' , (2.5)
0 O - o o

where /f is given by (2.7) below. To prove this we use the two symmetry mode
identities (A2.ll), (A2.12), with a special choice of ψ, φ. In Steps 4-7 we choose the
time evolution of u9 C in such a way that this formula leads to the desired estimate.

Step One. Substitute for J θθ'κ(Z) in the scaling mode identity from the translation
mode identity, leading to:

+ α > ~ ~ Ί
J ZΘ'κ(θτ-uθx)dX =

_ yu

+ ε} f (Glδ+Glθτ)dXdT' 9 (2.6)
O - o o

where
ι Γ +00

(2.7)

Γwo. Notice that from (1.12) we have α = — §+_™θθf

κ(Z)dX which implies

f (θk(Z)0Γ - yuθί(Z)θ)dX = ~^+ε ί {(yC - y2t«iZ)θϊθ - 7

2uύθ'κθ}dK .

(2.8)

TTiree. Comparing the results of the two previous steps, we see that if we

choose φ = 1, {// = yu, then — appears in the integrand on the right-hand side of

(2.6). Integrating this by parts leads to the formula for α.

Step Four (choice of ύ). The plan should be clear by now; to obtain a long time
Gronall type inequality, we need to choose the time evolution of u, C in such a way
that the 0(1) terms in the integrand in the above expression vanish. Now write
f = f(1) + εM + εN, as in appendix zero, and integrate explicitly the terms involv-
ing /(1), M:

J ffκ(fw + εM)dZ = m(yu)t - J ffκg0dZ + m(yC\ . (2.9)

The only subtle point is that, as already discussed, in the formulae for ιi, C we do
not want any second derivatives to occur. To take account of this it is necessary to
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integrate by parts the C term in H which arises from the M term, giving:

m(yu\T r +00
yuH = mC + N - j θf

κgdX +
0 I -oo

+ εmγ2uύC + ε f (G[0 + Gjθr + #%)<** JdΓ' . (2.10)
-oo J

Now to make α bounded, we must first choose ύ so that H is bounded. This leads to
the equation:

+ 00

m(yu\ = j* g0(t, Z}θ'κ(Z)dZ - smy2uύC

+ 00

-ε J (Glθ + GZθτ)dZ-ε j NΘ'κ(Z)dZ , (2.11)
— oo

which Eq. (2.3) of the lemma statement. Notice that this choice implies yuH = mC.

Step Five (choice of C). Next we calculate J(/(1) + εM)ZΘ'κ using (A0.1-A0.3),
leading to the formula:

J ZΘ'κ(Z)fdX = muyC- J gZffκdX

εmC2y „ * ? .<>
•f - - + 3εly3u2ύ2

--((uύy2)t) + ε j° NZΘ'κdX ,
7 -00

where / = \Z2θ'l(Z)dZ as defined in the introduction. The idea now is to choose
C so that the formula for α(Γ) contains only finite terms evaluated at Γ, or terms of
the form εJ 0 ^f(Γ / ), so that the Gronwall inequality can be used. Thus we put
yuH = mC and the previous equation into the formula for α (2.5) leading to the
choice:

mC +0°
muyC + -- f g0ZΘ'κdX = Q

yu -oo

which is the equation for C given in the lemma conditions (Eq. 2.2).

Step Six. Now returning to α we are left with the following formula:

y2u +

Λ°°α = -— f Zffκ(θτ-uθx)dX
™ - oo

o < 3 Γ + o 0 τ +o°

m 0 -oo m 0 -oo

. 2, f--- (M?2 t > dΓm m j
T + oo

h - j J (G? 0 + Gs

2θτ)dXdTf

0 m 0 -oo

εv Γ +0°
-J J yuZΘ'κNdXdT' . (2.12)
m 0 -oo
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There is now one last important point. In the estimate stated in the lemma the finite
first term is ~ E1/2, i.e. does not contain α, as is necessary to be a good estimate.
Thus we must decompose the first line in the above formula, and move over to the
right-hand side the part involving α. This is now done in the last step:

Step Seven. We now write:

j Zffκ(θτ - uθx)dX = J Zffκ(θτ + uθx)dX + 2u J (ZΘ'κ)xθdX . (2.13)

Now using the orthogonal decomposition θ = aθ'κ + 0* we find

- — f Zθ'κ(θτ - uθx) dX = - y Vα - — J Zffκ(θτ + uθx) dX
in _ QO m

X. (2.14)

Putting the α term on the right-hand side gives (1 + y2w2)α = y2α, so there is
a cancellation of y2. Finally the lemma is proved by use of Lemma Al.la to bound
\θτ + uθx\29\θ*\2. m
Remark. The formula for C depends on u while that for ύ contains w, ύ, C though
only to 0(ε).

