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Abstract. Let A be a positive integral power of a natural, conformally covariant
differential operator on tensor-spinors in a Riemannian manifold. Suppose that
A is formally self-adjoint and has positive definite leading symbol. For example,
A could be the conformal Laplacian (Yamabe operator) L, or the square of the
Dirac operator f. Within the conformal class {g = e2wg0\w e C^IM)} of an
Einstein, locally symmetric "background" metric g0 on a compact four-manifold
M, we use an exponential Sobolev inequality of Adams to show that bounds on the
functional determinant of A and the volume of g imply bounds on the W2'2 norm
of the conformal factor w, provided that a certain conformally invariant geometric
constant k = fc(M, g0A) is strictly less than 32π2. We show for the operators L and
f2 that indeed k < 32π2 except when (M, g0) is the standard sphere or a hyperbolic
space form. On the sphere, a centering argument allows us to obtain a bound of the
same type, despite the fact that k is exactly equal to 32π2 in this case. Finally, we use
an inequality of Beckner to show that in the conformal class of the standard
four-sphere, the determinant of L or of f2 is extremized exactly at the standard
metric and its images under the conformal transformation group 0(5, 1).

1. Introduction and Statement of Results

On a compact Riemannian manifold (M, g\ there are many natural, or geometric
elliptic operators associated with the metric; for example the Laplacian
Δ = — g~ll2di(gijgll2dj) on functions. When we wish to emphasize the underlying
conformal structure, it is natural to consider operators which transform in a simple
manner under conformal change of metric. A conformally covariant operator is
a geometric differential operator A which undergoes the following transformation
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when the metric is changed conformally by g = e2wg, w e C™{M)\

A = e~bwAeaw (1.1)

for some constants a and b. Here the eaw on the right is to be viewed as a multiplica-
tion operator. In dimension two it is well known that the Laplacian A on functions
satisfies (1.1) with a = 0 and b = 2. In general dimension n > 1 the conformal
Laplacian L = A + (ή — 2)τ/4(n — 1), where τ is the scalar curvature of the metric,
is the simplest operator enjoying a conformal covariance property: under the
change of metric gw = e2wg0 we have (1.1) with a = (n — 2)/2 and b = (n + 2)/2.
A closely related operator is the Dίrac operator on sections of the spinor bundle Σ.
When M carries a spin structure, the Dirac operator f= yl- Vh where ω 1 , . . . , of
form a local orthonormal frame for the cotangent bundle Γ*M; y is the funda-
mental section of TM ® Σ (x) £ * ; yι = y(ωι) (a local section of Σ ® Z * = End Σ)\
and Fis the Riemannian connection lifted to Σ. Relative to the explicit construc-
tion of Σ via the Clifford algebra of the tangent bundle TM, the yι act as elements of
the Clifford algebra on the Clifford module of spinors. The yι satisfy the Clifford
relations ylyj + γjγι = — 2gijl, where / is the identity endomorphism, as well as the
condition Vy = 0. The Dirac operator enjoys the conformal co variance property
(1.1) with a = (n - l)/2, b = (n + l)/2:

g = e2wg, y = e~wy => f = e"^ fe'^ .

These elliptic operators have discrete spectrum {λk}. It is by now a well-known
problem to control the metric using the spectral data of its Laplacian, or some
other natural differential operator. McKean and Singer [MS] showed how to
relate this spectral data to local invariants of the metric through consideration of
the trace of the heat kernel. More recently, the determinant of the Laplacian first
introduced by Ray and Singer [RS] in their study of the Reidmeister torsion has
played a role in this problem. In dimension two, Osgood, Philips, and Sarnak have
made essential use of the zeta function determinant and a sharp inequality of
Moser to show that the Laplace spectrum determines the metric up to a compact
set in the C 0 0 topology. Prior to the compactness result, Onofri and also
Osgood-Philips-Sarnak showed the following:

Theorem [On, OPS1]. On a compact surface with background metric g0, among all
conformal metrics gw = e2wg0 of fixed area, the metric of constant curvature minim-
izes the quantity — log det(zl).

In connection with the isospectral problem, there is the following preliminary
bound:

Theorem [OPS2]. On a compact surface with a background metric g0, consider
a conformal metric gw = e2wg0. There exists a constant C = C(ζ'Δ(0), area(gw)) such
that

In this article we explore this phenomenon in dimension four and consider the
natural operators L and f2. Our treatment is actually broad enough to encompass
natural operators of the form A = Bp, where B is conformally covariant, A is
formally self-adjoint with positive definite leading symbol, and p is a positive
integer. In general it is not possible to relate the highly global log-determinant
invariant C^(0) to local invariants of the operator A. However, in case thd operator
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A is a positive power of a conformal covariant as immediately above, it is possible
to express the difference of log-determinants in this way, as long as we stay within
a conformal class. Polyakov has shown that for compact surface with conformal
metrics gw = e2wg0, we have

^ , (1.2)

where τ 0 is the scalar curvature (twice the Gauss curvature) of g0. This formula has
a natural generalization to dimension four given by Branson and Θrsted [B03] for
compact manifolds with locally symmetric, Einstein background metrics; see Prop-
osition 2.5. This is a broader class of spaces than just the constant-curvature space
forms; there are seven possibilities for the universal cover of such a space (see
Sect. 3).

Our first aim is to use the log-determinant to obtain a bound for the conformal
factor. For this we require an analogue of the Moser-Trudinger inequality for
higher-order derivatives, a sharp version of which was given by Adams [Ad,
Theorem 1]. In dimension four, this takes the following form: Let Ω be a bounded
domain in R 4 , u e CQ(Ω), §\AU\2 ^ 1; there exists a constant c0 such that

$ e32"2"2 ^ co\Ω\ .
Ω

This inequality can be adapted to compact 4-manifolds. (For general compact
manifolds, the corresponding inequality in some special cases has been worked out
by Fontana [F].) Using the resulting inequality, we prove:

Theorem 1.1. Suppose (M, g0) is a 4-dimensional compact locally symmetric Einstein
manifold which is neither the standard 4-sphere nor a hyperbolic sapceform. Consider
a conformal metric gw = e2wg0. There exists constants C = CL(vol(g), ζi,(0)) ond
C = Cp(\όl(g)9 (>2(0)) such that

l | w | | 2 , 2 ^ C . (1.3)

In case (M, g0) is the standard 4-sphere, there is a suitable conformal transformation
φ in the conformal diffeomorphism group ^(§>4, g0) so that (1.3) holds for the
transformed conformal factor wφ given by e2Wφg0 = φ*(e2wg0).

As a consequence we can study the extremals of the zeta function determinant
of the conformal Laplacian and the square of the Dirac operator for conformal
metrics. It follows that a minimizing sequence converges to a solution of a fourth-
order equation. In case of the 4-sphere we can show that the minimum is in fact
attained at the standard metric:

Theorem 1.2. On the standard 4-sphere (§>4, g0), the standard metric g0 minimizes
log det(L), as well as — log det(^ 2), among all conformal metrics of fixed volume.

