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Abstract. In this paper, we studied the regularity problem for harmonic maps into
hyperbolic spaces with prescribed singularities along codimension two submani-
folds. This is motivated from one of Hawking's conjectures on the uniqueness of
Kerr solutions among all axially symmetric asymptotically flat stationary solutions
to the vacuum Einstein equation in general relativity.

1. Introduction

In the last three decades, much progress has been made on harmonic maps between
Riemannian manifolds. Among the outstanding ones, for instance, are the existence
of Eells and Sampson [ES] on harmonic maps into nonpositively curved mani-
folds, with the generalization of R. Hamilton [Ha] to manifolds with boundary, the
ones of Sacks and Uhlenbeck [SU], Lemaire [Le] and R. Schoen and S.-T. Yau on
harmonic maps defined on Riemann surfaces, and regularity theories of R. Schoen
and K. Uhlenbeck [SU1, SU2]. Prior to [SU1, SU2] there had been some
regularity theorems due to Hildebrandt, Giusti, Giaquinta (see for example [Gi])
under various assumptions on the target manifolds. These results have brought
tremendous new understandings of the geometry of manifolds.

In this paper, we consider the following problem. Let (M, ds2) be a n-dimen-
sional complete Riemannian manifold with or without boundary, and N c M b e
a codimension two closed submanifold; le /̂z be a smooth map from M\N into the
naturally compactified hyperbolic space Hm such that h(M\N) c Hm, where Hm is
upper-half-space model of m-hyperbolic space form. Then we would like to find
a harmonic map from M\N in Hm with "similar" asymptotic behavior to h along N.
One natural approach is to perturb h to obtain the harmonic one. To make it
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precise, we let (yίL. . . , ym)(ym > 0) be the global coordinates of Hm inherited from

Rm, and dHm = Hm\Hm is just defined by ym = 0. Write h = (hl9...9 hm\ then

hm ^ 0 and hm > 0 in M\N.
We denote by Hlt0(M) (respectively i ί l j Λ m j 0 ( M ) ) the completion of CQ(M)

(resp. C(?(MyV)) under the norm

11^111, = ί\vψ\2dv9 (l.i)
M

( r e s p . || φ \\Huhrn = ) h m \ V φ \ dV) , (1.2)
M

where dFis the volume form on M, and the norm on Vφ is taken with respect to
the metric ds2 on M.

We want to find a harmonic map into Hm of form ( φ l 5 . . . , φm-l9 hmeψm)
satisfying: φt — ht e Hlίhmί0(M) for i = 1, 2, . . . , m — 1 and φm e H10(M). Equiv-
alently, we are bound to find the critical point of the functional on
(Yl?=i(hi + Huhrn,0(M)))xHU0(M) defined as follows:

F(φl9. . . , φm-l9φm)= f I Vφm\2 -

In the case log /zm is harmonic, i.e., A log /zm = 0 on M\N, the second term in the
above integration may be taken away from F. Under suitable conditions on
hu . . . , hm, one can prove the existence of the minimizer by a standard method (see
Sect. 2 or [Wei]). For instance, in order to make the functional F meaningful, we
have to assume that all integrals $Mhή21 V^i\2 dV are finite, where i = 1,
2, . . . m — 1. In fact, the solution is unique among the admissible functions. See
[Wei] for more details. One is then led to the problem how regular the critical
point ( φ l 5 . . . , φm) could be along the submanifold N in M. This is our main
concern in this paper. We demonstrate the smoothness oϊ(φu . . . , φm) under mild
nondegeneracy conditions on hm. Namely, we show

Theorem 1.1. Let (M, g) be a smooth n-dimensional Riemannίan manifold without
boundary, N a M be a smooth (n — 2)-dimensional closed submanifold, hu . . . ,
hm-1 be smooth functions on M, hm > 0 be smooth in M\N and

(*) = 0, xeM\N, (1.4)

^ l , (1.5)

where p(x) = dist(x, N) is the distance between x e M and N, a > 0 is some positive
constant.

Let (φ 1 ? . . . , φm) be the minimizer of F defined in (1.3) in the space
(ΠΓ="i1(^ + ^ i ,^ ,o(M)))x( i/ 1 , 0 (M)nL 0 0 (M)) . Then for any ε > 0, ε < 2α,
(φί9 . . . , φm) e Ck*'λχ with ka = [2α — 2ε] and λa = min {2α — 2ε — fcα, 1 — ε}.

