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Abstract. We show that it is convenient to use "gauge" transformations (sometimes
called explicit Backlund transformations) to generate new solutions for the KP
hierarchy. Two particular kinds of gauge transformation operators, constructed
out of the initial wave functions, are of fundamental importance in this approach.
Through such gauge transformations, a very simple formula for the tau-function is
obtained, encompassing and unifying all kinds of existing solutions. The corres-
ponding free fermion representation and Baker functions for the new τ function can
also be constructed.

1. Introduction

There are several different ways to formulate the mathematical problem of the KP
hierarchy equations. For our purpose it is most convenient to adopt the pseudo-
differential operator formalism developed by Sato and his school [1-5]. By the KP
hierarchy we mean a particular infinite set of coupled nonlinear equations for ut

(i = 2, 3, . . .), where each ut = u^x^ x 2, x3, . . .) depends on one "spatial" vari-
able Xι and infinitely many "time" variables x2> *3> These coupled equations
are to be generated in the following way [2].

Let A denote the pseudo-differential operator

A = d + u2d~ι + u3d~2 + u4d~3 + . . . , (1.1)

where d = d/dx1, and d" 1 is a suitable inverse of d, obeying the generalized Leibniz
rule

ί=o

For an operator multiplication we put a "o" in between, e.g., δ°f= δf+fδ °. Now
let

Bn = lΛ"2+, (1.3)
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where the symbol [Ω]+ denotes the differential operator part of a pseudo-
differential operator Ω. Later on we will often symbolically represent Bn as

Bn = f bnjd
j with &„„ = 1, bm.1 - 0 , (1.4)

j = o

where each feΠJ is a specific functional of w2? u3, . . . , wπ_7 and their spatial derivat-
ives.

Now we impose a generalized Lax equation on Λ:

! ^ = [*B,Λ], (n = 2 , 3 , . . . ) , (1.5)

which, upon expansion into Laurent series in fl"1, gives rise to an infinite set of
equations of the form [3]

dui a functional of u2, M3, . . . , w ί + Λ-i and their

3xn spatial derivatives, (i, w = 2, 3, . . .)

This infinite set of equations is called the KP hierarchy.
However, it is easy to derive from (1.3) and (1.5) the following infinite set of

operator equations:

^ - ψ1 + ίBm9 Bn~\ = 0 (m, n = 2, 3, . . . ) , (1.7)
dx dx

which is called the Zakharov-Shabat (ZS) equation [6]. Although (1.7) is a conse-
quence of (1.5), it turns out [2, 4] that the whole set of equations in (1.7) is exactly
equivalent to the whole set of equations in (1.6). Hence the KP hierarchy can be
alternatively represented by the ZS equation (1.7).

If we can find a set of functions {u2, u 3, . . . } and hence a corresponding set of
differential operators {B2, B3, . . .} satisfying (1.7), then we have a solution to the
KP hierarchy. But it has been shown (see, for example, ref. 3) that any such set of
{u2,u3, . . .} can be generated from a single function τ(x), the so-called tau-
function, such that

(1.8a)
dx\

(1.8b)
1dx2 δ

etc. Thus we will alternatively represent a solution to the KP hierarchy by its
corresponding tau-function.

The purpose of this paper is to carefully study the ZS Eq. (1.7) as well as its
associated linear system

d
— φ(xί9x2, ) = Bnφ(xί9x2, . ) , (n = 2, 3, . . . ) , (1.9)
UXn

aiming at the establishment of a general constructive procedure for generating
a new solution to the KP hierarchy. In contrast to some other existing approaches
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[2, 3], our method in the following will need not concern the Lax Eq. (1.5) itself,
[and consequently nor its associated eigenvalue equation

Λw(x; λ) = λw(x; λ)] . (1.10)

What we call the eigenfunction, w(x, λ\ is commonly called the Baker function [7].
The reason to concentrate solely on the ZS equation is that it represents a zero-
curvature condition, which enables us to make a direct extension to the present
case of a gauge transformation method [8-11] that has been successfully applied to
a broad class of 1 + 1 dimensional nonlinear evolution equations.