For the proof, a sharp inequality discovered by Beckner is essential: Expanding
fe C^iS") in spherical harmonics / = Σfc°=o f̂c» w e n a v e

l o g ) e s ± i
s» In k f i Γ

where fs« is the normalized integral (j§Bl = 1). Equality holds if and only if

elfln9o = Φ*9o for some conformal transformation φ of the standard sphere.
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We give here an outline of the remainder of the paper. In Sect. 2 we give the
adaptation of the Adams inequality to compact manifolds and prove a general
bound for || w| | 2, 2 under the assumption that a certain constant k = k(M, g0, A)
associated to the operator A and the manifold (M, g0) is strictly less than 32π2.

In Sect. 3 we verify that for the operators L and f2, this constant is smaller than
32π2 for all compact locally symmetric Einstein 4-manifolds except the hyperbolic
space forms and the 4-sphere. In Sect. 4 we employ a device introduced by Aubin to
show that even in the case M = § 4 , where k = 32π2, such a bound is still possible
after suitable conformal transformation. Finally in Sect. 5 we give the proof of
Theorem 1.2 using the inequality of Beckner.

We would like to thank Bill Beckner and Bent 0rsted for enlightening conver-
sations, and Peter Sarnak for his interest in this work.

2. The Adams Inequality, the Functional Determinant, and the W2'2 Bound

In this section we shall establish a uniform W2'2 bound on the conformal factors
w (g = e2wg0), valid for some compact 4-manifolds without boundary, under the
assumption that the log determinant F[w~] = log(det L(w)/det L0(w)) is fixed. Our
argument will show that the conformal Laplacian L can be replaced by an operator
from a general class which includes the square f2 of the Dirac operator. A basic
analytic fact which we shall use is the following generalization of Moser's inequal-
ity due to D. Adams.

Proposition 2.1. [Ad, Theorem 1] Let m < n be positive integers, and let Ω be
a bounded domain in IRΛ There are constants c 0 = co(m, ή) and β0 = βo{m, ή) such
that for all u e C m ( R n ) with support contained in Ω and \\ Vmu \\p^ l,p = n/m,

lexp(β\u(x)\>')dx£co\Ω\ (2.1)
Ω

for all β S βo> where p' = p/(p — 1) and \Ω\ is the measure of Ω. Furthermore, if
β > β 0, then there exists a smooth function u supported in Ω with || Fmw||p ^ I for
which the integral in (2.1) can be made as large as we please. D

[Ad, Theorem 1] gives an exact formula for β0', in the special case where we
shall apply the Adams inequality, n = 4, m = p = p' = 2, and β0 = βo(29 4) = 32π2.
For this special case, we shall adapt the inequality and its proof to functions
defined on a compact 4-dimensional manifold without boundary. In this setting,
the inequality takes the following form.

Proposition 2.2. Let (M, g) be a 4-dimensίonal compact Riemannian manifold without
boundary. There is a constant c0 such that for all u e C2(M) with \\Au\\2 S l,we have

J exp(32π2|w(x) - U\2)dv(x) ̂  c0V{M) ,
M

where dv is the Riemannian measure determined by g, ΰ= V(M)~X\Mudv, and
V(M) = J M dv is the volume ofM. Furthermore the exponent 32π2 is the best possible
in the sense that if β > 32π2, there exists a smooth function u on M with \\Au\\2 ^ 1
and JMexp(/?|w(x) — ΰ\2)dv(x) arbitrarily large.

As mentioned before, the proof of Proposition 2.2 below will be a modified
version of Adams' proof of Proposition 2.1. For this reason, we shall only sketch
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the proof,1 with special attention to the necessary modifications. Note that without
the assumption that M M | | 2 ύ 1, the inequality of Proposition 2.2 reads

; l ) (2.2)

as long as u is not constant.
The following key lemma of Aubin replaces the fractional integral representa-

tion of compactly supported functions on IR" with a Green's function representa-
tion formula valid for functions on compact manifolds.

Lemma 2.3. [Aul, Theorem 4.13] Let (M, g) be a compact, n-dimensίonal Riemann-
ian manifold. There exists a Green's function G(x, y) of the Laplacian A with the
following properties:

(a) For all C2 functions u on M,

u(x) - M = J (Δu(y))G(x, y)dv(y) (2.3)
M

(b) G(x, y) = G(y, x) is C0 0 on the complement of the diagonal in M x M;

(c) If2k>n>2,

G(x, y) = H(x, y) + £ J Γt(x9 z)H(z9 y)dυ(y) + F(x, y),
i = l M

where H(x, y) = ((n — 2)ωn-1)~1r2~nf(r)for n > 2; r = d(x, y) is the distance from
x to y; ωn-1 = 2πn/2/Γ(n/2) is the volume of the unit sphere in RM;/(r) is a positive
decreasing function; f(r) = 1 in a neighborhood of r — 0; and f(r) = 0 for r ^ δ,
δ = δ(M, g) being the-injectivity radius of(M, g)\ Γ(x, y):= Γ^x, j;) = — AyH(x, y);

Γ i+1(x, 3̂) = ί Γtx, z)Γ(z, y)dv{y\ i = 1, . . . 9k - 1;
M

απrf i7 (x, y) is continuous on M x M. D

We remark that in the case of a Riemannian 4-manifold (M, #), in the expres-
sion for the Green's function, we have a uniform estimate |Γ(x, y)\ ̂  αr~2, valid
when r is less than the uniform injectivity radius δ [Aul, 4.10]. Here the constant
α = α(M, ̂ f) depends on uniform bounds for the sectional curvature of g [Aul, 4.9
and Theorem 1.53]; like the uniform injectivity radius, such uniform bounds always
exist for compact M. Thus if Zt(x, y):= jMΓi(x, z)H(z, y)dv{y\

and Z2(x, y) is continuous o n M x M . This implies that in the 4-dimensional case,
we have

G(x, j;) = H(x9 y) + Z(x, y) + R(x, y) , (2.4)

where |if(x, y)| ^ (4π 2)- 1r" 2, |Z(x, y)| ^ const(l + |log d(x, y)|), and #(x, y) is
continuous o n M x M .

Another basic lemma used in the proof of Proposition 2.2 is the following result
of O'Neil. Suppose / is a locally integrable function on RM, and denote
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by/* the symmetric decreasing rearrangement of/; that is, for each s §; 0, define
λ(s) = \{xe R" | | /(x) | > s}|, and define/* on R by/*(ί) = inf{s > 0\λ(s) ^ t). Let
r*(t) = Γ1ft

of*(s)ds.

Lemma 2.4 [O'N, Lemma 1.5] Let h = T{f g) =f*g. Then

00

h**(t) ^ tf**(t)g**(t) + J f*(s)g*{s)ds . D (2.5)
t

To apply Lemma 2.4 in our setting, we just need to note that the proof of [O'N,
Lemma 1.5] goes through if we replace the Euclidean convolution/*# by

h ( x ) = $ f ( y ) g ( x , y ) d υ ( y \ x e M
M

for a one-point function / and a two-point function g(x9 y) = g(y, x) which is
a function of d(x,y). Here / * is defined by /*(ί) = inf{s > O\λ(s) ^ ί}, where
λ(s) = \{xeM\\f(x)\>s}\.

