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Abstract. We show that two dimensional TV = 2 superconformal field theories cannot
be constructed by applying the supersymmetric extension of the GKO construction
to the so-called special subalgebras, i.e. subalgebras for which at least one generator
associated to a root of the subalgebra does not correspond to a root of the algebra itself.
We thus prove the completeness of the classification of TV = 2 supersymmetric coset
models obtained by Kazama and Suzuki. Furthermore we point out that compared to
their papers an additional criterion has to be added in the TV = 2 conditions.

1. Introduction

Coset constructions [4] in conformal field theory have recently undergone an intensive
investigation for they allow the construction of many new models within the
framework of Kac Moody algebras. In [6] Kazama and Suzuki proposed to use
a supersymmetric extension of the GKO construction to obtain new TV = 2
superconformal field theories.

They considered a reductive subalgebra H of a semi-simple Lie algebra G to
perform a supersymmetric coset construction, yielding in all cases an TV = 1
superconformal field theory. They also gave a necessary and sufficient condition
under which this supersymmetry should be enlarged to an TV = 2 supersymmetry. In
a later paper [7] they gave a geometrical interpretation of this criterion which was
used in turn to classify all TV = 2 coset models.

Let us adopt in this note the short-hand convention that the generator in G
corresponding to a root is called a root vector. As for reductive subalgebras
of reductive Lie-algebras there are two different types (compare e.g. [2,3]): the
subalgebra H is called regular iff the root vectors of H are also root vectors of
G. (The embedding H c-^ G is always chosen in a way that the Cartan-subalgebra
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Cart(ϋί) of H is mapped into the Cartan-subalgebra Cart(G) of G.) Otherwise it is
called a special subalgebra. In particular subalgebras satisfying rank H = rank G are
always regular for their Cartan-subalgebras are identical.

This note is organized as follows: in Sect. 2 we will shortly review this criterion,
showing that an additional criterion has to be added and pointing out that in [7] only
the regular subalgebras are dealt with. In Sect. 3 we show that it is not possible to
use special subalgebras. In Sect. 4 we state our conclusions.

Throughout this note we shall adopt the following conventions (cf. [6]): let G be
a semi-simple Lie-algebra, H a reductive subalgebra. Let

{ία, a= l . . .

be a basis of H that can be extended to a basis of G

{tA, A= l . . . d i m G } ,

in which the Killing-form takes the form κ(tA,tB) = δAB. In such a basis the structure
constants are known to be totally antisymmetric. We shall denote group indices of
generators belonging to G, H and G/H as A, B,..., α, 6,... and α, 6, —

2. The N = 2 Conditions.

The N = 2 conditions spelled out by Kazama and Suzuki in [6] take the following
form: enlarged supersymmetry is equivalent to the existence of two totally antisym-
metric tensors hnι and S^, where the indices take their values in the coset.

They have to satisfy the conditions:

Kb = 'ha habhbc = ~δac > W

half bee = fabehc > (2)

fahc = habhqfpqc + c y c l i c permutations in α, b and c, (3)

Saϊ>e = haphbqhcrfpqr ' ( 4 )

(1) means that h is a complex structure on G/H, which is ϋ-invariant by (2). (3) is
a consistency condition, while (4) can be used to eliminate S in this problem.

We claim that these conditions are equivalent to the subsequent one:

Theorem. Let t be the orthogonal complement of H with respect to the Killing-form
K of G. (G is semi-simple, so K is non-degenerate.) The model [G/H] is N = 2
supersymmetric if and only if there exists a direct sum decomposition of vector spaces:

t = t+Θt_ (5)

(direct sum of vector spaces), where dimt+ = dimt_, such that t+ and t_ separately
form closed Lie algebras and

κ\t±=0, (6)

when restricted to t ± respectively.



Classification of TV = 2 Superconformal Coset Theories 427

Remark. Note that compared to [7] we have added the condition (6).