The basic idea of the gauge transformation method is the following. Suppose
{B(

n°\ n = 2, 3, . . . } already satisfies (1.7). Let

dΨ
£< 1 }Ξ ψoβ^oψ-1 i - o F-1 , (l.ll)

dxn

where Ψ = Ψ(xl9x2, . . . ) is any reasonable pseudo-differential operator. Then
{B^} will necessarily satisfy (1.7) also. Note that although 2?j,0) are differential
operators, the right-hand side of Eq. (1.11) will in general not be a purely differen-
tial operator. But {B^} represents a valid new solution to the KP hierarchy only if
all B{n\ as defined by (1.11), happen to be purely differential operators. Through
some educated guesses we have managed to find two particular constructions of
the desired operator Ψ that will make all B^ of (1.11) purely differential operators.
[Some special cases of these transformations have been considered in ref. 4 and for
the KdV system in ref. 11.] By repeatedly applying these two kinds of gauge
transformations on any given input solution, one can generate all sorts of new
solutions to the KP hierarchy.

Such a procedure is very elementary both conceptually and computationally,
yet is powerful enough to encompass all kinds of solutions that have been known
so far. For example, both the Wronskian solutions [12-14] and the Nakamura
determinant solutions [15, 16] can now be derived in a completely unified fashion,
while originally they were separately discovered through some kind of conjectures.
See Sect. IV.

In the next section, we describe how these two kinds of gauge transformation
operators are constructed. In Sect. Ill, we analyze the results of successive applica-
tions of such gauge transformations and obtain an exceedingly simple formula for
the tau-function of a general new solution, which represents the main achievement
of our work. Comparisons with some other methods are discussed in Sect. IV. In
Sect. V, we discuss some relations to the Baker function and give an interpretation
in terms of free fermion representations.

II. Gauge Transformation Operators

Suppose φ{0) is a known wave function for {B^}, i.e., a known solution to the
equation

ψ (n = 2 , 3 , . . . ) . (2.1)
dxn

Now let

ΨD = d- φ?W0) , (2-2)
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which can also be written as

ψD = φModoφ«»-1 . (2.3)

[This operator was called Crum transformation in ref. 11.] Then, by using (2.1), it is
easy to show that the right-hand side of (1.11) is indeed a differential operator. So
{B^} will also satisfy the ZS equation (1.7) and represent a new solution to the KP
hierarchy.

Furthermore, for the lowest few π, we find explicitly

= d2 + 2u(

2

1) , (2.4)1

B™ = a3 + 3[4°> + ( l o g Λ j d + 3[<> + <>

= d3 + lu^d + Suψ + 3u% , (2.5)

etc., which means,

u? = uf> +(log φ«»)xx, (2.6a)

«(3U = «(30) + \ \ T ^

21_ dx1

(0)
( 2 6 b )

etc. Comparing with Eqs. (1.8), we see that under the gauge transformation

(2.7)

where ΨD is given by (2.2), the tau-function is transformed according to

τ ( O ) J ^ τ U ) = ^(O)τ(O)_ ( 2 8 )

In addition, the wave function φ{1) for the new solution {B(

n

1}} can be taken simply
as

Φ{1) = ΨDΦΐ] , (2.9)

where φ^ is an arbitrary wave function for {#ί,0)} different from φ(0\ because then

K (2.10)

Having described our first construction of the gauge transformation operator,
(2.2), we now turn to our second construction. This however will call for a "conju-
gate" linear system, to be discussed in the following.