The conclusion of the above theorem still holds if, instead of (1.4), we assume
that A\oghm(x) can be extended to N as a smooth function. More generally, if



Regularity of Harmonic Maps with Prescribed Singularities 3

AT is a siibmainfold with boundary, this theorem implies that the minimizer
(ψι, . . . , φm) is Holder continuous in the interior of N. But our method also yields
Holder continuity of the minimizer on the boundary of N. This is discussed in
[LT1].

The existence of such hm is elementary and has been explicitly written down in
terms of the Green's function. At those points where hm > 0, the regularity of
(φl9 . . . , φm) is just the same as that of the harmonic map (hι + φί9 . . . ,
hm-i + ψm-iτ hm eφή into Hm, and it then follows from the well-known regularity
theorem for harmonic maps (cf. [SU1]). Therefore, in order to prove our main
theorem, we only need to give the regularity of (φl9 . . . , φm) at those points where
hm = 0. Some easy computations show that the Euler-Lagrange equation of (1.3) is
degenerate at these points. This is the essential difficulty to the proof of Theorem
1.1. The proof we have here is in the spirit of [SU1].

For harmonic maps, it is well known that Cα-regularity (α > 0) automatically
implies higher order ones (cf. [Sc]). However it is not clear in our case because
of the degeneracy of the Euler-Lagrange equations. Therefore, we also need to
derive the regularity estimates of higher order for (φl9 . . . , φm) from Cα-estimate
(α > 0).

We also give an existence theorem of such a harmonic map in case ht

(ί = 1, . . . , m — 1) are constants along the connected components of N.
One of our motivations towards such a problem is from one conjecture of

Hawking in the formulation of G. Weinstein [Wei]. Hawking's conjecture asserts
that Kerr solutions are the only asymptotically flat, axially symmetric, stationary
ones of Einstein Vacuum Equation in general relativity with certain nondegenerate
conditions on event horizons. In case the event horizon is connected, it was settled
down by Robinson [Ro] in the 70's. Robinson's proof is based on the uniqueness of
harmonic maps into hyperbolic space and earlier work by Ernst and Carter ([Er,
Ca]). But this conjecture is still open in general. As an application of our
theorem, we will prove that there are no asymptotically flat, axially symmetric,
stationary solutions of EVE with disconnected event horizons of small angular
momentum.

The organization of this paper is as follows. In Sect. 2, we prove the existence
and boundedness of the minimizer of the functional F in (1.3). In Sect. 3, we discuss
some total energy estimate. Section 4 contains a modified monotonicity formula for
our solutions. Then the Holder regularity follows from the standard De Giorgi
estimate. In Sect. 5, we discuss the regularity of higher order. The application of our
theorem is given in the last section (Sect. 6).

Finally, we would like to remark that two possible generalizations can be made
in the future. The simpler one is to remove the smoothness condition of N; instead
we assume that TV is a union of submanifolds intersecting with each other transver-
sally. The more interesting one is to lift the assumption on the hyperbolicity of Hm.
In general, when the target may not have nonpositive curvature, one expects the
regularity of the minimizer of (1.3) outside a subset of M of codimension 3 as R.
Schoen and K. Uhlenbeck found for harmonic maps. All these generalizations will
be discussed in the future.

After we finished this work, we learned from G. Weinstein that in the special
case where M = R3, N is the z-axis, m = 2 and (φl9 φ2) is the minimizer among
axisymmetric functions; our theorem is also proved independently by G. Weinstein
([We2]). His method is completely different from ours and seems to be unlikely to
be generalized to higher dimensional or nonaxially symmetric cases.
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We would like to thank F.H. Lin for bringing [HL] to our attention. We would
also like to thank D. Christodoulou, F.H. Lin and W. Shu for useful discussions on
the problem.

2. Existence

The existence results in this section are essentially due to G. Weinstein [Wei]. We
present them here for the sake of completeness.

Let (Mw, g) be a n-dimensional (n ̂  3) smooth compact Riemannian manifold
with smooth boundary, Nn~2 a Mn be a (n — 2)-dimensional smooth closed sub-
manifold. Let α > 0 be some positive number, p(x) be a function defined on M,
p(x) = dist(x, N) for x near N and smooth, strictly positive elsewhere. Let u be the
solution of

— Au(x) = A(a\ogp(x)), x e M ,

u\dM = 0.

Here A denotes the Laplace-Beltrami operator with respect to the metric of M.
It is obvious that u is smooth away from N. The question is how smooth it is

across N. After some essentially elementary calculations, we see that w is at least
Holder continuous. In fact, for any ε e (0, 1), there exists some positive constant
C(ε) > 0, such that,

I Vu(x)\ ̂  C(s)p(x)ε-1 Vx e M\N.