Proof. We shall use the ideas outlined in [7], but will dwell on (6).
Suppose first that [G/H] is N = 2 super symmetric. Define t± to be the

eigenspaces corresponding to the eigenvalues dbz of the complex structure h. Then
t = t+(Bt_, dimt+ = άimt_ is immediate. Using (l)-(4) it is easy to show that

where t± denotes the component of ta in t±. t± thus close under the Lie-bracket.

Let h^9 hf± G t± be arbitrary elements. Calculating by use of the antisymmetry (1)

of h yields:

= (±l/iMhh(l\ hf) = -(

On the other hand, given a decomposition like (5), define h by requiring t± to be
the eigenspaces of h corresponding to the eigenvalues ± i , assuring that the second
equation of (1) is fulfilled. Then (2), (3) can be shown to follow from the fact that
t± are subalgebras, while (6) implies the first part of (1): let r , s G i b e arbitrary
elements, then r — r+ + r_, s = s + + s_, where s ± , r ± G t±. Then

/ί(/ιr, s) = κ(ir+ — ir_, s+ + s_) = iκ(r+, s_) — m(r_, s+)

= — κ(τ+ + r_, is+ — is_) = — ft(r, fts). D

In [7] a sequential method is used to reduce the case rank H < rank G to the equal rank
case. This method necessitates the existence of an intermediate subalgebra, satisfying:

H C H θ £7(1 yank G-rankH ς β ( ? )

(direct sum of Lie-algebras).

Proposition. Such an algebra exists if and only if H is a regular subalgebra.

Proof. First, let H be a regular subalgebra. Then the root space H* of H can be
canonically embedded into the root space G* of G. Let

{β{ί\ i = 1,... rankG - rank#}

be a basis for the orthogonal complement of H* in G* relative to the Killing-form.
The generators of the £/(l)-factors can then be shown in a Cartan-Weyl basis to be:

rank G Λ

>, H) = ]Γ βfHj,i = 1,... rankG - rankiί I.
j=i J

Conversely, suppose there is a chain of subalgebras like (7). Let E be a root vector
of i7. An arbitrary element h G Cart(G) can be decomposed according to (7) like

rank G—rank H

h = ti+ ^ ui
i=\

h! G Cart(iϋΓ), ui multiples of the generators of the U(\) factors. Due to the direct
sum structure in (7) one finds:

zάh(E) = [ti+ Σ un E] = [ft/» E](χ

Thus every root vector of H is also a root vector of G. D
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3. Special Subalgebras

One may now ask whether it is possible to use special subalgebras in order to construct
new N = 2 supersymmetric coset models. We give a negative answer by the following

Theorem. Let H <—> G be a special subalgebra, H reductive, G semisimple. Then the
model [G/H] cannot be N = 2 supersymmetric.

Proof. Indirect proof

Let Φ± denote the set of root vectors corresponding to the positive respectively

negative roots of G respectively H, (Φ± ) the vector spaces generated by the
corresponding set. Recall that we have chosen the embedding such that Cart(iJ) <->
Cart(G).

Lemma 1. Without loss of generality we can assume that

t± C Cart(G) Θ {Φ%).

Proof. Equation (6) implies (see e.g. [3, p. 20]) that t± is solvable and thus contained
in a maximal solvable subalgebra, a Borel-subalgebra. As is shown in [5, p. 84] any
two Borel subalgebras are conjugated under inner automorphisms, which are known
to let the Cartan-subalgebra fix (compare e.g. [3, p. 106]). The result now follows
from the fact that

b± := Cart(G) θ (Φ%)

are Borel subalgebras. D

Lemma 2. The positive roots of H can be chosen in a way to guarantee

Proof. We can argue like in the proof of Lemma 1, but have to use automorphisms
and Borel subalgebras of H this time, to deduce

(Φf) C Cart(G) θ {Φfi.

Let E+ = η+ + h0 be a root vector of H, h0 G Cart(G), η+ G (Φ+). There is a
hH G Cart(il) with

[hH,E+] = λ(hH)E+, (8)

where \(hH) =|= 0. (The roots are non-zero regarded as functionals on CartCff).)
Suppose hQ =|= 0. G is semisimple, so K, is not degenerate, i.e. there is h! G Cart(G)

with κ{h!', ft0) ψ 0. Now

κ{ti, [hH, E+]) = κ(ti, \{hH)E+) = X(hHMti, h0) + 0.