Remark. We have now obtained a coupled system of equations, (2.15)-(2.17)
below, for which we need a local exsistence theorem. We will then be able to prove
the main theorem by combining with the estimates of Lemmas 2.1, 2.3 and their
corollaries. We quote the following theorem which is proved in appendix three:

Theorem 2.5 (Local Existence). Consider the ODE-PDE system:

θττ - θxx + cosθκ(Z)θ =/(1) + ε/(2) =/(Γ, Z, 0, C, C, p, p, p) , (2.15)

mp = m(yu)t = J gQ(t9 Z)θ'κ(Z)dZ — εmy3uύC
— 00

-ε f NΘ'κ(Z)dZ (2.16)

mC = u(ί-u2) g0(t,Z)Zffκ(Z)dZ (2.17)
— 00

with g as described in section one. Then for any initial data satisfying:

+ | f l r ( 0 ) | 2 g , (2.18)

there exists ε2(K, A) such that for ε < ε2 there is a weak solution (θ, p, C)eSK(7]oc)
consisting of p, CeC2([0, Γloc]), 0eC([0, Γtoe], H

1), θτeC([0, Tioc], L
2) with p, C

also satisfying (A3. 15-16) such that for T < 7joc there exist numbers c$(A), c6(K, A)
such that:

\ \ C ( T ) \ \ £ c 5 ( A ) , (2.19)

^ cs(A) + εc6(K, A) , (2.20)

+ (c5(A) + εc6(K,A))(ί + f)) , (2.21)

) . (2.22)
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Furthermore the solutions satisfy the identities in appendix two and hence Lemmas
2.1-2.3, and their corollaries.

Proof. This follows from Theorem A3.1 in the third appendix and obvious esti-
mates of (A3. 12- 16).

Remark. The important thing is that Γloc = 7]OC(X, A) only. A is determined by
g through (1.29), so basically the energy determines the continuation. An important
point is what exactly do we mean by energy? We mean both the energy of the kink,

determined by p or γ = ^/\ + p2, and the linearised "field" energy, related to || θ\\.
As noted in the introduction, the perturbation theory is not expected to be valid as
\u\ -> 1, which corresponds to y, \p\ -> oo . Thus it is very natural that the ability to
continue local solutions depends on bounds obtained for the momentum as well as
||0||. These are provided by (2.21). To see where this comes from the reader must
refer to the reformulation of (2.15)-(2.17) in appendix three (Eqs. (A3.12)-(A3.16)).

We now use this to prove the basic theorem by obtaining an a priori bound for
the solution, which shows that for initial data such that

ιc , (2.23)

then for K large enough any solution obeys:

||p(7;)||,||θ(7;)||^| (2.24)

for a time 71 = 0 1 - 1 . It is then possible to continue the local existence up to this
W

time. The important thing is that K is independent of ε, depending only on A, K.
Recall thatj4 is defined by (1.29-1.30). We wish to combine Corollaries 2.2-2.4 to
estimate || θ \\ using Eq. (2.3) and Proposition 1.1, together with appendix one. Thus
we introduce the quantity:

G (Γ)EE^+ y+| | α | | + | | y | | (2.25)

and try to obtain a long-time Gronwall inequality for this.
Now using || 7 1| ^ 1 we find from (2.2) that || £1/2 || ^ G, from which it follows by

Corollary A 1.2 and (2.21) that

||p || + | |Θ(Γ)|| ^ {1 + c(|p(0)|) + (cs(A) + εc6(K,A))(l + ί)G} . (2.26)

Theorem 2.6 (Estimate for 2.15-2.17). Consider a solution to the system (2.15)-
(2.17) such that (p,θ)eSκ(T+). Fix ε^K, A) as in Lemmas 2.1, 2.3, then for
T < TV, ε < ε1 there exist numbers P(A\ Q(K, A\ R(K, A\ independent of ε, such
that

T
G(T) - G(0) ̂  P + εβ + ε J RG(T')dT' .

o

Remark. The important thing is that P = P(A) only. The Gronwall inequality then
gives the required property of the solution.

