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Abstract. We show that two dimensional N = 2 superconformal field theories cannot
be constructed by applying the supersymmetric extension of the GKO construction
to the so-called special subalgebras, i.e. subalgebras for which at least one generator
associated to a root of the subalgebra does not correspond to a root of the algebra itself.
We thus prove the completeness of the classification of N = 2 supersymmetric coset
models obtained by Kazama and Suzuki. Furthermore we point out that compared to
their papers an additional criterion has to be added in the N = 2 conditions.

1. Introduction

Coset constructions [4] in conformal field theory have recently undergone an intensive
investigation for they allow the construction of many new models within the
framework of Kac Moody algebras. In [6] Kazama and Suzuki proposed to use
a supersymmetric extension of the GKO construction to obtain new N = 2
superconformal field theories.

They considered a reductive subalgebra H of a semi-simple Lie algebra G to
perform a supersymmetric coset construction, yielding in all cases an N = 1
superconformal field theory. They also gave a necessary and sufficient condition
under which this supersymmetry should be enlarged to an N = 2 supersymmetry. In
a later paper [7] they gave a geometrical interpretation of this criterion which was
used in turn to classify all N = 2 coset models.

Let us adopt in this note the short-hand convention that the generator in G
corresponding to a root is called a root vector. As for reductive subalgebras
of reductive Lie-algebras there are two different types (compare e.g. [2,3]): the
subalgebra I is called regular iff the root vectors of H are also root vectors of
G. (The embedding H — G is always chosen in a way that the Cartan-subalgebra
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Cart(H) of H is mapped into the Cartan-subalgebra Cart(G) of G.) Otherwise it is
called a special subalgebra. In particular subalgebras satisfying rank H = rank G are
always regular for their Cartan-subalgebras are identical.

This note is organized as follows: in Sect. 2 we will shortly review this criterion,
showing that an additional criterion has to be added and pointing out that in [7] only
the regular subalgebras are dealt with. In Sect. 3 we show that it is not possible to
use special subalgebras. In Sect. 4 we state our conclusions.

Throughout this note we shall adopt the following conventions (cf. [6]): let G be
a semi-simple Lie-algebra, I a reductive subalgebra. Let

{t*ya=1...dimH}
be a basis of H that can be extended to a basis of G
{t", A=1...dimG},

in which the Killing-form takes the form kA, tB) = 648 In such a basis the structure
constants are known to be totally antisymmetric. We shall denote group indices of

generators belonging to G, H and G/H as A, B,...,a,b,... and @,b, .. ..

2. The N = 2 Conditions.

The N = 2 conditions spelled out by Kazama and Suzuki in [6] take the following
form: enlarged supersymmetry is equivalent to the existence of two totally antisym-
metric tensors hz; and Sg;. , where the indices take their values in the coset.

They have to satisfy the conditions:

hap = Mg haphse = =0, M)
hapfoce = FaseMse (@)
abe = haplpgfpge + cyclic permutations in @, b and ¢, 3)
Sape = hrzz‘;hl}qhaff pGr (€]

(1) means that h is a complex structure on G/H, which is H-invariant by (2). (3) is
a consistency condition, while (4) can be used to eliminate S in this problem.
We claim that these conditions are equivalent to the subsequent one:

Theorem. Let t be the orthogonal complement of H with respect to the Killing-form
k of G. (G is semi-simple, so k is non-degenerate.) The model [G/H] is N = 2
supersymmetric if and only if there exists a direct sum decomposition of vector spaces:

t=t, ©t_ o)
(direct sum of vector spaces), where dimt, = dimt_, such that t, andt_ separately
form closed Lie algebras and

Kly, =0, ©6)

when restricted to t_ respectively.
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Remark. Note that compared to [7] we have added the condition (6).

Proof. We shall use the ideas outlined in [7], but will dwell on (6).