But using the in variance of K we find a contradiction:

ti, [hH, E+]) = «([/ι;, hHl E+) = 0. Π
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Proof of t/te theorem. H being a special subalgebra there is a root vector E+ of H (let
E~ denote the root vector corresponding to the negative root) and h0 G Cart(G) such
that [/ι0, E1^] is not proportional to E±. We may indeed assume that h0 £ tΠCart(G').
Thus

Y±:=[h0,E
±]^0, Y±e[H,t]Ct,

where the last inclusion can be deduced from the antisymmetry of the structure
constants of G in our basis and the fact that H closes under the Lie-bracket. Lemma 2
implies

E+ = \^\Eai •> where all coefficients are non-zero.
i

In the generic case the coefficients are complex numbers, but we will assume that
they are real by absorbing the complex phase in the definition of Eaι.
Thus

and

Y± = Lfto,^] = ± ^ λ Λ ( f t o ) £ ± a » e (Φf)

yielding

Y± e ( Φ ± ) n t c t ±

by Lemma 1.
We now claim that restricted to V± :— (E±Oί%)R Π t the functional

does not vanish. The subscript R indicates that we consider real linear combinations
of the E±a* only.

Using the well-known properties of the Killing-form in a Cartan-Weyl-basis it
is clear that f± vanishes on the orthogonal complement of the complexification of
V±. The Killing-form is not degenerate and Y± φ 0, so f± cannot vanish on the
complexification of V± and hence on V±.

We have thus proven the existence of

satisfying
«(s + ,y_)4=0. (9)

The hermitian conjugate s_ = ΣlJLiE~Oίi ^ t_ obeys κ(s_,Y+) =|= 0.
Let P denote the projector on Cart(G). Using (9) and the invariance of K we see

0 4= φ±,Yτ) = «([s±, E*], h0). (10)

On the other hand

P[s± ,
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shows that the two vectors on the left-hand side corresponding to the upper
respectively lower choice of the signs are equal up to sign.

Now suppose there is an TV = 2 supersymmetric model. Equation (5) yields a
direct sum decomposition

Cart(G) Π t = (Cart(G) Π t+) Θ (Cart(G) Π t_), (12)

in particular we can decompose

ft0 = ft+ + ft", h± e t± Π Cart(G).

t± have to be subalgebras, so for all h± et±ίl Cart(G) we need

[ft±,s±] e t±.

We thus find due to the orthogonality of t and H,

^«(ft±,[s±, JE?= F]) = 0,

and using (11),

f ± 0. (14)

Calculating and inserting the results (13) and (14) we find

«(ft0, [ β i , ^ ] ) = «(ΛJ + V ' [*±, ̂ 1 ) = 0

in contradiction to Eq. (10). D

4. Conclusion

The theorem proven in Sect. 3 assures indeed the completeness of the classification
of TV = 2 superconformal coset models obtained in [7]. All these models are thus
given for simple G by regular subalgebras for which both rank G — rank H = 2n,
n = 0 , 1 , . . . and G/H x U(l)2n is kahlerian.

One may wonder why special subalgebras have not been dealt with in [7]. One
reason may have been that, since special subalgebras necessarily have

rank H < rank G, (15)

they are a priori not so tempting for superstring theories, which have inspired much
of the work in this field. Indeed spacetime supersymmetry requires not only TV = 2
world-sheet supersymmetry, but also integral charges for the U(\) of the TV = 2
superconformal algebra [1]. Now subalgebras satisfying (15) are known not to fulfill
this condition unless they are twisted [8]. This explains the focussing of interest on
equal rank models and thus on regular subalgebras.

We finally point out that our additional condition (6) in the TV = 2 criterion does
not affect the results in [7]. This is because the criterion is applied there in the equal
rank case only, where

i.e. (6) is automatically fulfilled.
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