To be economic with notations, we will use the abbreviations fx for
d
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From a given {Bn}9 Eq. (1.4), we define its conjugate {Bn} by

Bn= t (-iy+1diobnj, (2.11)
j = o

and call the following equation the conjugate linear system:

^ = Bnφ, (n = 2,3, . . . ) . (2.12)
UXn

φ is then called the conjugate wave function. It can be directly verified that the ZS
Eq. (1.7) can be equivalently replaced by

^ - f ^ + [ B m , * Λ ] = 0 (m,n = 2 , 3 , . . . ) . (2.13)
oxn oxm

Now the construction of our second gauge transformation operator: let

Ψ^id + φW/φWy1, (2.14)

which can also be written as

y / = (^ o )- 1 o5o0ί ° ) )- 1 = φ^-1od~1oφW . (2.15)

Now define B^ by

^ l - i . (2.16)ψ + ^ o ψ .
dxn

Again we can show that the right-hand side of (2.16) is in fact a purely differential
operator, which hence represents another new solution to the KP hierarchy.

From (2.14) and (2.16), we find explicitly

) x x , (2.17)

that is,

Furthermore, the new wave function φ{1) corresponding to {i?!^} of (2.16) can be
taken to be

φM = ψjφM = (3 + φW/φ^y'φW . (2.19)

It can be shown that the right-hand side of (2.19) evaluates to

+PΓφ(o)=w
where C is some arbitrary function of x2, x3, . . . , satisfying the following bound-
ary conditions [15] at xx .= xc (xc is any fixed constant):

^ ^Xl=Xc, (2.21a)

+ Φιoψ% + M0)ΦmΦmlXί=Xc , (2.21b)
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etc. These boundary conditions follow from the requirement that the new wave
function φω of (2.19) must satisfy

^ ^ ^ (* = 2 , 3 , . . . ) . (2.22)

In particular, if we choose xc = GO and assume that φ{0\ φ(0\ u{

n

0) and all their
spatial derivatives vanish at xc = oo, then C can be taken to be any numerical
constant. We will on some future occasions choose specialized values for such
constants, and write, for example,

1 φί=Ύ \δίj+1 $jφidxi~\' (2 23)

where {φi,φ2, . . . } is a prechosen set of wave functions for {B{®}}, and {φ

u φ2, . . . } another prechosen set of conjugate wave functions for {B(

n

0)}. How-
ever, in the following and throughout the paper, we will generally denote

i f * _ Ί 1 * _
T- Cij + J φiφjdx1 simply as — J φiφj (2.24)
Ψi L xc J Φi

for notational simplicity.
To summarize, we have found two particular kinds of gauge transformation

operators (called from now on the differential type ΨD and the integral type Ψ^)
which seem to be of fundamental importance for generating new solutions to the
KP hierarchy.

Naturally, the gauge transformation operation can be repeatedly applied, and
will be schematically represented as

I
φt0)

τ ( 0> τ ( 1 ) τ ( 2> τ m (2.25)

where the wave functions at each stage satisfy

^ ! L W o , ψ- = B»9», (2.26)
δxn dxn

φd) = ip(O0(i-i)j 0(0 = ψ(i)φd-i) 9 (2.27)

and each ?P(ί) can be of either differential or integral type (Ψf or Ψf). When Ψ(i) is
constructed out of a particular wave function φ(p~1} (or </>£~1}), then

τ(0 = φ(;-i)τ(.--i) ( o r τ * ^ ^ " 1 ' ^ " 1 ' ) - (2-28)

Also, if f(ί) = f β C ^ Γ 1 1 ] ' t h e n ^ ( i ) = Ϊ ' /ΓΦΓ 1 ' ] . a n d i f ψiί) = f / C Φ Γ 1 ' ] ' t h e n

Note. The symbol <£(i~υ [c^''""1'] actually denotes any one of infinitely many
possible (i — l) t h stage (conjugate) wave functions. The φ(i~ υ \_φ{i~ υ ] used in (2.27)
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can be any such wave 'function except φ(*~ υ \_φ^~ υ ] , since the latter will make φ{ι)

[0 ( I ) ] vanish identically.