Let hm(x) = p(x)*euix\ xeM, clearly A(loghm) = 0 on M\N.
L e t ^ : M - ^ R (1 ̂  i <. m) be H^M) function and bounded on ΘM. For

i = 1,2, . . . , m — l9fi = 0 on N. We look for harmonic maps

(φl9...9φm-i9hmέ»ή:M\N-+Hm

with prescribed boundary data:

ΨilδM =fi, 1 ^ i ^ m ,

and the prescribed singularity on N in the sense that | φm \ ̂  constant.
Let us set up the problem rigorously, consider

Γ m~1 1
H(φl9 . . , φm-i,φm)= J \\Vφm\2 + h~2 e~2«™ Σ WφAdV, (2.1)

M l ΐ = l J

where

<Pi-fteHlthmt0(M) f o r / = l , 2 , . . . , m - l , (2.2)

φm-fmeHh(M). (2.3)

It has been explained that if we can obtain a minimizer of H(φί9 . . . , φm)
among the admissible functions with | φm \ ̂  constant, we will have the harmonic
map with prescribed singularity.
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Theorem 2'.1. The minimum ofH{ψχ, . . . , φm) can be attained among those admis-
sible functions (px, . . . , φm which satisfy (2.2) and (2.3). Furthermore the minimizer
satisfies \φm\ S constant.

Remark 2.1. The condition on the boundary data^ = 0 on N (ί = 1, 2, . . . , m — 1)
can be replaced by f = cf on N (i = 1, 2, . . . , m — 1) with Q E R being constants.
One only needs to make a translation in (φl9 . . . , φm-i) to achieve this.

Remark 2.2. The assumption of Nn~2 c Mn being a closed submanifold can be
relaxed to Nn~2 c Mn being a submanifold with dN a dM, then we need the
boundary conditions {fi]f=ι to be compatible on dN and on dM. The proof is
exactly the same.

Sketch of the Proof of Theorem 2.1. Let φ{k) = (φ{k\ . . . , φίJ- I > Φ ? ) be a minimiz-
ing sequence, with the boundary conditions (2.2) and (2.3). Since fm is bounded on
dM, we can replace φ{k) by φ{k) = max{φm, — C}. The new sequence
φ ( k ) = (φifc), . . * φίJ-ij Φm*) will have energy no more than φ(fc), and the same
boundary value as φ(k). Therefore φ{k) is also a minimizing sequence. We replace
φ(k) by φ(k\ but for simplicity, we still denote it as φ{k). After this truncation, the
minimizing sequence φ(k) satisfies

φik)^ -C. (2.4)

Once we have (2.4), we can use a simple density argument to replace
φ[k) (i = 1, 2, . . . , m - 1) by φ\k) (i = 1, 2, . . . , m - 1) with φίfc) - j e C§{M\N).
Once again we replace φ\k) by φίfc), but still keep the old notation.

In order to get an upper bound on φ{^\ we explore the isometry group of Hm.
Let us denote

Φ = (Φl9 . . . , Φm-U Φm) = (φu . . . , φm-uhm eφ-) e Hm. (2.5)

We know that

Φ2 -}- ŷ  Φ ^

* i = 1 (2-6)

Φ ~\~ 7^ Φ
i=ί

is an isometry of Hm, namely,

Σ dΦ? + rfΦ^ X dΦf + rfΦ^
i = l i = l (2.7)

Φm &m

Let us write Φ as

φ = ( φ 1 , . . . , Φm- i , Φ m ) = (<Pi, . . , φ m - 1 , /im X ^ W ) (2-8)
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It follows easily from (2.7) that

I Vφm\2 + "Σ 1 I Vψiΐ e~2(p-h~2 = I Vφm\2 + "% | Vφtf e~2^h2

m

i=ί i = l

-2V(\θghm)V(φm + φm).

Integrating the above over M,

m—1 m — 1

ί l ^ m | 2 + Σ Wφι\2e-2»"h-2=l\Vφm\2+ Σ l^«l2e-2*-Λi
M i = l M i = l

Since φίk ) = 0 (/ = 1, 2, . . . , m - 1) near JV, it follows from (2.6) that
<Pm + Ψm = 0 near JV. Using Stokes theorem and the harmonicity of log hm, we have

- 2 J F(log K) V(φm + φm) = 2$ (φm + ψm) A (log hm)
M δM 0 V

which depends only on the boundary data {/J. Hence
m — 1 m — 1

ίlF<pJ2+ Σ H7<pίl
2e-2*"*m2 = j H 7 Φ J 2 + Σ \rφi\2e-2φ-h2

m
M i=ί M i=ί

+ constant

clearly, φm ^ — C on δM, therefore we can chop it off from below as before with-
out increasing the energy. Therefore we can assume that our minimizing sequence
φ(k) has the property that φm ^ — C, which, according to (2.6), implies that

φίnk) ύ C . (2.9)

The new minimizing sequence might lose the lower bound (2.4), but we can
chop it off from below and gain back this property easily.