Proof. This is obtained by combining the estimates in Corollaries 2.2-2.4 with the
definitions (2.1), (2.2), (2.25) - all the integral terms are dealt with in the obvious
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way. The important thing is the finite term which depends only on A, not K. Thus
we emphasise these terms, and write the integral terms as εj:

Y^ 7(0) + c3{A + 2(|p(0)| + (c5(A) + εc6(K, A)) (I + ί))4

x(l + |^(0)| + c4)} + ε j ,

W ^ W(Q) + c4 + s J ,

| |α| |^ |α(0)| + c4(l + c3(Λ + Y)) + ε f ,

\\y\\ <l + \\p\\ <l + κ + ccs(A)t + ε S 9

where ε < εl9 1+ = εT+ . Addition of these gives the required property.

Corollary 2.7. Fix A, K, then 3ε3(X, A\ Kcr(κ, A) independent of ε, such that for

K > Kcr, ε < εχ(K, A) = min(ε2, ε3)

there exists T* = oί - J such that a solution to (2.15)-(2.17) with initial data
\ ε /

satisfying (2.23) obeys the estimate

\ \ p ( T J \ \ , \ \ θ ( T J \ \ < K / 2 .

Proof. Recall ε2 appeared in Theorem 2.5. We apply the Gronwall inequality to the
a priori estimate:

G(T) ^(P + εQ + G(0))eεRT ,

so that as long as the logarithm is positive we can, by (2.26), choose:

7; = mini Γ+,

_ K
n

εR \2(l + c(|p(0)| + (cs(A) + εcδ(K, A)) (I + t)))(P + εQ + G(0))

. /C 5(l + ί+) + κ P + G(0)\
ε3 = mm - - — , - ,

V c6(l + ί+) Q J

Kcr = 8(1 + 2c(κ + c5(l + ί+)))(P + G(0)) . (2.27)

Recall that T+ is the time for which the assumptions hold, presumed to be of order

- so that t+ is a fixed number independent of ε.
ε

We now combine this with the local existence theorem to find that the

perturbation theory is valid up to a time T* = ol - 1:
\ ε /

Theorem 2.8. Consider the perturbed sine-Gordon equation with the perturbation
satisfying the conditions in the statement of the main theorem, the more general ones
given at the end of section one, and with initial data of the form (1.18) subject to
(2.23). Then given any A,κ>Q from (1.29), 3ε*(K9 A, κ\ Kcr(K, A, K) such that
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Vε < ε#3 jΓ* = 01 - \ such that if MO, C0 are determined by (1.20, 21) there is a solu-
\ε J

tίon to the initial value problem (1.17-18) on [0, Γ*] of the form in (1.1 9a, b) with
(θ,p)eSκ(T*)and \\p(TJ\\, || C(7;)|| g const. (X, X).

/ To prove this we now combine Theorem A.3 with the previous corollary.
This gives a solution to (2.15-2.17) with θ,peSκ/2(T*). Recall that p = yu. This

then implies that over any time interval of order - the solutions to Eqs. (2.16-2.17)
ε

are within ε of the solutions of (1.20), (1.21), i.e.

independent of ε.

Proof of Main Theorem. The existence part of the main theorem stated in the
introduction follows directly from this lemma. Uniqueness of the solution is
standard. It is proved in Martin (1976) or can be proved by energy estimates (with
a smoothing of the data as in appendix three).