III. Successive Applications of Gauge Transformations

Let us examine the net results of successive applications of such gauge transforma-
tions in a specific example. This will eventually enable us to write down a very neat
general formula of the final tau-function τiN) when the gauge transformation
operation has been applied N times on the initial solution τ ( 0 ) . For the discussion in
this section, we adopt the following special notations to reduce some possible
confusions. {φi, </>2? } will denote the wave functions for B(®} and {φu

φ2, . . } the corresponding conjugate wave functions. After successive gauge
transformations B^] -> B{

n

1} -• B(

n

2) - * . . . , {αf, α,-} will denote the (conjugate) wave
functions for B^; {βi9 βj} for B{

n

2); {γh y}} for B(

n

3\ etc. We exhibit a calculation
with three ΨD and one ΨI transformations as an illustration.

I
Φl

Φ2

03

Φl

After the first gauge

I I
«2 β3

oc3 βi

« 1

transformation,

τ(O) _ > τ ( D _

I

Φiτ ( 0 ) (3.1)

and the wave function α, is given by [see (2.9)]

(f = 2, 3), (3.2)

while the conjugate wave function αx is given by [see (2.19) and (2.24)]

1φ1- (3.3)^ ) φ1^r]φ1φ1-
Φl J Φl

After the second gauge transformation,

τ (D_ τ (2) = α 2 τ ( 1 ) , (3.4)

(3.5)

(3-6)
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After the third gauge transformation,

After the fourth gauge transformation,

Using (3.1H3.7), we have

= W(φ1,φ2)τm,

(3.7)

(3.8)

(3.9)

(3.10)

and

τ ( 3 ) =

= {ΦlΦ2xΦ3xx ~ ΦlΦlxΦsxx ~ ΦdΦlxΦlxx

- ΦlΦlxΦlxx + ΦϊΦlxΦlxx + ΦlΦ^xΦlxx)^

= W(φuφ2,φ3)τ{0). (3.11)

We have used the notation W{φuφ2, . . . ,ΦN) to denote the Wronksian of
φi,φ2, - ,ΦN Substituting (3.2) and (3.3) into (3.6) and using integration by
parts, we get

(3.12)

(3.13)

Similarly, from (3.5), (3.6), and (3.8), we have

which can be further reduced to

-άMM)**--
(3.14)

Finally, we obtain

f 0101 \ΦlΦ

01 02

Φlx Φlx Φ3x

. τ ( 0 ) (3.15)

It can be verified by separate computations that the following three different
orderings of the three ΨD and one Ψj transformations all lead to ithe same
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expression for the final τ ( 4 ) as given by (3.15):

271

Thus τ^iDDDI) = τ(4)(DDID) = τi4)(DIDD) = τ^{IDDD) = (3.15). This prop-
erty of ordering-independence is completely general, and exactly corresponds to
the well-known permutability [17, 18] of Backlund transformations for the 1 + 1
dimensional integrable nonlinear equations. We note that results such as (3.10) and
(3.11) are well known for the KdV system [11], but the expression like (3.15) seems
to be completely new.

In general, consider the JV-step transformation

(3.16)

It can be shown by straightforward computation that if among the N gauge
transformation operators Ψ(1\ Ψ(2\ . . . , Ψ(N\ s of them are of ΨD type and
r( = N — s) of them are of Ψt type relative to the linear system (as opposed to the
conjugate linear system), then the final tau-function τ{N) is given by the following
formula:

(i) if s ^ r,

(ii) if r ^ 5,

τ(N) =

τ(N) =

X X

ίΦlΦr \ΦlΦr

Φί Φl

Φlx Φlx

Φlxx Φlxx

ίΦlΦl iΦlΦl

X X

\ΦίΦs \<t>2<t>S

Φί Φl

Φlx Φlx

Φlxx Φlxx

X

\ΦsΦr

Φs

Φsx

Φsxx

\ΦrΦl

X

\ΦrΦs

Φr

Φrx

Φrxx

. τ ( 0 )

. τ ( 0 )

(3.17a)

(3.17b)
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where {</>1? φ2, . . . , φs} is an arbitrarily chosen set of wave functions correspond-
ing to the initial solution B{®\ and {φu φ2, . . . , φr} is another arbitrarily chosen
set of conjugate wave functions corresponding to the same initial solution, while
the symbol ]xφiφj has been explained in (2.20), (2.21), and (2.24).