Putting the above together, we have obtained a minimizing sequence φ(k) with
bounds on φ^ from above and below ((2.4) and (2.8)). With these bounds, one can
easily obtain a minimum by using some standard functional analysis argument.

Remark 2.3. In Theorem 2.1, if there are finite disjoint n — 2 closed dimensional
submanifolds N1, . . . , Nt c M, one can prove the same result by letting
p(x) = dist(x, Nj) (j = 1, 2, . . . , /) near {Jl

j=ίNj and smooth, positive elsewhere,
also^ = C( on Nj (ί ̂ j^l,l^i^m— 1). The proof is very similar, just perform
the chopping off procedure one by one.

3. Energy Estimates

Let (φl9 . . . , φm) be the solution of the Euler-Lagrange equation of (1.3), i.e.

γ m-l

A(Pm= -j^e~2φm Σ I V(Pί\2

i = 1 on M\N (3.1)
e

div —j- Vψi I = 0 for i = 1, 2, . . . , m - 1
\ nm J
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with I φm I k C. Note that here we need to use the assumption in Theorem 1 that
Alog hm = 0 outside N. In our proof below and the next two sections, we always use
C to denote a universal constant, although its actual value may vary in different
places. From now on, we fix a point x0 in N a M.

Write p to be the distance function from the subspace N with respect to the
metric ds2. By our assumptions in Theorem 1.1, we have

hm = p«eu (α>0) (3.2)

in a neighborhood of x0, say the unit geodesic ball iMx0), where u is smooth in
Bi(xo)\N such that for any 0 < ε < 1, there exists some positive constant
C(ε) > 0,| Vu(x)\ S C(ε)p(x)ε-\ Vx e N.

We denote by rx(ή the distance function on M from x0.

Lemma 3.1. The solution (φί9 . . . 9 φm) can be extended across M n ^ ( x 0 ) to be the
weak solutions o/(3.1) in the sense: for any smooth functions φ1, . . . , φn with compact
support in £i(xo)> we have

J \vφmVφm-^e-2^γί\Vφi\
2φm}dV=0, (3.3)

- Vφm)φ\dV=0 i = 1, 2, . . . , m - 1 . (3.4)

Proof Outside N, the second equation in (3.1) is equivalent to

0. (3.5)

Let η be a cut-off function from K1 into i?1 satisfying η(ή = 0 for t ^ 1, ?/(ί) = 1 for
ί ^ 2. ?/(ί) ^ 0, \η'{t)\ ^ 1. Then the lemma is proved by multiplying

n\?g[~ ?g]Ψj (1 ύiύm) to the first equation of (3.1) and (3.4) above,
\ log(- logε)/

respectively, integrating by parts, and then taking the limit as ε goes to zero. Note
here that we need to use the fact

\ dp

ί < C °
Lemma 3.2. There is a uniform constant C such that for any x in B±(xo)9

( m ~ 1 I Vω \2\
J rx(z)-"+2 I Vφm\2 + Σ -nr- )(z)dV(z) ^ C < oo . (3.6)

Proof Let Gx(z) be the Green function on B1(x0) with singularity at x and
vanishing on δl^Xo), η be the cut-off function defined as above. Put
λ = — 1 + infMφm, then — φm — λ ^ 1. For any ε > 0, we smooth the Green
function as follows:

G\{z) = (3.7)

)) J Gx(z')dz' .
BΛz)
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Substituting φm in (3.3) by (1 — η(4rx(z)))2 Gε

x(z) ( — φm(z) — λ) and using the boun-
dedness of φ m , we immediately obtain

ί \K2 ^ I Vψi? + I Vφm\21(1 - η(4rx))2 Gx(z)dV{z)
i(O) I i = l JBi(O)

^ C j l + \ j (</>m - λ)2Δ{{\ - η)2Gx)(z)dV(z)
L Z Bi(O)

+ ^ J (φm-A)2(l-f/)2ZlG^FJ. (3.8)
Z5i(0) J

(Note that C is always a uniform constant.)

But some direct computations show that the last integral is nonpositive when ε is
sufficiently small. Thus our lemma follows from (3.8) by taking the limit as ε goes to
zero and the fact that Gx(z) is equivalent to rx(z)~n + 2 in B±(x).