Proof of Proposition 2.2. Given u e C2(M% apply (2.3) and (2.4) to write

u(χ) -ύ = h(x) + z(x) + r(x) ,

where h(x) = $M{Δu)(y)H(x9 y)dv(y), z(x) = \M{Δu){y)Z{x, y)dv(y), and r(x) =
J M (^M)(J;)Λ(X, j )dt (y). Applying Holder's inequality, we have

/ \l/2

\z(x)\ S \\Δu\\2l f |Z(x,y) | 2 ώ(y) ^ α ( M , ^ )

for all x e M . Hence \\z\\n ^ α(M, gf). One can also apply a pointwise estimate to
r(x) to obtain HrH^ g α(M, ̂ f). Thus

\u(x) - ύ\ S j l(^w)(y)| |H(x,
M

^ f |
4 7 1 M

α(M, g) .

We now apply our adaptation of Lemma 2.4 with / = \Δu\ and
g(x9 y) = d(x, y)~2/4π2 to obtain

S α(M, g) + ί/*V*(ί) + J f*(s)g*(s)ds , (2.6)
r

where again ft(x) = JM/(y)^(x, y)dυ(y). From this point on, the argument of [Ad,
Sect. 2] carries through to establish that

J exp(32π2|w(x) - U\2)dv{x) ^ const- V(M) . D
M

We now wish to apply Proposition 2.2, in connection with a formula for the
functional determinant in four dimensions due to Branson and Θrsted [B03], to
establish the main result of this section. We digress briefly to sketch some back-
ground on functional determinants.

Let A be a geometric partial differential operator with positive definite leading
symbol and positive order. Then A is automatically elliptic and of even order 21. If
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A is formally self-adjoint, it will have pure real eigenvalue spectrum {AyljeN}
bounded below (N denoting the natural numbers); in fact λj ~ const j 2 l / n as7 f 00.
A may have a finite number of nonpositive eigenvalues, but if A is a positive
integral power of a conformally covariant differential operator, the number of these
(counted with multiplicity), as well as the multiplicity of 0 as an eigenvalue, are
conformal invariants. The zeta function ζA(s) is defined for large Res by

Us)= Σ W s,

and analytic continuation gives a meromorphic extension with isolated simple
poles. ζA(s) is regular at the nonpositive integers. The zeta function determinant of
A is defined by

log|det A\ = - ζf

A{0), sign det A = ( - 1)# ^ < 0 } .

For the analytic facts immediately above, and for more details on the asymptotics
of the heat operator and the zeta function, we refer to [S, G].

There are other conventions in use for the handling of the zero and negative
eigenvalues of A in the definition of the determinant; it is just necessary to keep
track of the effect of one's chosen convention on formulas like that of [B03]. In our
situation, the sign of the determinant will be irrelevant, since we always deal with
quotients of determinants of conformally related metrics; by the conformal invari-
ance of # {λj < 0}, such quotients are always positive. For the most part, we shall
need to know that 0 does not occur as an eigenvalue. For the positively curved
backgrounds (with universal covers §>4, (CIP2, and § 2 x § 2 ), we show in Sect. 3 that
this is the case if our operator A is L or f2. If the background is flat (universal cover
R 4 ) , zero modes cannot be avoided, but their effect on our formulas can be written
down explicitly, so there is no problem here either. For the negatively curved
backgrounds (with universal covers H 4 , (CH2, and H 2 x H 2 ) , we add Jf{A) = 0
as a side condition. In the derivation and treatment of the Polyakov formula (1.2) in
dimension 2, the corresponding question was simpler: the Laplacian always had
one zero mode, the constant functions.

Note that the determinant need not be invariant under uniform dilation of the
metric:

g = c

2g, 0 < c e R => det 1 = c ~ 2 /^ ( 0 )det A .

In this sense the determinant comes in units of distance — 2lζA(0). But this says
exactly that the functional

PA(Q) = [ det A ,

where v0 is a positive constant, is scale-invariant. (Note that ζA(0) is also scale-
invariant.) As an alternative to looking at the functional pA, we could freeze out
scale changes by demanding that all our manifolds have volume v0.

We can now state the four-dimensional Polyakov formula of Branson and
0rsted:

Proposition 2.5. [B03, Proposition 2.1] Let (M, g0) be a compact, locally symmet-
ric, Einstein A-manifold without boundary, and let w e C^iM). Suppose that A is
a formally self-adjoint positive integral power of a conformally covarίant differential
operator, that A is orientation insensitive, and that A has positive definite leading
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symbol of order 21 e 2ΊL + . If spin structure is required to define the bundle upon whose
sections A acts, assume that (M, g0) has such structure. Suppose that Ao (that
is, A evaluated in (M, g0)) has no zero spectrum. Then the functional determinant
of Au that is, of A evaluated in (M,gx = e2wg0) is related to that of Ao by
sgn d e t ^ i = sgndet^o? and, under the normalization V(M, g) = J M e4w — v0,

( - log|det A,I + log|det A0\)/2l = 4π2β2χ(M) •

+ ^β2$(Aw)2 + (^β2-β3jJoi\dw\2

where 6J0 and c2 denote, respectively, the constant scalar curvature and constant
norm-squared of the Weyl conformal curvature of g0, all integrals are taken in the
Riemannian measure determined by g0, and βi,β2, and β3 are constants which
depend only on the operator A (and not on (M, g0)). D

Remark 2.6. The constants βi, β2, β3 originate in the asymptotics of the heat
operator based on A: suppose that A satisfies all the conditions imposed above,
except possibly the conformal condition. If/eC°°(M), there is an asymptotic
expansion

00

TrL2/exp( - tA) ~ £ ί(2i-")/2/ ί / tyM, ί i 0 ,

where the (7j[^4] are universal local scalar invariants. By WeyΓs invariant theory,
C/2[^4], and in fact every local scalar 0(4)-invariant S of homogeneity 4 (in the
sense that uniform dilation g = A2g, 0 < A e 1R of the metric produces the scaling
S = A~4S), is a linear combination of \C\2, \B\2, J2, and ΔJ, where 6Jis the scalar
curvature τ, B is the Einstein (trace-free Ricci) tensor i (p — τg/4) (p = Ricci), C is
the Weyl conformal curvature tensor, \B\2 = BijBij, and similarly for \C\2. J, B,
and C are (normalized versions of) the projections of the Riemann tensor R onto
the 0(4)-irreducible summands of the vector bundle of algebraic curvature tensors.
The orientation-insensitivity assumption is necessary to this statement, as C breaks
up into self- and anti-self-dual parts C± under the action of the structure group
S0(4) of oriented Riemannian geometry; this adds a new invariant, \C+ \2 — |C_ | 2,
to our basis of the space of local scalar invariants of homogeneity 4. A metric is
conformally flat if C = 0; Einstein if B = 0, and locally symmetric if VR = 0 (or
equivalently, if VJ, VB, and VC all vanish). We shall use V = B + Jg/4 to simplify
the appearance of some expressions. By [B02, Sect. 5], the assumption that A is
a positive integral power of a conformal invariant imposes one linear condition on
the coefficients α,- in the expression

Ϊ/2 |X1 - ax\C\2 + a2\B\2 + a3J
2 + a4AJ .