IV. Comparisons with Results from Some Other Methods

To recapitulate, starting from a given solution {B^} of the KP hierarchy, we first
solve for its wave functions {φt} and its conjugate wave functions {φi}. Then the
net result of applying N successive transformations on τ ( 0 ) is the expression τ{N)

given by (3.17). Several interesting particular cases will be discussed in this section.

IV.a. The Wronskίan Solutions. When r = 0 (N = s),

τ^=W(φl9φ29...φ8)τ^9 (4.1)

and when s = 0 (N = r),

φ29...φs)τ™. (4.2)

These are the well-known Wronskian solutions [12, 13] for the KP hierarchy. Our
result here has effectively provided a simple derivation of the Wronskian solutions.
When wί,0) = 0 (n = 2, 3, . . . ) is taken, solutions of various types can be obtained
[14] straightforwardly from the Wronskain formula (4.1). Here we will note only
the familiar (exponential type) Λf-soliton solution and Pόppe's rational solutions
[19].

Since u^] = 0, we have B^ = dn and we may choose τ ( 0 ) = 1. The most general
wave function φi(x) can then be expressed as

φi(x) = $dkWi(k)eξix'k)

9 (4.3)

where

ξ(x9 k) = xίk + x2k
2 + x3/c3 + . . . , (4.4)

and Wi(k) is an arbitrary function (or distribution) of fe, while the path of integra-
tion in the complex fc-plane is also arbitrary, as long as the right-hand side of (4.3)
produces a well-defined function φi(x). As an example, the choice

φ(x)= J dse^x'-is) (4.5)
— 00

would lead to a solution generalizing the Airy function solution [20, 21] of the KP
equation.

To derive the ΛΓ-soliton solution through the Wronskian formula, we may take

W i ( k ) = δ(k - qt) + diδ(k - Pil ( i = l , 2 , . . . J V ) (4.6)

and hence

φi(x) = eξix qι) + die
ξix'IH)

 9 (4.7)
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where qt 4= Pj for all i and j , and qt + q^ for i +j. We will just compute τ ( 2 ) as an
illustration,

(4.8)
q1 -t- a1p1e- q2 -t- a2p2e-

where

ξ. = ξ( X j p.) _ £( X j g.) . (49)

Equation (4.8) can be rewritten as

τ(2) _ eξ(χ,qύ + ξ(χ,q2) ,^g 2 _ ^ f i ) . Q _|_ aie$i _|_ α 2 ^ < ' 2 + C 12a1cι2e
ξί + ξl^ (4.10)

with

, i P i - 0 2 \ , ( P 2 < l i \ ( λ Λ Λ ,
a1=d1[ , a2 = d2( , (4.11)

\4 ^ / \ q q
and

(Pi - toXfli - P 2 )

Thus up to an allowable factor e ξ ( x ' 9 l ) + ξ ( x ' ί 2 ) (^2 — <?i)? this tau-function coincides
with the standard tau-function of the 2-soliton solution as given in ref. 2. Obviously
this procedure will also work for higher iV-soliton solutions.

Some algebraic type solutions of the KP hierarchy can also be easily obtained
through the Wronskian formula iϊφi(x) are appropriately chosen. For example, we
may choose

Wi(k)= -eηίkδ'(k-qi) (4.13)

for the weighting function in (4.3), where ηt is an arbitrary constant. Then we have

^ ι v ' dqt

 L

= (»7i + χι + 2 ^ ^ 2 + 3^?x3 + . . m)e

ξix qi)+ηιqι . (4.14)

Again, we compute τ ( 2 ) as an illustration.