Appendix Zero

Here we display the explicit form of the error terms in (1.11):

fM = - g0(t, Z) - 2yu(yC - uύγ2Z)θfί(Z) + ((yu)t + y*u2u)ffK(Z) (AO.l)

and f(2) = M + N, where

M ' Λ ,^1-cos 80 , ^ βfl-s in fig [0(t,Z,e)-00(t,Z)
N = sin ΘK(Z) 2 + cos θκ(z} 2 ]

o o f o

(A0.2)
with

M = -(γC- uύy2Z)2θ'^(Z) - (Z(uύy2)t

- (yC)t - fuύC + (uύy2)2Z)θ'κ . (A0.3)

Appendix One

In this appendix we prove Proposition 1.1 as a simple corollary of the following
lemmas:

Lemma Al.la.
+ co f 1 - -

E= J \-(θτ + uθx)
2 +

Lemma Al.lb.
- (1 - - "I^^Γ "Γ VX) Γ W 3 l / K V ^ ; i / jr-,

E^ j dZ,
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which are immediate consequences ojf (1.8). Thus we see that control over E and
α gives control over the H1 norm of θ. In fact:

Corollary A1.2. There exists a number c such that

\ \ θ ( T } \ \ ^ c \ \ y ( T } \ \ ( \ \ E ^ ( T ) \ \ + \\

Proof.

|0Ίi = |βΊi + ̂ 2E + =

so since |cosθx | ^ 1 we find from Lemma 2.1b,

= l - | u |

so all together we find

1 - | w |

for some constant c. The result follows from y = (1 — u2)~1/2.

Appendix Two. Three Identities

In this appendix we prove three identities by which we can estimate the oscillatory
and secular time evolution of the appropriate "modes." We recall that we have
made the basic "zero-mode/oscillatory-mode" decomposition in (1.12), and we
know from the proposition that θ is estimated in terms of E, α. Thus we derive
identities for E, α here. The first identity relates to the evolution of £, while the
second two give the projection of Eq. (1.11) in the two directions θ'κ, Zθ'κ spanned
by the infinitesimal variation of kink parameters. We remark that the identities in
this section, while derived as a priori estimates for smooth solutions are valid far
more generally. In particular they are valid for the class of weak solutions cons-
tructed in appendix three.

Now recall that for a uniformlyjnoving kink (i.e. u, C constant) the energy E is
constant if ̂ is a solution of θττ — θxx + cos ΘK(Z)Θ = 0. The first identity consists
of the generalisation of this to the case where the kink parameters M, C vary slowly
in time due to the appearance of an inhomogeneous term / on the right-hand side.
This gives the following

Lemma A2.1 (Spectral Identity). Let θbe a smooth solution of Eq. (1.11) and let E be
as in (1.13). Then for slowly varying u, C we have the following identity:

uθx)dZdT,
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where f is as given in appendix zero and

— = u + ε(C- γuύZ) (All)

form (2.2).

Proof. Follows from a calculation of the time derivative of £, followed by integra-
tion by parts in space. Notice that the integral is defined with respect to Z so since
Θ = Θ(T9X), we use the formula

to differentiate under the integral sign. (See (1.13).)

We next give two identities which relate to the time evolution in the direction of
the symmetry modes θ'κ, Zθ'κ. To do this it will be useful to write Eq. (1.11) in first
order form. Let

2 _ _ _ . ^ Λ | ,, (A2.3)

then

—
dT~\d2

x-cosθκ(Z) Q

where / is as defined in appendix zero.

Lemma A2.2. Let U be a smooth solution of the first order Eq. (A2.3), compactly

supported in space, and let V = ( 1 be a pair of smooth functions, then:

~ Π { ̂  + ̂  } U2dXdT = J J V2fdXdT . (A2.4)
o I 01 ) o

Proof. This is obtained by doing the calculation for the adjoint of the first order
differential operator in (A2.3), and leaving in nonzero boundary terms.

We now apply this for two special K's. The first V is obtained by differentiation
with respect to C and corresponds to translation invariance

where φ is a slowly varying function of time to be chosen later. For the other we
could differentiate with respect to the velocity parameter, but this gives rise to
undesirable time dependence, so instead we just take the part of this which is
independent of the translation mode. As noted above this is given by the action of
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the scaling vector field, so we take the second V to be:

vs _ (n\ _ , (yuθ'κ(Z) + yuZΘ'ί(Z)\
V-\vl)- +( z&κ(z) )' (A16)

where φ is a slowly varying function of time to be chosen later.