Before we go further, we would like to make a few remarks. By the well-known
regularity theory of harmonic maps (cf. [SU1]), we know that (φl9 . . . 9 φm) are as
smooth as (hl9 . . . , hm) outside N c M, or more precisely, the set where hm > 0.

Lemma 3.3. For any point x in B^XQ^N, we have

Wφm\(x)ύ-^-v\ VΨiI(x) g Cp(x)-'+a, (3.9)
pyx)

where C is a uniform constant independent of(φu . . . , φm).

Proof. Recall that (φl9 . . . , φm~l9 hm eψm) define a harmonic map Φ from M\N
into Hm. Denote by e = e(Φ) the energy density of this harmonic map. Then by the
standard Bochner formula, one finds by using the hyperbolicity of Hm,

(3.10)

where μ is a constant depending only on the upper bound of Ricci curvature on M.
Then by applying mean-value inequality or direct Moser iteration to (3.10), we

obtain (p = p(x))

))
Ί

On the other hand, according to the definition, we have

e(φ) = ( "I 1 I VψιAκ2e-2^ + I V\oghm + Vψm

m - l

— - + Vu + Vφn

P

2

(3.12)



Regularity of Harmonic Maps with Prescribed Singularities 9

Thus by the previous lemma and the assumption of Vu near N (cf. (3.2)),

J e(Φ)(z)dV(z)SCp"-2 = Cp(x)n-2. (3.13)

Bψc)

It follows

-2 . (3.14)

Note that this C may be different from the previous one, but still independent of
x in B^XQ) and (φ 1 ? . . . , φm). Then (3.9) follows from (3.14) and (3.12).

Without loss of generality, we may assume that BA(x0) is geodesically
convex.

Corollary 3.1. Let (φί9 . . . , φm) be the solution of (3.1) with \φm\ bounded. Then

I φt(x) - φi(π{x)) \SCp« i = 1, 2, . . . , m - 1 , (3.15)

where π is the map from Bι(x0) to N defined as follows: for any x, there is a unique
geodesic y such that y(0) e JV, y(p(x)) = x, and y(0) is perpendicular to N at y(0), then
define π(x) = y(0).

Proo/. Let y be the unique geodesic joining π(x) to x with length p(x). Then
1/1 = 1. By the fundamental theorem of calculus,

f^ Φi(?(0)) Λ = f

p(χ) r

where Lemma 3.3 has been used.
In particular, if α > 1, then φt must be constant in each connected component of

AT in M.

Proposition 3.1. (Smallness of the normalized energy). Let (φu . . . , φm) be the
solution of '(3.1) with \ φm \ uniformly bounded. Then for any ε > 0, x in M, there is a σx

between e~3C/ε and 5 such that

ί (W<Pm\2 + p-2a Σ W<Pi\2)dV£e, (3.16)

C is the uniform constant in (3.6).

Proof. Define

m - l

p " 2 α

Bσ(x)\ ί= l
dv.
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Then

0 σ 0 \Bσ(x)

= - (n -

Bσ(x)

= -(n-2)σ"" + 2 f

)Jσ"M + 2 f J
0 \dBσ(x)

Y. Li and G. Tian

Vφi\
2)dV dσ

Vφm

\

Pil2 U
ί = l

+ (n - 2) J r,(z)-" +

By Lemma 3.2 and Lemma 3.3, all last three integrals are uniformly bounded, so it
follows

(3.17)

Then the lemma just follows from a simple estimate on the lower bound of the
integral in (3.17).

4. Holder Estimates

All the notations in Sect. 3 will be adopted in this section. The aim of this section is
to show the Holder continuity of the solution (φ1, . . . , φm) of (3.1) at the points of
N where hm is of the form (3.2). Such a Holder estimate will follow from
a strengthened version of energy estimate in Proposition 3.1. Usually, this can be
accomplished by means of a monotonicity formula, for instance, in the case of
harmonic maps. But this required monotonicity formula is not at hand in our case,
so we first need to derive it.

Let (</>!,..., φm) be a fixed solution of (3.1) with \φm\ ̂  C as in Sect. 3,
and B^XQ) is a geodesically convex ball at x 0 i

n N9 in which hm can be written
as in (3.2). Also, since Theorem 1.1 is local, we may assume that M = Rn and
N = Rn~2 c M .

Lemma 4.1. For any ft0^(7^|,ε>0 and x e B±.(x0) n JV, there is the following
inequality.