τ ( 2 ) = ^ ( 0 1 ? φ 2 )

= exp[£(x, qx) + ξ(x, q2) + ηtqx +

i + 2 ^ i X 2 + . . . +lη1

i +2q2x2 + . . . + [η2

(4.15)

Thus up to an allowable factor exp[^(x, ^ J + ξ(x, q2) + y/î i + ^2^2] '(qi — q\\
this tau-function is the same as that for the N = 2 case of Poppe's rational solutions
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[19], which are generally given by

τ = d e t ( F y ) N x N , (4.16)

with

X ! + 2qtx2 + 3qfx3 + . . . + ηf

i9 i=j ,

/F.fe. 77ze Nakamura Determinant Solutions. Now, we come back to the general
formula (3.17) and consider the special cases in which r = s (N = 2s). Then we have

0 (4.18)

where

hιj = ]φιΦj=C,J+]φιφjdx1. (4.19)
Xc

This is exactly the Nakamura determinant solution [15]. In particular, if we choose
xc = oo and Cij — — δtj, then τ ( 2 s ) of (4.18) coincides, as shown in refs. 16 and 20,
with the tau-function that would be obtained via the dressing method [9], i.e., by
solving the GeΓfand-Levitan-Marchenko equation

K(x,z) + F(x,z) + J K(x,s)F(s,z)ds = 0 , (4.20)
Λ:

with

F(x,z)= t ΦiWΦtW (4.21)
i = 1

IV.c. The Character Polynomials. It is also straightforward to make a connection
between our formula (3.17) and the character polynomials χγ(x), which have been
shown [2] to be tau-functions for the KP hierarchy. Starting from M£0) = 0 and
τ ( 0 ) = 1, we Taylor expand the wave function eξ(x'k) around k = 0,

00

(4.22)

(4.23)

and

We

pick

note

the /th

that

Po =

coefficient

1, Pl=:

eξ(x,k) =

as the wave

ΦiM

x2

Σ Pι(W.
1 = 0

function φh

= Pι(x)

+ X 2 ? P3=
χl
6

etc., and the relation

^-Pι = p ι - 1 ( ί ^ l ) . (4.25)

Similarly, we Taylor expand the conjugate wave function eξ{~x' ~k) around k = 0,

e«(-x.-fc)Ξ g qι{χ)kl9 ( 4 < 2 6 )
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and pick the /th coefficient as the conjugate wave function φu

φι(x) = qt(x) .

We note that

etc., and

V 2 Y3

Xl x3

qι(x) = ( - ί)'Pι( - x) .

Now we compute

275

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

where Cί<7 are polynomials in x2, X3, . . . , so chosen as to satisfy the boundary
conditions (2.21) at xc = 0. The result of this computation is that

ij + ί Pi(xtej(
0

(4.32)

where χ_ 0 + 1 ) > f is the character polynomial χγ(x) with the Young diagram
y = (ΐ + 1, 1, 1, . . . , 1); see ref. 2 for more details about χγ(x).

More generally, let us reassign

Φi = Pnτ (ί = 1, 2, . . . 5), Πi ^ 0 ,

Φj = q-mj-i (/ = 1> 2, . . . r ) , m 7 - ^ 0 ,

and get

X

Cij + J φi(x)φj{x)dx1 = χmjnι{x)
0

(4.33)

(4.34)

(4.35)

according to the formula (4.32). Then Eq. (3.17) becomes, using (4.25) and (4.29),
(i) if s^ r,

Xmrnι

Pn,

Xmrns

Phs

(4.36a)

Pm—s + r+l Pπ2~s + r+i Pns-s + r
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Jίmrnι

Xm2ns

Q-mr-ί

(4.36b)

These expressions of τ{N) are identical (up to a sign) to those of χγ(x) with
a general Young diagram Y obtained by DKJM [2] via a Fock space approach.