Suppose first that [G/H] is N = 2 supersymmetric. Define ¢, to be the
eigenspaces corresponding to the eigenvalues 4 of the complex structure h. Then
t=t, ®t_,dimt, =dimt¢_ is immediate. Using (1)~(4) it is easy to show that

(02, 5] = /2 e = 1/iS 5015
where ¢ denotes the component of ¢® in ¢, . t, thus close under the Lie-bracket.
Let A, h(f:) € t, be arbitrary elements. Calculating by use of the antisymmetry (1)
of h yields:

kb, D) = (£1/i)r(hhD, D) = —(£1/i)r(hL, hhD)
= -k, hP)=0.
On the other hand, given a decomposition like (5), define h by requiring ¢, to be

the eigenspaces of h corresponding to the eigenvalues +4, assuring that the second
equation of (1) is fulfilled. Then (2), (3) can be shown to follow from the fact that

t, are subalgebras, while (6) implies the first part of (1): let r,s € t be arbitrary
elements, thenr =7, +7r_, s =s, +s_, where s, ,r, €t,. Then

k(hr,s) = k(ir, —ir_,s, +s_) = ik(r ,s_) —ik(r_,s,)
= —k(r, +r_,is, —is_) = —k(r, hs). O

In [7] a sequential method is used to reduce the case rank H < rank G to the equal rank
case. This method necessitates the existence of an intermediate subalgebra, satisfying:

HC H@UAykG-rkH c g %)
(direct sum of Lie-algebras).
Proposition. Such an algebra exists if and only if H is a regular subalgebra.
Proof. First, let H be a regular subalgebra. Then the root space H* of H can be
canonically embedded into the root space G* of G. Let

{9, i=1,...rank G — rank H}

be a basis for the orthogonal complement of H* in G* relative to the Killing-form.
The generators of the U(1)-factors can then be shown in a Cartan-Weyl basis to be:

rank G ,
{(ﬁ“’,H) =Y BPHIi=1,.. . rankG — rankH}.
j=1
Conversely, suppose there is a chain of subalgebras like (7). Let E be a root vector

of H. An arbitrary element h € Cart(G) can be decomposed according to (7) like

rank G—rank H
h=h+ Z u; .

i=1
h' € Cart(H), u; multiples of the generators of the U(1) factors. Due to the direct
sum structure in (7) one finds:

ady(B) = [+ u, B| = W, Bl « B.

Thus every root vector of H is also a root vector of G. [
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3. Special Subalgebras

One may now ask whether it is possible to use special subalgebras in order to construct
new [N = 2 supersymmetric coset models. We give a negative answer by the following

Theorem. Let H — G be a special subalgebra, H reductive, G semisimple. Then the
model [G/H] cannot be N = 2 supersymmetric.

Proof. Indirect proof

Let dﬁ/ H denote the set of root vectors corresponding to the positive respectively

negative roots of G respectively H, (qﬁi/ H) the vector spaces generated by the

corresponding set. Recall that we have chosen the embedding such that Cart(H) —
Cart(G).

Lemma 1. Without loss of generality we can assume that
ty C Cart(G) @ (95).

Proof. Equation (6) implies (see e.g. [3, p. 20]) that ¢ is solvable and thus contained
in a maximal solvable subalgebra, a Borel-subalgebra. As is shown in [5, p. 84] any
two Borel subalgebras are conjugated under inner automorphisms, which are known
to let the Cartan-subalgebra fix (compare e.g. [3, p. 106]). The result now follows
from the fact that

by = Cart(G) @ (F)

are Borel subalgebras. [

Lemma 2. The positive roots of H can be chosen in a way to guarantee

(@) c (29).

Proof. We can argue like in the proof of Lemma 1, but have to use automorphisms
and Borel subalgebras of H this time, to deduce

(@) C Car(@) @ (85) .

Let E, = 1, + hy be a root vector of H, hy € Cart(G), 1, € (®Y). There is a
hy € Cart(H) with
[hHa E+] = /\(hH)E+ ’ (8)

where A(hj) & 0. (The roots are non-zero regarded as functionals on Cart(H).)
Suppose h, £ 0. G is semisimple, so « is not degenerate, i.e. there is 2’ € Cart(G)
with k(h', hy) £ 0. Now
KW, [hy, EL)) = k(0 Mh)EL) = Mhy)s(h' hy) £ 0.