(x) ^ εEσ(x) + —n J \\φm - β\2

8(7 Bσ(x)\B<ι(x)L

\Ψi - βAdV
J

(4.1)
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where Ca is a constant which is zero ifa^l and we define

r m-\ Λ

Proof. Let ημ: R1 -• R1 be cut-off functions (μ > 1) satisfying:

ημ{t) = 1 for t ^ 1; ημ(t) = 0 for t ^ μ; ημ(t) ^ 0;

1 / 1 \ 2

1 ^ ( 0 1 ^ r; \ημ(t)\^[ . (4.3)
μ - l \μ - v

There are two cases: (i) B±σ(x) nN = 0; (ii) B±σ(x) n Λ ί φ 0 . Presumably, the
first case is easier. Let us consider (ii) and then indicate why (4.1) is also true in case
(i). In case B±σ(x) n N φ 0 , all βt (ί = 1, 2,. . . , m — 1) are zeroes according to our
assumption.

We observe that there is σ0 between | σ and | σ such that

m—1 o m—1

J h~2e~2^ Σ \Vφi\
2dVύ- I h-2e~2^ Σ Wψtl'dV (4.4)

and
m— 1 o m— ί

hn, e Ψrrι ) I (0; I ^ — I /ίTO ^ Φm / I (p.-1 dV. (4 .5)
5B f f ( j ( x ) i = l σ ^ 2 ( J W \ J B 3 . ( 7 ( J C ) i = l

Let λ be a positive number ^ γ£, specified later. We call (φf, . . . , φ*) an
admissible map if it is in the domain of the functional F (cf. Sect. 1, 2), in particular,
for such a map, we have

Define

φ*(z) = (l - ηj~rx(z)\]φm(z) + nJ^-jΛ^β (4.6)

In order to define φf for 1 ^ i ^ m — 1, we need to first introduce ψi as follows:

define ωf(z) to be φ{(z) — hAz) for zέ Bσ(x) and (φf — hi) ( x + — I for z in

Bσo(x). In case α ̂  1, we may assume ht are constants in
Now we define

φf(z) = (l- η^Lr^f)r)]φi^) + K i = 1,2, . . . ,m - 1 . (4.7)

Using the fact that p( x + — — ) is uniformly equivalent to p(z) for z in
z-x\

Bσo(x)\Bσo/2(x\ one can easily check that (φf, . . . , φ*) is an admissible map,
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moreover, φf and the derivatives of φf (i = 1, 2, . . . , m — 1) coincide with φm and
those of φj outside Bσo(x)9 respectively. Therefore, we have

J \\Vφm\2 + h-2e-2*~mΣ\VφAdV

ί
Bβ0(x)

^ 0

m - l

•Σ

Λ r , ) Vrx- Vφm(φm - β) + h
2σ0 J

~2 e~2

+ 4 J h-'e-^ΣlVφ
Baΰ(x)\Ba-λ)σQ(x) i=l

1 m - 1

Λ σ O β β o ( z ) \ J Ϊ ( 1 - A ) f f o ( x ) ί = l

m - l

4 - 2 f h~2 e~2φ™ V \Vh \2 dV

Bσo{x) i - 1

In particular, it implies

J
Bσo(x)

i=ί

200

— S
σ 0 Bσo(x)\B3*o(

4

2C

(4.8)

\ψm-β\2dV

, (4.9)

where C is a constant depending only on the supremum of \φm\. Since x e N and

λ^Tξ, two quantities fcm(

zinBσo(x)\B{1-λ)σo(x), say

p

^Tξ, two quantities fcm(z) and hml x + -^ — ) are uniformly equivalent for
— x

K ( x +
\z-x\

where Ct is a universal constant. Thus by using

g Citing), (4.10)

J K2 Σ J h~2 j r -

^ Vφ,\2dV. (4.11)
Bσo(x)\Blσo(x)



Regularity of Harmonic Maps with Prescribed Singularities 13

Similarly,'we also have

_™~1 ~ . m - l

ί K2 Σ ΦtdVύUC.C J K2e-2φ~ Σ ψfdV. (14.12)

Combining (4.9), (4.11) and (4.12), we obtain

m- 1 200

J Wφm\2dV+ $ hm

2e-2^Σ\V<Pi\2dV^— J I<P« - j8|W

16λC2C1 j J

ί /2- 2 ^ 2 ^V(p?rfFJ. (4.13)

Now we choose A such that 16λC2CX ^ ε. Then there is a uniform constant C o such
that

J <\Vφm\2 + h-2e-2*~ X |Fς

Note that -σ ^ σ0 ^ — , so —p ^ -σ, σ0 ^ σ, so the lemma follows from the above

inequality.