V. Free Fermion Representations of the New τ Functions and
Relations to Baker Functions

Now we wish to make some remarks on the relevance of the eigenvalue Eq. (1.10) in
our approach. The full linear system corresponding to the Lax Eq. (1.5) is given by

Aw(x, λ) = λw(x, λ),

_d__

dxn

(5.1)

(5.2)

We also call the Baker function w(x, λ) the eigenfunction of the KP hierarchy,
which is uniquely determined up to a normalization factor f(λ). In this paper we
reserve the terminology "wave function" solely for the solution φ(x) of Eq. (1.9),
which is the same as (5.2). Therefore, φ(x) and w(x, λ) are generally related to each
other by

φ{x) = J g(λ)w(x, λ)dλ , (5.3)
r

where g(λ) is an arbitrary distribution and Γ an arbitrary path of integration.
Under the gauge transformation Ψ that we have been considering, the pseudo-

differential operator A of (5.1) simply transforms as

and our B(

n

1} in (1.11) are still correctly given by (1.3), i.e.,

+ (n = 2 , 3 , . . . ) . (5.5)

However, as far as solution-generation is concerned, we have not found it necessary
to use the eigenfunction w(x, λ). Though our approach for solving the KP hier-
archy has been based entirely on the Z-S equations, without directly referring to the
eigenvalue equation (5.1), our method gives automatically new solutions for
w(x, λ). From a new tau-function τ ( 1 )(x) by the gauge transformation method, the
corresponding eigenfunction w(1)(x, λ) is automatically given by [2, 3]

λ) = •
\x)

σξ(χ, > (5.6)
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where ξ(tf, λ) has been defined in (4.4).
Finally, we shall reexpress the main result of this paper in the free fermion

language. As is well known [2], every tau function in this language is a vacuum
expectation value of the form

τ(°)(x) = < v a φ H ( * y 0 ) | v a c > , (5.7)

where

H(x) EE £ £ Xn: φtφr+n: , (5.8)
n= 1 1= — oo

and g(0) is some chosen element of the Clifford group generated by the free fermion
operators φι and φf. Our result, Eq. (2.8), states that once a known tau function
τ ( 0 )(x) and a corresponding wave function φ(0)(x) have been given, then a new tau
function τ ( 1 )(x) can be simply taken to be

τ d) = φ(0)τ(0)

In particular, we may choose for the present discussion φ ( 0 ) to be the Baker
function w(0)(x, λ). Through the relation between the Baker function and the tau
function, viz.,

(5.9)

we have

-(l)ί~r i \ -(0)/^. i - 1 T ~l\nξ{x, λ) /c i m
X ^Λ, A) — X ^Λj — ί Λ jc- ^J.IUJ

as the new tau function, which can also be expressed as

with

\cbcx' 2 d%2 3 5x 3 ' y

A simple calculation [2] shows that (5.11) can be written as

τ ( 1 )(x,λ) = < l | e H ( x V ( % ( O ) | v a c > , (5.12)

where φ(λ) = YJ^=-O0φn^
n^ a n < i 0 1 = <vac|ι^§. In other words, the effect of our

differential type ΨD(wiO)(x,λ)) gauge transformation on a tau function τ ( 0 )(x)
is equivalent to inserting a fermion operator φ(λ) in front of g{0) in the vacuum
expectation value and simultaneously changing the bra state from <vac| to the next
highest weight state <1|. For an independent check, one can directly verify that
(5.12) is indeed a tau function by using the bilinear identity given in ref. [2].

Similarly, for integral type Ψj(wi0)(x9 λ)) gauge transformation (2.18), we find

|vac> , (5.13)

where
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and

< _ 1| ^ <vac|ιA_1 .
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