One way of stating this condition which is especially well adapted to conformal
change of metric is

β1\C\2 + β2Q + β3AJ , (2.8)
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where

Q = -\V\2 + J2 + X-ΔJ .

(See [B03, Sect. 2] for an account of the motivation behind this.) These are the
constants βj in the statement of Proposition 2.5 above.

Remark 2.7. The simplest operators with the properties called for in the Proposi-
tion are the Yamabe operator, or conformal Laplacian L, and the square f2 of the
Dirac operator f. These operators and their conformal properties are just as easy
to describe in general dimension n ^ 2 as they are in dimension four:
L = A + (n — 2)τ/4(n — 1) acts on ordinary functions and enjoys the conformal
covariance property

g = e2wg, w e C^iM) => L = e-(« +2) w 2 ^ - 2 ) ^ / 2

on any Riemannian n-manifold (M, g). (The e

(n~2)w/2 on the right is to be under-
stood as a multiplication operator.) J^acts on sections of the spinor bundle Σ over
a Riemannian spin manifold (M, g,y),y being the fundamental section of
Σ ® Σ* (x) 7M, and enjoys the conformal covariance property

=> f = Γ ( " + 1)w/2 f e ( B " 1 ) w / 2 .

(The scaling law for y follows from that for g together with the Clifford relations.) In
[B03], the constants βj\_L~] and βj\_f2~\ were computed from general formulas for
U2\_A~\\ the result is

(4π2) m(βuβ2,β3)m=(l - 4 , - 4 ) ,

(4π2) 360(βuβ2,β3)lf2l=(- 7,88,28). (2.9)

Remark 2.8. The analysis below is somewhat sensitive to the constants βj\_A~\\
specifically, it requires that β2β3 > 0 (recall that we have this for A = L and
A = f 2 ) . The value oϊβί/β2 also matters when (M, g0) is not conformally flat. With
notation and assumptions as above, let

/ βAA~] 1\
k(M, g0, A) = 14 - - v0c

2 + 16π2χ(M) .
V P 2 M 2J

If g0 is conformally flat, /c(M, g0, A) = k(M) = 16π2χ(M) is independent of g0 and
A; in the conformally curved case,

fc(M, gfOί ^) = - \ voc2 + 16π2χ(M), fc(M, g0, f2) = - ^v0c
2 + 16π2χ(M) .

We can get a version of the log-determinant functional (2.7) which is scale-invariant
(invariant under w κ w + α,ύie R), and dispense with the volume-preservation
condition υ(M, g) = j M e 4 w = v0, as follows: Let

Af

- ί (Aw)2 - Jo f
M M )

(2.10)
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where fM = VQ1\M

 a n ( ^ w = ^MW- FAW is scale-invariant, and agrees with
( - log|det Λ\ + log|det Λ0\)/2l when ϋ(M, #) = υ0. In fact,

where gx = e2wg0. In particular, FA(w) is a spectral invariant; that is, it depends
only on the spectrum of A in the metric g, since this is true of the functional
determinant and the heat invariants \MVi\^A'\. The volume v(M, g = e2wg0) is, of
course, just the heat invariant j M t / 0 [ y l ] , up to a positive constant multiple which
depends on the leading symbol of A as a universal polynomial, but not on (M, g).

Theorem 2.9. Suppose (M, g0) and A are as in Proposition 2.5, that
k(M, g0, A) < 32π2, and that βi[A~]β?)\_A~\ > 0. (For example, A could be the con-
formal Laplacian L or the square f2 of the Dirac operator) Ifcι e U and c2 > 0, then

w)<Lcί9 ί e4w = c2

M

is uniformly bounded in the W2'2 norm, with

l |w| | 2,2 ^

Proof First assume that β2 [A] < 0. If w is not constant, we may apply the
inequality 0 ^ (μ — v)2 with μ = 2π(w — w) and v = (δπ)" 1 J(zlw)2 to obtain

32π 2 (w-vv) 2 1

Proposition 2.2 in the form (2.2) now implies that

log f e^~^ S log c 0 + - ^ J (zlw)2 . (2.12)
M 8 7 Γ M

Thus from (2.10) we get

where k = k(M, g0, A). We recall that a:= kβln2 < 1 and rewrite the above as

- \βiiX - a) I (Δωf - \β3 i ί^ζ)2 S (l-β2 - βλj0 j \dw\2

- —β2klogc0 - FA(w)

c1 + const(M, g0, A) .< (2.13)
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We expand the exponential term as

I ί^lY = I {Δw _ | d w | 2 ) 2 = I ( J w ) 2 _ 2 I { Δ w ) { d w \ 2 + I | r f v v |4
M\ eW J M M M M

and estimate the cross term in this by

2
1 / 2 / \ l / 2

|4j" (Δw)\dw\2 ^ 2 j (Δw)2 J |dw

g λ Jtdw^ + A"1 J |dw|4

M M

for any λ > 0. By the sign assumptions on β2, β3, we may choose λ > 1 so that

this leaves us with

b J (zlw)2 - i j8 3 (l - A"1) J |rfw|4 ^ f i)8 2 - i ? 3 ) j 0 f Mw|2

+ Ci + const(M, gfo» -4)

The first term on the right of this can be estimated via

/ \ l/2

2 j \dw\2 S 2 J \dw\4 vh12 S s j \dw\4 + ε " 1 ^
M \M J M

for any ε > 0. We can now choose ε = ε(M, #0> A) so that

J (zlw)2 + j |rfw|4 S const(c1? M, ^ 0 ? ̂ )
M M

To achieve a PF 2 ' 2 bound, we still need an estimate on w itself to combine with
our bounds on ||zlw | |2 and | |dw||4. This comes from the fact that the normalized
volume ίMe4w is fixed at c 2 . Indeed, by (2.12), — w + c2 ^ const(c l 5 M, g0, A); this
is a bound from below on w. On the other hand, e*w rg ίMe4w = c2 is a bound from
above. The upshot is that | w| is bounded by a constant depending o n c 1 , c 2 , M, £/0?
and A

The case β2\_A~\ > 0 is entirely similar. D

Corollary 2.10. Suppose that (M, g0) is as in Proposition 2.5. // 16π2χ(M)
< 32π2 + f ι;0c

2

M

is uniformly bounded in the W2'2 norm by a constant depending on cί,c2, and
(M, g0). IfM has spin structure and 16π2χ(M) < 32π 2 + YΪV0C

2, the same conclusion
holds for

XCι,C2ίΫ
2l = lweC™(M)\Fγ2(w) ^ cu f e 4 w = cλ. D

Corollary 2.11. If (M,go,A) is as in Proposition 2.5 and Theorem 2.9, and if

2[A])FA(w) ^ cx e R, ί/zen \MJ2dvg ^ const(M, g0, 4̂, c j , w/zer̂  6J5 is ί/κ?
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scalar curvature of the metric g = e2wg0. In particular we have this bound when A is
the conformal Laplacian L or the square ψ2 of the Dirac operator.