Lemma 4.2. For any β, 0 < σ ^ i , ε > 0 and x e Bx(x0), there is the following
inequality:

>m-β{2 + h-2e-2φm γ l φ i _ β i l 2 l d V

j? l9 . . . , jSm_! are any constants ifBσ/5(x) nN = 0 ; zeroes otherwise, Ca is
a constant which is zero ifoc^l and we define

Proof. There are two cases: (i) Bσ/S(x) n i V φ 0 ; (ii) Bσ/5(x) nN = 0. In the first
case, let y be a point in Bσj5(x) n AT, then

Bs(x) cz flj,(y), Bφ) cz Bσ(x) .

Applying Lemma 4.1 with ε replaced by ε' = 4"" + 2ε, we have

^ j ί | φ m )δ| + / i ^ V | Φ ί - β A d V
ε σ B ι σ l J

CM1

—n J {|φm - β\2 + Λm

2 ^ 2 ^ Y I Ψi - βAdV
8(7

B (x)\Bσ
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In the second case, we may simply take

as comparison functions in the derivation of (4.8) and proceed as in the proof of
Lemma 4.1; we can still obtain (4.12).

Next, we give a weighted Poincare inequality. It should be well-known.

Lemma 4.3. Fix 0 < σ < i, x in #i(x 0 ) wίίft B°{x) n N Φ 0. Then
; (

,"S7 ί ψ
^ Bβ(x)\B*(x) P

for any C1 function φ in Bσ(x) vanishing on Bσ(x) n N, where y is a universal constant
possibly depending only on n.

Proof First let us make a few observations: (i) ds2 is very close to the Euclidean one
in JBI(X0) by the assumption at the beginning of Sect. 3. Therefore, it suffices to
show (4.14) in case of Euclidean space with N being a subspace; (ii) (4.14) is
invariant under scaling, so we may take σ to be 2.

Choose Euclidean coordinates (xί9 . . . , xn) such that x = (0, . . . , 0) and N
is defined by xπ_ t = 0, xn = μ > 0. Since ΰ i ( x ) n i V Φ 0 , μ < \, Now

P = yjxi-i +{xn- μ)2. Let f = Jx2

u + . . . + x j_ 2 , P = Jr2 + x?-i + x2

n.

Let /| be a function on B2(x)\B1(x) satisfying: η = 1 if f ^ ^ η = 0 if f ^ ^
I Ff/I ^ 10. Then ηφ vanishes outside r ^ i, so the standard Poincare inequality
implies: for a uniform constant C,

f (ηφ)2dV^C J

S J | F ι A | 2 J F + J ^ 2 d F ) . (4.15)
\B2(x)\B1(x) B2(x)\B!{x) J

However, in case r ^ i , 3 ̂  p ̂  £. It follows that for some C,

P \B2(x)\Bι(x)P \B2(x)\Bι(x) P B2(x)\BUx)P

Therefore, to prove (4.14), it suffices to show

J -£*,«£? f ψ ()
B2(x)\B1(x)P ^ B2{x)\Bι(x) P

Using the spherical coordinates for (xx, . . . , xw_2) and polar coordinates (p, θ)
for (xπ-i, xπ — μ\ one can easily reduce (4.17) to the following inequality:

JJ r-^p-^-^φfdrdp
1 ^ r2 + (p + μ sin 0)2 + μ2 cos20 ^ 4

SC JJ rn~*p-2<χ-ι\Vφ\2 drdp, (4.18)
1 ^ F2 + (p + μ sin 0)2 + μ2 cos20 ^ 4
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where 0 ̂  0 ̂  2π. Note that using μ ̂  \ so we may simply write μ for μ sin 0 and
put b = 4 - μ2 cos20 ^ 4, a = 1 - μ2 cos2 0 ̂  f, then fe - a = 3. Write t = p + μ9

then p = ί — μ; we obtain the equivalent form of (4.18),

ίί ι - 2 α - l \J.\2 Jzφ\2drdt^y ι - 2 α + l

(4.19)

Using the polar coordinates (p, 0) of (f, ί), we can easily see that (4.19) follows
from the inequalities:

J (cose)""3
- 2 α - l

f (cos 0)" - 3
- 2 α + l

(4.20)

where J ^ p ^ 4, |μ| fg ̂ . Note that j ^ vanishes at those points with sin0 = μ/p,
which are indeed in the path {pcos0 ^ i}.

The inequality (4.20) can be proved by using integration by parts, the Schwartz
inequality and the fact that cos θ is bounded from below.

Corollary 4.1. For 1 < σ < J, x in Bi(x0) wίίft n iVφ 0 .