Remark. In both of these the first component is, to order ε, the negative of the time
derivative of the second component. Thus the factor multiplying U2 in the integ-
rand in (A2.4) is 0(ε), and the factor multiplying U1 reduces to

dT2 dX2

i.e. the error to which V2 is a solution to the linearised equation. For the translation
case this is 0(ε), while in the scaling case there is a finite error due to the
noncommutativity of the scaling vector field and the d'Alembertian. This is import-
ant for the equations of motion as we shall see later. The precise results are:

The translation mode.

Vl + d-^ = sφ(y2uύZ - yC)θ'ί(Z] + εφθ^(Z), (A2.7)

-^ ~ cosθκ(Z)V2 = sφ(y2uύZ - yC)yuθ'H(Z) + ε(φ(γu)t + φγu)ffί(Z) .

(A2.8)

The scaling mode

fiys
Yι+ = εψtfuύZ - yC)(θ'κ(Z) + Z0£(Z)) + sψZffκ(Z) , (A2.9)

Z - yC)(2yuffί

ffκ) . (A2.10)

Using these formulae we now obtain the following

Lemma A2.3 (Symmetry Mode Identities). Let θ be a smooth solution to Eq. (1.11),
compactly supported in space. Then we have the following two identities valid for
φ, ψ arbitrary slowly varying functions of time:

Translation mode identity.

φ 7° (yuffί(Z)θ + θ'κ(Z)θτ)dx\ = J φ I θ'κ(Z)fdXdτ
-oo JO 0

(A2.ll)



Perturbation Theory for Kinks 455

Scaling mode identity.

φ f ZΘ'K(Z)(ΘT - uθx)dxΎ = ϊ ψ f (Zθi(Z)/ + 2θ^(Z)θ)dXdT
-oo JO 0

+ ε f J (Gf θ + Gs

2θτ)dXdT, (A2.12)
o

where

Gf = φ(y2uύZ - γC)yuθ^(Z) + (φ(yu\ + φyu)θ'κ(Z) , (A2.13)

Gf - <M2κώZ - yC)flϊ(Z) + 0θi(Z) , (A2.14)

Gf = ψ(y2uύZ - yC)(2yuθ^(Z) + yuZff£(Z))

) + 0i(Z)) , (A2.15)

i(Z) H- Z6>^(Z)) + ψZΘ'κ(Z) . (A2.16)

Appendix Three. Local Existence

In this appendix the main result is Theorem 2.5 (here rewritten as Theorem
A3.1) — local existence for the system (A3.1)-(A3.3) in the appropriate spaces — H1

for θ. This is a consequence of the boundedness and Lipshitz properties of the
FI expressed in Lemmas A3.2-A3.4. The method of proof is to produce a sequence
of iterates which are uniformly bounded and form a Cauchy sequence.

Discussion. We have now obtained the following set of equations:

θττ ~ θxx + cosθ*(Z)θ =/(1) + ε/<2) =/(Γ,Z, 0, C, C,p,p9p) ,

mp = m(yu)t = J #0(ί, Z)θ'κ(Z)dZ — εmy3uύC
— oo

-ε $ (G"[θ + Gl§T)dZ - ε J NΘ'κ(Z)dZ , (A3.2)

mC = M ( l - u 2 ) flf0(ί, Z)Zffκ)(Z)dZ . (A3.3)
— oo

There are two things that we want to do with these equations:

(1) Show that there exist local solutions to this system with \\p(T*)\\ and ||#(ΓJ||
bounded and with a continuation theorem depending only on these norms.
(2) Show that these solutions satisfy the identities in appendix two necessary for
the proof of the estimates in Lemmas 2.1-2.4. This is done by considering the limits
of approximate identities for the smoothed iterates.

It will then be possible to prove the main theorem by continuation of the local
solutions by showing that the estimates of Lemmas 2.1, 2.3 and their corollaries

imply that the norms ||p(Γ)|| and | |Θ(Γ)|| remain bounded for times of order -- see
ε

section two.
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The proof of the local existence theorem is not difficult once the equations are
rewritten in the right way. The important thing is that the modulation equations
can be solved for p, C as nice functions of θ, θτ, p, C. Differentiation of these
expressions gives formulae for p, C which can be substituted into /, the right-hand
side of (A3.1), leaving the system in an appropriate form for existence theory. We
now write this out explicitly:

Calculation of First Derivatives. The formula for C is precisely that given by the

equation of motion; it is convenient to introduce the variable p = . = yu in

place of u, in terms of which γ = ^/l + p2 and

mC = py~3$ g0(t, Z)ZΘ'κ(Z)dZ . (A3.4)

The formula for p can be found from (A3.2) by using the formulae for Gf , G£ in
(A2.13-14) to bring all the terms involving p onto the left, leading to:

P = ^> (A3.5)

where

U = f g0ffKdZ - ε J NΘ'κdZ + εCpy J ff^θdZ + εyC J θ'ί§τdZ , (A3.6)

and

D = m + ε J θ'ίθdZ + sp2y~4 J g0ZΘ'κdZ

+ εy~2p J ZΘ'ίθτdZ + εy-y J ZffίθdZ . (A3.7)

Calculation of Second Derivatives. The second derivative of C can be expressed in
terms of ύ via the formula

f

κdZ\ + (^}$g0ZΘ'κdZ , (A3.8)mC =

and hence in terms of u, C, θ via the previous paragraph.
The situation with p is more complicated because θττ appears on the right-

hand side on differentiation, which is unacceptable because we want to estimate
everything in terms of || θ\\. Thus we substitute for θττ from Eq. (A3.1), and remove
the terms involving p to the right-hand side. Thus we define the part of / not
involving p as /*:

f*=f+EPZffκ(Z). (A3.9)

Now we differentiate the above formula for p, and inspection shows that since Zθ'κ
is orthogonal to Zθfκ, p occurs only from Uτ. This leads to:

£7* 17*
P = - : = -^> (A3.10)

εmpC D*
D + -^-

2y
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where

U* = p I θ'k(θτ + Xsθx)dZ + e(γ- V), f g0ZffκdZ

+ εpP2y~4 ί β0,,Zθ'κdZ - y-2pp I (XsZΘ'ί)xθTdZ

- εp(y-2p), J ZffίθτdZ - Γ 2 W> ί (ZffβxθxdZ

- γ-2pp I Zffί(cosθκθ-f*)dZ - Ig0,,θ'κdZ + J NsffκdZ

- ε(Cpy), J ffίθdZ - Cpy J ffί(θτ + Xsθx)dZ

- ε(γC), J &ί§τdZ + γC J ((0£)A + cosθJff^dZ

(A3.ll)

where Xs is defined in (A2.1), rewritten as a function of p,C,Θ,θτ,θx using
(A3.4)-(A3.5). The point of these formulae is not the details, but the fact that they
allow us to write the system (A3.1)-(A3.3) in more natural form with only lower
derivatives on the right-hand side. This leads us to consider the system:

^=εί> = F,(T9 C(T\p(T\ θ, θτ, ΘX(T)) , (A3.12)

θττ -θxx + θ = F2(T, C(T\ p(T\ θ, ΘT9 ΘX(T)) , (A3.13)

Af~~*

~^=εC = F3(T, C(T\ p(T\ θ, ΘT9 ΘX(T)) , (A3.14)

where F2 =/+ (1 — cosθ)θ, rewritten as a function of the stated arguments using
(A3.4)-(A3.11). We shall also write:

^ = ε2p = F4(T, C(T\ P(T\ θ, θτ, ΘX(T}}, (A3.15)

^2 = £2C = F5(T, C(T\ p(T\ Θ9 θτ, ΘX(T)) , (A3.16)

in terms of which

F 2-(l-cos^(Z))θ+/(Γ,Z,θ,C,p,ε- 1F 3,ε- 2F 5,ε- 1

JP 1,ε- 2F 4).

(A3.17)

We will now prove the following local existence theorem which is equivalent to
Theorem 2.5 used in the proof of the main theorem.

Theorem A3.1. Let g be as described in the introduction, then for any initial data
satisfying:

;$, (A3.18)

there exists a weak solution to (A3.12)-(A3.14) consisting of

p,CeC2([Q, Γloc]),θ~eC([0, Γ^H1), θτeC([_Q, TloJ, L2)
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with p, C also satisfying (A3. 15-16) such that for T < Γloc,

\ \ p ( T ) \ \ , \ \ θ ( T ) \ \ ^ K . (A3.19a)

Furthermore the solutions satisfy the identities in appendix two and hence Lemmas
2.1-2 A.