Proof Let u = ew. Then dvg = u4dv0, where dv0 = dvgo, and the Yamabe equation
reads

Δu + Jou = Jgu
3 ,

where the Laplacian is that of g0. Hence

ίλew V
J J(g)2dvg = J J2uUv0 = j — + J o ) dv0 ,
M M M \ e J

which is bounded by the argument in the proof of Theorem 2.9. D

Corollary 2.12. //(M, g0, A) is as in Proposition 2.5 and Theorem 2.9, and if

then \M\pg\
2 ^ const(M, gθ9 A, c j , where pg is the Ricci tensor of the metric

g = e2wg0. In particular we have this bound when A is the conformal Laplacian L or
the square γ2 of the Dirac operator.

Proof. By (2.8), the heat invariant jM£/2[yl] has the form

M M

for a general Riemannian metric in four dimensions; this is a consequence of the
conformal assumption on A. Thus j M t / 2 [ A ] is a linear combination of the Euler
characteristic

M

= (32π2y1 j ( |C | 2 - 8 | β | 2 + 6J 2 ) (2.14)
M

and J M | C | 2 , which is a conformal invariant. Since χ(M) is a topological invariant,
jM(72[y4] is a conformal invariant. (This phenomenon occurs more generally
[B01]: if A is a positive integer power of a conformal covariant in dimension 2m
which is formally self-adjoint and has positive definite leading symbol, then
J ^«D4] is a conformal invariant.) As a result, J M | Vg\

2dvg, and thus

M M

h a s a b o u n d d e p e n d i n g o n M , g0, A, a n d cx. D

3. Locally Symmetric Einstein 4-Manifolds, Case by Case

In [J], G. Jensen classifies the simply connected, homogeneous Einstein manifolds
of dimension 4; it turns out that all of these are symmetric, a condition that does
not persist in higher dimensions. The list, grouped according to sgn J o , is:

J o > 0: (a) § 4 , (b) C P 2 , (c) § 2 x § 2 ;

Jo = 0: (d) R 4 ;

Jo < 0: (e) H 4 , (f) C H 2 , (g) H 2 x H 2 .
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(In each base there is an unambiguous choice of "standard" metric, up to normaliz-
ation.) Here H " is the n-dimensional hyperbolic space, (CH2 is the complex
hyperbolic space of complex dimension 2, and in cases (c) and (g), we use the same
metric normalization on each factor, (d-g) are group manifolds; that is, they admit
simply transitive Lie groups of isometries. The compact, locally symmetric,
Einstein 4-manifolds, being quotients of simply connected symmetric spaces by
cocompact deck transformation groups of isometries, are compact quotients of
spaces from the above list, inheriting the standard metrics. In this section, we
examine the spaces of each type from the point of view of our previous analysis;
specifically, we need to identify k(M, g0, A), and determine whether the null space
Jί(A) vanishes, as required for Proposition 2.5. In case (d), this null space never
vanishes, but we show that our analysis applies nonetheless. Note that by (2.14),
a compact Einstein 4-manifold has nonnegative Euler characteristic, and has Euler
characteristic 0 if and only if it is flat (has vanishing Riemann tensor).

a. The four-sphere § 4 has Euler characteristic 2, and its standard metric g0 is
conformally flat, so that /c(§4, g0, A) = k(S4) = 32π2. Thus ( § 4 , g0) is just outside
the reach of our results in Sect. 2; because of this, and because of the closely related
circumstance of a large conformal diffeomorphism group, one expects the log-
determinant functional here to be especially interesting. We shall explore this in
detail in Sect. 4 below. By Synge's Theorem, there is only one possible quotient;
this is the real projective space IRP4. This has Euler characteristic 1, so that
fc(RP4, go, A) = fc(RP4) = 16π2 < 32π2. Thus the only way our results can fail to
apply is for Jf(A) to be nonzero. But the bottom eigenvalue of Lo is Jo = 2, and by
the Lichnerowicz formula f2 - F* V = τ/4 = 3J/2, the bottom eigenvalue of fl is
at least 3. As a result, (IRP4, g0) together with L or f2 satisfy the hypotheses of
Theorem 2.9.

b. Consider (DP2, and let g0 be the Fubini-Study metric, normalized so that the
(constant) holomorphic sectional curvature is ft = 4; this is the usual normalization
on any C P m [Bes, 2.59]. By [Bes,11.5 and 11.12], the volume and scalar curvature
of (any normalization of) g0 are related by

= 288π2 .

Since τ 0 = 6ft, Jo = 4, and v0 = π2/2. Since χ(<CP2) = 3, (2.14) gives c2 = 96. Thus

so that by Remark 2.8, the hypotheses of Theorem 2.9 are satisfied provided
β i M / f t ί M < 5/12 and Jr(A) = 0. By (2.9), the inequality constraint is no
problem for L. Since C P 2 does not have spin structure [Bes, 6.72], there is no Dirac
operator. (Being a complex manifold, C P 2 is orientable, so there is no Pin(4)
structure either.) And, arguing as in Sect. 4.a above, the bottom eigenvalue of L is 4,
so that the null space constraint is no problem. By Synge's Theorem, C P 2 is
a double cover of any metric quotient (M, g0) it might have, but since χ((CP2) is
odd, there is no such quotient.

c. Let M = § 2 x § 2 , and let g0 be the product of standard § 2 metrics. Then

χ(M) = χ(S2)2 = 4, Jo = 2/3, and v0 = 16π2. As a consequence, c2 = 16/3 by
(2.14). (That this space is conformally curved is perhaps contrary to naive expecta-
tion; we remark that the standard pseudo-Riemannian metric of signature (2.2) on
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§ 2 x §>2 is conformally flat.) As a consequence of the conformal curvature, βχ/β2

comes into play, and

Thus the analysis of Sect. 2 applies as long as Ao has no zero eigenvalues and
/ ! D4]//?2[;4] < 1. In particular, this covers the cases of the conformal Laplacian

L and the square f2 of the Dirac operator: arguing as in Sect. 3.a, the bottom
eigenvalue of Lo is Jo = 2/3, and the bottom eigenvalue of fl is at least 1. In each
case, βι\_A~]/β2\_A~\ < 0, so the hypotheses of Theorem 2.9 are satisfied. If M is
a compact quotient of § 2 x § 2 , then χ(M) < 4, and the bottom eigenvalue of
a natural differential operator with positive definite leading symbol can only
increase upon passage from the covering to the covered space (depending on
whether or not the bottom eigenfunctions or eigensections descend to the quotient).
Thus any A satisfying the hypotheses of Theorem 2.9 on § 2 x § 2 satisfies them on
M also; in particular, this is true for L and f2.