But using the invariance of x we find a contradiction:

K’(h/a[thE_F]):K’([h/ahH])E+)=0’ D
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Proof of the theorem. H being a special subalgebra there is a root vector E+ of H (let
E™ denote the root vector corresponding to the negative root) and h, € Cart(G) such
that [h, E*] is not proportional to £%. We may indeed assume that hy € tNCart(G).
Thus

Y, i=[hy, E¥140, Y, c[H,t]Ct,

where the last inclusion can be deduced from the antisymmetry of the structure
constants of G in our basis and the fact that H closes under the Lie-bracket. Lemma 2
implies

Et = Z A, E%, where all coefficients are non-zero.

3

In the generic case the coefficients are complex numbers, but we will assume that
they are real by absorbing the complex phase in the definition of E%.

Thus
E- =) NE™
i
and
Yy =1lhy, E¥1= %) \a,(h)E** € (F)
K]
yielding
Y, e(@§)ntCt,
by Lemma 1.

We now claim that restricted to V := (E*®) , N ¢ the functional
f:l:() = R(', Y:F)

does not vanish. The subscript R indicates that we consider real linear combinations
of the E¥ only.

Using the well-known properties of the Killing-form in a Cartan-Weyl-basis it
is clear that f, vanishes on the orthogonal complement of the complexification of

V, . The Killing-form is not degenerate and Y, < 0, so f, cannot vanish on the
complexification of V. and hence on V.
We have thus proven the existence of

5. = ZulEo"’ €t,, p,real

satisfying
K(s.,Y_)F0. 9)

The hermitian conjugate s_ = Y u,E~% € t_ obeys k(s_,Y,) + 0.
Let P denote the projector on Cart(G). Using (9) and the invariance of x we see

0% r(sy, Yy) = s[5y, ET], hy). (10)

On the other hand
Pls,,ET] = :I:Z,ui)\z(aiH) (11
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shows that the two vectors on the left-hand side corresponding to the upper
respectively lower choice of the signs are equal up to sign.

Now suppose there is an N = 2 supersymmetric model. Equation (5) yields a
direct sum decomposition

Cart(G) Nt = (Cart(G) N't,) & (Cart(G)Nt_), (12)
in particular we can decompose
hy=h¢ +hy, hy €ty NCart(G).
t, have to be subalgebras, so for all h € ¢, N Cart(G) we need
lhy,s let,.
We thus find due to the orthogonality of ¢ and H,
k(lhy,s. 1, ET)=0

(13)
a4 R(h’jy [Sj:,E:F]) = 07

and using (11),
K(h, [s.,ET]) =0. (14)

Calculating and inserting the results (13) and (14) we find
K’(h(y [Sia E:F]) = K(ha— + ho_, [Si7 E:F]) = O
in contradiction to Eq. (10). O

4. Conclusion

The theorem proven in Sect. 3 assures indeed the completeness of the classification
of N = 2 superconformal coset models obtained in [7]. All these models are thus
given for simple G by regular subalgebras for which both rank G — rank H = 2n,
n=0,1,...and G/H x U(1)*>" is kihlerian.

One may wonder why special subalgebras have not been dealt with in [7]. One
reason may have been that, since special subalgebras necessarily have

rank H < rank G, (15)

they are a priori not so tempting for superstring theories, which have inspired much
of the work in this field. Indeed spacetime supersymmetry requires not only N = 2
world-sheet supersymmetry, but also integral charges for the U(1) of the N = 2
superconformal algebra [1]. Now subalgebras satisfying (15) are known not to fulfill
this condition unless they are twisted [8]. This explains the focussing of interest on
equal rank models and thus on regular subalgebras.

We finally point out that our additional condition (6) in the N = 2 criterion does
not affect the results in [7]. This is because the criterion is applied there in the equal
rank case only, where

G
t:|: g <¢:i:> )
i.e. (6) is automatically fulfilled.
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