Remark. Notice the slightly surprising fact .that p, C are C2 even for such weak
solutions. This is because even though θ is not strongly differentiable in time, the
formulae for derivatives of p, C involve inner products with very rapidly decreasing
functions like θ'κ so only differentiability with respect to some distributional
topology is needed.

Proof. We use the iteration scheme:

θτ+τ υ - °xx " + θ('+ υ = F'3 , (A3.20)

f+ " = Ft (ί, />, C« θ(ί\ 0(;>, θ(2) = Fi , (A3.21)

1> = F3 = u(ί)(l - w(i)2) 0Z0'x(Z)dZ = F1

3 , (A3.22)
— oo

with initial data:

(A3.23)

where 0(

0°, 0
(

0°r are C" functions which satisfy:

\θ(o - 0(0, )lnι ^ const.2-1' |θ(

0% - 0T(0,-)lL2 ^ const.2-' (A3.24)

and F1

3 are CQ approximations to F3 evaluated at the previous iterates:

\F1

3 - F3(t, p(i\ C(i\ 0(0, θ(*, θχ)\2 ^ const, x 2"' . (A3.25)

This is possible as the previous iterates are CQ and the other terms in F3 are at least
L2 using the asssumption in (1.29)-(1.30). We do this in order to prove the integral
identities of appendix two by approximation of those for the iterates, for which
integration by parts is justified.

To prove the local existence we find a time interval on which all the iterates are
uniformly bounded. We then show that they converge on this interval. We also
calculate the approximate identities corresponding to those in appendix two for
each iterate so their limit can be taken. The convergence of the iterates depends as
usual on the Lipshitz properties of the right-hand sides. These follow directly from
the following fact:

Lemma A3.2. Consider smooth functions θ,p,C such that (99p)eSK(T+): then
3ε2CK, A) such that Vε < ε2 3c(A)9 c(K, A) independent of ε, such that for T^T+:

) 9 (A3.26)

, ||C(Γ)||, ||C(Γ)||, \ \ p \ \ £ c ( K , A ) . (A3.27)

Proof. Since (θ,p)eSκ(T+) (1.21) we know from the hypotheses on g in
(1.29)-(1.30), that all the terms in the numerators in (A3.12)-(A3.15) are'bounded
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I

by some number depending on K, A. Given this the lemma depends on the fact that
m = 8 is a fixed number while the denominators D, D* which occur in (A3.12-15)
are schematically of the form

m + B(K, A)ε9 m + £*(K, A)ε , (A3.28)

so choosing

/ 8 8 \
(A3.29)

we can bound all the expressions for ε < ε2 using the formula

aε + b b ~ ad — be

cε + d ~ ~d •* (cz + d)2

Further inspection of (A3. 12) gives (A3.26). Notice from (A3. 11) that further

derivatives rise to O \ - \ terms so that in the phraseology introduced at the end of

section one, p and p are slowly varying but p is not since pm = 0\ -}.
W

Lemma A3.3 (Boundedness of Ft). With the conditions of Lemma A3.2 the functions
{Ft}l (A3.12)-(A3.14) are bounded in the following norms:

I I ^ K , , (A3.30)

where for ε < ε2(K, A), K% is a number depending on K, A, t + , where t+ = εT+ .

Lemma A3.4 (Lipshitz Properties of Fj). Under the conditions of Lemma A3.2 with
two triples of smooth functions θί9Ci9pi for which (θi,pi)ESκ(T+) we have the
following local Lipshitz bounds for the Ft:

, C1>Pl, θίt θ l ι Γ, θltX) - F1>3(Γ, C2,Pl, Θ 1 } Θ1<τ, Θ1<x)\ ^ Lipld - C2 | ,

, Cί,pl,θl, Θ1<τ,θl<x) — F1<3(T, Cι,p2, 0 ι ,0ι ,τ> Θ1<x)\ ^ Lip|pi — p2\ ,

; ClίPl, θlt θltT, θlιX) - F1>3(Γ, CliPl, Θ2, Θ2,τ, Θ2,x)\

\F2(T, C^p^θi, 01>Γ, θltX) - F2(T, C2, Pl, θltθltT, θίιX)\2 £ Li

\F2(T,C1,Pl,θ1,θ1,τ,θ1,x)-F2(T,C,P2,θ1,θ1.τ,θ1,x)\2£Up\Pl-P2\,

\F2(T, C!,^!, ΘL θ l j T, θi, x) — ̂ (ϊ1. C, p, Θ2, Θ2,τ,

/or some number Lip(K, /4).