d. Suppose (M, g0) is covered by R 4 , with the standard R 4 metric as the pullback
of g0. Here χ(M) = c2 = Jo = 0, so k(M, gθ9 A) = k(M) = 0 < 32π2. A complica-
tion arises from the fact that all natural differential operators A on R 4 have 0 as an
eigenvalue, so that one of the hypotheses of Proposition 2.5 may be violated if
eigensections descend to M. The zero eigenfunctions or eigensections on R 4 ,
however, can be written down explicitly: each tensor-spinor bundle over R" has
a standard trivialization. A tensor-spinor is annihilated by an elliptic natural
differential operator A exactly when it has constant components in this trivializ-
ation. Let J^(A)M be the space of such constant sections that descend to M, and let
q = dimJr(A)M. By an argument in [B03, Sect. 3.b], the effect on the scale
invariant log-determinant functional is to change FA(w) to

1/4 - 1 / r

* > ) = F.(w) + \ log ^ V ,

where υε = §Me4εw is the volume of e2εwg0, and r is the order of the conformal
covariant of which A is a power. (For example, if A = L, then r = 2; if A = f2, then
r = 1.) If r = 4, then FA(w) = FA(w), and all is well. If r < 4, the convexity of the
exponential function gives

*>ί/4 ^ vr/4 ^ max(t>0, ι>i)

Thus the proof of Theorem 2.9 (without the assumption Jf(A) = 0. and replacing
FA by FA) proceeds as before, until we get to (2.13), where we need only replace
"const(M, g0, A)" on the right with "const(M, g0, A, c2)" The conclusion of the
theorem is valid without modification.

e. Let M be a compact quotient of H 4 , inheriting the standard metric g0 of
constant sectional curvature — 1. Then (M9g0) is a conformally flat Einstein
manifold; by (2.14), χ(M) = 3ι;0/4π2; in particular, χ(M) > 0. Thus
k(M, g0, A) = k(M) = 16π2χ(M), and the constraint k(M) < 32π2 becomes
χ(M) < 2; as a result, we need χ(M) = 1 (so that v0 = 4π2/3). It is apparently very
difficult to say anything elementary about the constraint Jf(A) = 0, so in working
with this example, we add it as a side condition.
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f. The usual Bergmann metric g0 on any € Ή m has constant holomorphic sectional
curvature h = — 4 [Bes, 2.61]; this corresponds to J o = — 4. By duality, the value
of c2 on <CHm is the same as that for C P m ; in the case ra = 2, that value is c2 = 96
by the above. If M is a compact quotient with volume υθ9 then χ(M) = 6vo/π2 by
(2.14); in particular, χ(M) > 0 and v0 ^ π2/6. This yields

k(M9gθ9A) =

Thus we need χ(M)(l + %β1 D4]/j82 [A]) < 4 to have fc(M, ^ 0 ? ^) < 32π2. In par-
ticular, by (2.9), fe(M, go,L) < 32π2 regardless of the value of χ(M), but to have
fc(M, gfθ5 ^ 2 ) < 32π2, we need χ(M) < 11. Again, it is very difficult to treat the
constraint Jί(A) = 0, so we regard it as a side condition.

g. A compact quotient M of H 2 x H 2 , endowed with the product g0 of Fubini-
Study metrics of constant sectional curvature — 1, has Jo = — 2/3. Duality with
the § 2 x § 2 situation gives c2 = 16/3, and (2.14) gives χ(M) = vo/4π2. By Remark

.0,

Thus the constraint fc(M, gθ9 A) < 32π2 reads χ(M){\ + l6β1[_A'\lβ2lA']) < 6. In
view of (2.9), this always holds for L and, when M has spin structure, f2 (regardless
of the value of χ(M)). Again we view the constraint Jf{A) = 0 as a side condition.

4. Boundedness in the Standard Conformal Class on the Four-Sphere

In this section, we show that a W2' 2-boundedness result holds in the conformal
class C ΐ ( § 4 ) # 0 = {e 2 w # 0 |weC°°(§ 4 )} of the standard metric g0 on § 4 , even
though k(M, go > A) is exactly equal to the borderline value 32π2 in this case. Since
the conformal group of § 4 is not compact, the conclusion of the theorem has to be
modified. We do this by specifying a "centeredness" property that is enjoyed by at
least one conformal transform of any g e C + (§4)g0, and then showing that a set of
centered metrics with the appropriate spectral invariants bounded is bounded in
PF 2 ' 2 norm.

First note that if φ is a conformal transformation on a Riemannian n-manifold
(M, g\ that is, φ*g = Ω2

φg for some 0 < Ωφ e C^iM), then Ωφ is necessarily | Jφ\1/n,
where Jφ is the Jacobian determinant. If w e C^CM), then

φ*(e2wg) = e2woφΩ2

φg = exp(2woφ + 2(log| Jφ\)/n)g .

Thus (specializing to (§>4, go))9 we would like to identify elements of the class

where Tφw = w°φ + (log| Jφ\)/4. We denote the corresponding equivalence rela-
tion by ~ : w ~ W if and only if [w] = [w']. Our result is:

Theorem 4.1. Let c1 e 1R αnrf 0 < c2 e R. On (R 4 , gf0), wfί/i A as in Proposition 2.5,

^ W { e C ° ° ( § 4 ) | ^ ( w ) = cuie*» = c2
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(f§4 is the normalized integral in the standard metric.) Then Wis bounded in W2'2 / ~,
in the sense that for each w e W9 there is aw e [w] such that {w\w e W) is uniformly
bounded in the W2f 2 norm, with

| |w| |2 > 2 g>const(cl9c29A) -

The proof of this theorem which we shall present below follows the strategy
used in [On, CY, OPS1] to prove the corresponding result for §>2.

Let

eW2^(^4)\ ί e*wXj = 0J=l92939495>,

where the Xj are homogeneous coordinates on § 4 . A basic fact we shall use is:

Lemma 4.2. Given w e W2> 1(S4\ there is some φ e ^ ( § 4 , g0) with Tφw e Sf0.

Proof. The identity component of the conformal transformation group of §>" is
G = SO0(n + 1, 1); K = SO(n + 1) is the maximal compact subgroup. The "non-
compact part" of G, the symmetric space G/X, can be naturally identified with the
ball IB"+ * in fact, with the metric induced by the Killing form of G, this is one of the
standard realizations of the hyperbolic space H " + 1. The lemma is a simple
consequence of the fixed point theorem; a complete proof can be found in
[CY]. D

The following is an analogue of the Adams inequality (which involves || An/2 w \\
in dimension ή) with a proof analogous to that of a result of Aubin [Aul] involving
|| Vw\\n on Sπ.

Lemma 4.3. Ifw e 5^0, then for any ε > 0, there exist constants Cλ(ε) and C2(ε) with

log ί e 4 ( w ~ * ) ^ C 1 ( ε ) + - ( - ^ + ε) ί (Aw)2 + C2(ε) f \dw\2

§4 2\8π /§4 § 4

^ CΛs) + ( 7 + e ) f (Aw)2 + C2(ε) f |^w|2 . (4.1)

Remark 4.4. (4.1) should be compared to (2.12). It is a consequence of Theorem 5.2
below that if w = \ log| Jφ\ for φ e ^ ( § 4 , go)9 so that φ*g0 = e4wg0, then (2.12)
becomes an equality with c0 = 0 on §>4. Thus the coefficient l/8π2 in (2.12) cannot
be improved.