We take the zeroth iterates to be constant in time at the initial values and then
generate further iterates from A3.20-22. The iterates are smooth and compactly
supported in space on account of the smoothings introduced in A3.24-25. The
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basic estimates for these iterates are:

\Q)\\ + ]\F2(
0

|p(s)mi ^ IP(S)(0)I + I \F<{>(T')\dT' , (A3.31)
0

Γ

\C(ί}(T)\ ^ |C(0(0)| + J \F$(T')\dT' . (A3.32)
o

Uniform Boundedness inH1. The first step is to find a time interval on which all the
iterates of θ are bounded in H1 and also the momentum by K. We see from these
estimates that if (θ(ί~1),/-1))e;cK(Γ) then from Lemma A3.3 and (A3.31-32) we
have:

Z K/2 + Kt ,
0

and since the zeroth iterate is bounded by K/2 we find by induction that for

T < Γloc = min I T+ , Tκ = - — all the iterates are bounded by K.
V 2K*J

Convergence of the Iterates. We now show the convergence of the iterates obtained
in the H1 norm. Convergence follows from the Lipshitz properties of Ft expressed
in Lemma A3. 4. Indeed if we take the difference between successive equations for
the iterates and apply (A3. 31-32) we find

_ 0(0 i i ^ const. (i + τ)2~l + 3Lip j (\p(ί) - p(ί

o

from which convergence in H 1 follows using the fact that if Γ(0) is constant and

T

7(0 ^f Y(i- l) + const.2- ί,
o

then

T1

7(0 ^ 7(0) — + const.2~^2Γ ̂ 0 as i -> oo . (A3.33)

Notice that convergence is uniform on [0, 7]oc].

Convergence to a Weak Solution. The fact that the solution solves the equation
weakly follows from the fact that θ converges pointwise by Sobolev's lemma and
g is continuous so Lebesgue's theorem allows passage to the limit.
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Regularity. The strong continuity in time, i.e.:

0eC([0, rLtf^R)), (A3.34)

(A3.35)

follows from the uniform convergence of the iterates in the interval [0, Γloc]. In
order to deduce strong differentiability in time, however, it is necessary to assume
an extra spatial derivative for the initial data. This can indeed be done, as far as the
initial data allows, producing smooth solutions if necessary, see ([Stuart 1990]).

More surprising is the fact that the limit functions p, C are twice differentiable
in time even though θ is not (strongly) differentiable. The results for C follow from
those for p on account of (A3.4), so we concentrate on p. The differentiability of p is
easy since the limit of Eq. (A2.31) can be taken using uniform convergence of
p(i\ C(i\ θ(i) giving uniform convergence of p(i) to p. The interesting thing is that
p(l) ->p in C([0, Γloc]). This is because the difficulty arises with the presence of
terms involving θ(^τ in the formula obtained for p(i} by differentiation of (A3.21).
However such terms always occur in the form

with Q a smooth rapidly decaying function (in space). Thus using Eq. (A3. 20), and
integrating by parts, allows passage to the limit uniformly in time. This leads to the
conclusion that the formula (A3. 10) for p is valid for the weak solution constructed
and p, C are twice differentiable.

Validity of Identities in Appendix Two. Finally we give a specimen calculation to
show that the identities of Lemmas A2.1-A2.3 are valid. We carry this out for
Lemma A2.1. For the (i + l)th iterate is in CQ so all integration by parts is justified
leading to:

dSjx

( i + l )

+ j j ( e« + ι > + l

+ cosθκ(Z(i+i})θ(i+l) - cosθκ(Z(i))θ(ί))dZ(ί+ί}dT

from which it is clear that the convergence of θ(ί} in the || norm is sufficient to ensure
the validity of the identity. A similar argument applies for Lemma A2.3, using the
fact that^ convergence of the coefficient of the zero jnode coefficient α(ί) = J
θ'κ(Z(i)}θ(i} follows from the strong L2 convergence of θ(i\
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