Remark 4.5. Lemma 4.3 can be generalized to Sw, with || An/2w | |2 as the dominant
term on the right side of the analogue of (4.1). For the sake of simplicity, we present
only the §>4 version.

Proof of Lemma 4.3. We may assume that J§4 e4w = v0 = 8π2/3, since the scale-
invariance of each term in (4.1) allows us to shift a given w e ^0 by a suitable
constant. (4.1) is now equivalent to

0 ^ 4w + d(6) + ( - ^ + ε) f (Aw)2 + C2(ε) f \dw\2. (4.2)
\16π / S4 §4
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To establish (4.2), cover §>4 by ten cap-shaped congruent domains, each centered at
one of the poles (points at which \xt\ = 1 for some i, and Xj = 0 for j Φ i). Rotating
axes if necessary, we may assume that

Ωδl

 1 U

for some δx e (0, 1) which is independent of w. (In fact, we are guaranteed this for
any δι > 1/^/5.) Since J§4 e4wx5 = 0, an elementary computation shows that if we
choose δ2 ^ <5i/19, then

Se*»^δ2v0, Ωδ2 = {xeS4\-l^x5^ - δ2} .

We now choose a cutoff function φu where ( p ^ l o n Ω ^ ^ O ^ ^ 1, and
φ1 = 0 off Ω^ l/2. Let φ 2 be the similarly-defined cutoff function for (Ωδl, Ωδ2/2).
Note that the φk can be taken to be independent of w, since the δk are. Applying
(2.12) to the functions (w — w)φk, we obtain

f (w - w) Φ l + (Sπ 2 )" 1 j (Λ[(w - w)φ^)2} , (4.3)

J

—
10

and similarly,

δ2v0 ύ J e*w

^e^v0c0QxpU f ( w - w)φ2 + (8π 2 )" 1 f (A[_(w - w)φ 2 ]) 2 J> . (4.4)
I s 4 s4 ι

We now observe that

— 4 J (Aw)φ1 (dw, dφ^y + 2 J (zlw)^1(w —
s 4 § 4

— 4 J ^dw, dφ 1)(w — w)Aφ1

§ 4

^ J (Aw)2 + ε J (zlw)2 + C(ε, δ ^ j |dw|2 (4.5)

for some suitable constant C(ε, (5t). Similarly,

J (zl[(w - w)φ 2 ]) 2 ^ j (zlw)2 + ε j (zlw)2 + C(δ2,ε) f |dw|2. (4.6)

Because the bottom nonzero eigenvalue of the Laplacian on § 4 is 4, we also have

( > - Y / 2

I (w — w)φk ^ f |w — w\ ^ I i (w — w)2 I
§ 4 § 4 \ § 4 /

1 / \l/2 1
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Inserting estimates (4.5, 4.7) into (4.3), we obtain

π 2 ) - 1 J (Aw)2 + ε J (zlw)2 + C(ε, δx) J |dw| 2 } . (4.8)

δ π 2 ) - 1 j (Aw)2 + ε J (Aw)2 + C(ε, δ2) J \dw\2} . (4.9)
ft2/2 § 4 § 4 J

We now multiply (4.8)and (4.9) and take the square root on both sides, noting

that Ωδί/2 and Ωδ2/2 are disjoint regions in § 4 , to obtain:

^ + ε) J (Aw)2 + C(ε, δu δ2) J

Since we can make concrete choices of the δk (any δ± > l/>/55 and then any
(52 ^ δi/19), (4.2) follows. D

Proof of Theorem 4.1. Given w e C°°(§4), we may apply Lemma 4.2 to transform
to we [w] n y o . Assuming without loss of generality that w e 5^0, the strategy
used in the Proof of Theorem 2.9 works if we use Lemma 4.3 in place of (2.12). D

5. Extremals of the Log-Determinant for the Conformal Laplacian and
for the Square of the Dirac Operator on § 4

Recall the Polyakoυ formula [Pl-2] for the determinant of the ordinary Laplacian
in dimension two: let (M, g0) be a two-dimensional, compact, Riemannian manifold
without boundary. Suppose g0 has constant scalar curvature τ 0 . Let Ao be the
Laplacian in the metric g0. Then Aw = e~2wA0 is the Laplacian in the metric
Qw = e2wg0, and

- l o g d e t z l w + logdetzlo = - ( f \dw\2 + τ 0 f w

for all w e CCO(M) with \Me2w = 1 (that is, conformal metrics gw with metrics with
vol(#w) = vol(g0)) Here all integrals are in the #0-Riemannian measure, and
ίw = υoX \M Specializing to § 2 with its standard metric g0 and estimating the terms
on the right, one gets:

Proposition 5.1. [OV, On] On (§ 2 , g0),

1 d e t Z J 0 l c/ x
log j — - = - S(w),

det Aw 3

where S(w) = iS2\dw\2 + 2j-§2W, provided j§2 e2w = 1. Furthermore, we have
S(w) ^ 0, with S(w) = 0 if and only if gw = φ*gofor some φ in the M'όbίus trans-
formation group of S2. D

The significance of this theorem is as follows: let Diff(§>2) be the full difϊeomor-
phism group of § 2 . Given any Riemannian metric h on §>2, there is a φ £ Diff(§2)
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with φ*h in the conformal class of go; that is, ψ*h = e2wg0 for some w e C"°{M).
Diffeomorphisms preserve the spectra of natural operators like the Laplacian;
thus a fortiori they preserve spectral invariants like the log-determinant of the
Laplacian. As a result, the standard metric g0 on S2 attains the minimum of the
log-determinant functional on the space of all metrics, and any other metric
h attaining the minimum is diffeomorphic to g0, in the sense that there exists
£eDiff(§>2) with ξ*h = g0. Proposition 5.1 has been generalized by Osgood,
Phillips, and Sarnak [OPS1], who give a complete description of the minima of the
log-determinant functional for all compact two-manifolds.

The Branson-0rsted formula, Proposition 2.5, is a four-dimensional analogue
of the Polyakov formula, generalized to cover any operator with reasonable
conformal properties; in particular, the conformal Laplacian and the square of the
Dirac operator. We would like an analogue of the result on extremals of the log-
determinant on § 4 . Of course, the property that all metrics on § 2 can be gotten
from the standard one by making a conformal change and then applying a dif-
feomorphism does not carry over to higher dimensions. With the aid of sharp
inequalities recently derived by W. Beckner, however, we have obtained a full
analogue of the § 2 result, working in the conformal class of the standard metric on
§ 4

Recall from (2.10, 2.11) that on ( § 4 , g0), under the assumption \s*e4w = 1, with
A as in Proposition 2.5, our log-determinant functional is

{log ί e«»-*> - \ f (Awf - \ f
I s 4 •> s 4

 J s 4

where as usual, Aw is the operator A evaluated in the metric e2wg0.

Theorem 5.2. Suppose that A is as in Proposition 2.5, and that β2 \_A~\ β3 \_A~\ > 0. Let
φA(w) = (Sgn β2[Λ'])F(w) on ( § 4 , g0). Then ΦA(w) ^ 0, with ΦA(w) = 0 if and only if
e2wg0 = φ*(g0) for some φ e ^(§>4, g0), the conformal transformation group o/§>4;
that is, when e2wg0 is isometric to g0.

Our proof of this theorem uses the following sharp inequality due to Beckner
[ B e d ] ; this may be interpreted as a linearized, or logarithmic form of Adams'
inequality (compare (2.12) to (5.3) below).

Lemma 5.3. [Bed] Iffe C°°(§n) has an expansion X^L0 Yu in spherical harmonics,
then

log f e ' - ' g l £ B(n,k) f \Yk\
2 , (5.2)

S" Z n k = l §"

where B(n, k) = Γ(n + k)/(Γ(n)Γ(k)). Equality holds if and only ife2flng0 = φ*g0for
some φ in the conformal transformation group of the standard sphere (§>n, g0). D
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Restricting our attention to the special case n = 4, we have B(4, k) =
k(k + l)(/c + 2)(/c + 3)/6. Since the eigenvalue of A on the space of feth-order
spherical harmonics is k(k + 3), we may rewrite (5.2) as

log f e*(w-*}^- f wA(A +2)w
3

(Aw)2+ 2 f | dw | 2 Y (5.3)
§ 4 /

Proof of Theorem 5.2. Let / be the coefficient of — i β2 in (5.1), and let // be the
coefficient of — β3. By Lemma 5.3 in the form (5.3), / ^ 0, with equality if and only
iΐe2wg0 = φ*g0 for some φ e ^ ( S 4 , g0). It now suffices to prove a similar statement
about //; this is the content of the following lemma.

Lemma 5.4. If WE C°°(§4),

-611= j ^ - 4 f | d w | 2 ^ 0 ,

V J
with equality if and only if e2wg0 = φ*g0for some φ e ^ ( § 4 , g0).

Proof Though we shall present a geometric proof, this inequality can be proved by
purely analytic methods [Bec2]. Let gw = e2wg0 be a conformal metric on § 4 , and
let 6J 0 = 12 and 6JW be the scalar curvatures of g0 and gw respectively. By the
Yamabe equation,

(A + 2 K = Jwe
3w ,

so

On the other hand,

Aew

—^- = Aw- \dw\2 ,

so that

f {%-) - 4 f \dw\2 = ί {4 - 4Jwe
2w + J2

we*w + 4( - 2 + J^2*")}

= - 4 + f J 2 e 4 w . (5.4)

Now recall the Yamabe functional

Ud(e™)\2

Y(§\go,w) =
\l/2

and the corresponding sharp Sobolev inequality, which says that the infimum of
Γ(§>4, g0, w) is attained exactly when e2wg0 = φ*g0, φ e ^ ( § , ̂ o) I n particular,
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the infimum is 2. All functionals we treat are scale-invariant, so we may work under

the assumption f§4^4w = 1 here too. (5.4) and (5.5) give

- 611 = - 4 + f Jle^ ^ - 4 + ( ί J w e 4 w ) = Y(§\ gθ9 w)2 - 4 .

This completes the proof of Lemma 5.4, and thus of Theorem 5.2. D

Corollary 5.5. On §>4, in the conformal class of the standard metric,

det Lo , det fl

In each case, equality holds if and only ife^go = φ*g0for some φ e ^(§>4, g0). D

Remark 5.6. Theorem 5.2 shows that the splitting of the Branson-0rsted formula

(2.7) into β2 and β3 contributions is quite natural. Since we have two operators with

different β 3 /β 2 , it also shows that / and // are separately invariant under the

conformal transformation group ^ ( § 4 , g0); we have also verified this by direct

computation.

Remark 5.7. In view of the Beckner inequality (5.1), which is valid on §>n for any w,

it is natural to speculate that a similar result should be true for all even n. (For odd

n, the determinant of an operator of our type is conformally invariant.) In fact,

working jointly with W. Beckner, we have obtained some preliminary results in this

program.

References

[Ad] Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math.
128, 385-398 (1988)

[Aul] Aubin, T.: Fonction de Green et valeurs propres du Laplacien. J. Math. Pures Appl.
53, 347-371 (1974)

[Au2] Aubin, T.: Meilleures constantes dans le theorem d'inclusion de Sobolev et un
theorem de Fredholm non lineaire pour la transformation conforme de la courbure
scalaire. J. Funct. Anal. 32, 148-174 (1979)

[Becl] Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger
inequality. Preprint, to appear in the Annals of Math.

[Bec2] Beckner, W.: private communication
[Bes] Besse, A.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3.

Folge, Band 10, Berlin, Heidelberg, New York: Springer 1987
[B01] Branson, T., 0rsted, B.: Conformal indices of Riemannian manifolds. Comp. Math.

60, 261-293 (1986)
[B02] Branson, T., 0rsted, B.: Conformal deformation and the heat operator. Indiana U.

Math. J. 37,83-110(1988)
[B03] Branson T., 0rsted, B.: Explicit functional determinants in four dimensions. Proc. Am.

Math. Soc. 113, 669-682 (1991)
[CY] Chang, S.-Y.A., Yang, P.: Compactness of isospectral conformal metrics on S3.

Comment. Math. Helv. 64, 363-374 (1989)
[F] Fontana, L.: Sharp borderline estimates on spheres and compact Riemannian mani-

folds. Ph.D. dissertation, Washington University, 1991
[G] Gilkey, P.: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index

Theorem. Wilmington, DE: Publish or Perish 1984 '
[J] Jensen, G.: Homogeneous Einstein spaces of dimension four. J. Diff. Geom. 3, 309-349

(1969)



262 T.P. Branson, S.-Y.A. Chang and P.C. Yang

[MS] McKean, H., Singer, I.: Curvature and the eigenvalues of the Laplacian. J. Diff. Geom.
1, 43-69 (1967)

[O'N] O'Neil, R.: Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129-142
(1963)

[On] Onofri, E.: On the positίvity of the effective action in a theory of random surfaces.
Commun. Math. Phys. 86, 321-326 (1982)

[OV] Onofri, E., Virasoro, M.: On a formulation of Polyakov's string theory with regular
classical solutions. Nucl. Phys. B 201, 159-175 (1982)

[OPS1] Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct.
Anal. 80, 148-211 (1988)

[OPS2] Osgood, B., Phillips, R., Sarnak, P.: Compact isospectral sets of surfaces. J. Funct.
Anal. 80, 212-234 (1988)

[PI] Polyakov, A.: Quantum geometry of Bosonic strings. Phys. Lett. B 103, 207-210
(1981)

[P2] Polyakov, A.: Quantum geometry of Fermionic strings. Phys. Lett. B 103, 211-213
(1981)

[RS] Ray, D., Singer, L: Λ-torsion and the Laplacian on Riemannian manifolds. Adv. Math.
7, 145-210 (1971)

[S] Seeley, R.: Complex powers of an elliptic operator. Proc. Symposia Pure Math. 10,
288-307 (1967)

Communicated by A. Jaffe