(4.21)
B.M

/or αnj C1 function φ in Bσ(x) vanishing on Bσ(x) n AT, where γ is a universal constant
depending only on n.

Proof. Choose a point x in Bσ/4.(x) n N, then

According to Lemma 4.3, we obtain

c) P

J 2α + 2 " r
 ΔJ J

?lff(x) P i = 0Bii,

ί

•A2

2α

therefore (4.21) follows with γ = 2γ.

Proposition 4.1. There are ε0 and λθ9 independent ofx in B1/2(xo\ such that whenever

2 1
σ = 0 ? = ^ 5 (4.22)
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we have

£vWφ,M (4.23)

Proof. We will prove this proposition in case α ^ 1. The proof of the remaining
case α < 1 is completely identical except that we use φt — ht in place of φ{

(i = 1,2,. . . , m — 1). Since ht are assumed to be smooth across N for
i = 1,2,. . . , m — 1, this modification won't affect any argument below.

In case α ^ 1, we may assume that φt are zero along N for i = 1, 2,. . . , m — 1
(cf. Sect. 2).

We prove (4.23) by contradiction. Suppose that this proposition is not true. Then
there are sequences of { x j ^ i in B1/2(x0% { ε j ^ ^ a n d {σji^i such that 0 < σt ^ i,
lim^^ε,- = 0, and

ε? = £ „ ( * , ) , (4.24)

£ A o σ f ( x ί ) > ^ σ i f e ) = ^ , (4.25)

where Ao is a small number, determined later.
For simplicity of notations, we assume that B1(x0) is the Euclidean ball in Rn

with x 0 being the origin, ds2 is just the Euclidean metric and N = Rn~2 c Rn. The
proof in general case is completely analogous.

By taking a subsequence of {xt}, we may assume that xt converge to a point x in
Bί/2(xo). Since the solution (φl9. . . , φm) has been known to be regular outside N,
such a point x must be in J31/2(xo) n ^

First let us consider the case: there is a subsequence of {xt} such that for any xf

in this sequence, Bσi/lo(Xi) nN = 0 , where Zo will be determined later prior to the
determination of λ0. We remark that this l0 will be independent of x in B1/2(xo)
For simplicity, assume {xj is just this sequence. Then p{x)^Oil2l0 for y in
Bσi/2i0(

χi)' Define functions on JBX(O) CZ R" as follows: i ^ 1,

# ( )

(4.26)

where φ), φli are the averages of φj9 φm over Bffi/2i0(^i)» respectively.
Now Eσ.(Xi) = ε? implies that

ί \ V i l / ) \ 2 d V ^ 4 f o r y = l , 2 , . . . , m ; i ^ l . ( 4 . 2 7 )

By taking the subsequence, we may assume that φ) converge weakly to φj in
JF/2-norms. Note that we need to use the fact that the averages of φ) are zeroes in
B1/210 (0). Moreover, the standard argument shows that φ) converge strongly to φj

in Lp-norms for any p < in case n > 2 or p < 00 in case n = 2. Using (3.1),
n — 2

one can easily show that in the sense of distribution,
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where θ is a smooth, uniformly bounded function. Then we conclude from the
standard elliptic theory (cf. [GT]) that

| < / θ ( x ) - ^ ( 0 ) 1 ^ 1 * 1 for* in £^(0) j=l,2,...9m. (4.29)

Let λ0 be smaller than yj. Applying (4.1) with ε = £ and εip(Xi)a\l/j(0) as βj for
j ^m — 1, and Siφm(0) as /Jw, we obtain

f
Jm - 1

7 = 1

j=ι

(choose /

At

At

+

such

Ϊ8.W

2 β« + 3

96α + 4

that 8U0

(x)

I

s = l "

s = l *

1
!(8 slo)«

1
!(8SAO)"

ί
5 8

S A o (0)\B 8

S -

m

(i

g Σ ^ + 26α + 4 C ε ? - i - f £ | ^ - ^ | 2 d K , (4.30)
s = l δ V^OJ β 8 ' Λ o (0)\β Λ o (0) j=l

where C 2 depends only on C and Cj. Note that C always denotes a uniform
constant, although its value may vary in different places.

Now we choose λθ91 such that C2λ§ ^ 1, — ^ Sιλ0 S ^ r a n d ^l(4 /o)M~2 ύ τ>
4/Q 2/Q 8/ o

then take i sufficiently large such that the last term in (4.30) is less than {. Here we
use the convergence of φ) to ψj(j = 1, 2,. . . , m). Therefore, we have

It contradicts to the inequality (4.25).
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Next, we may assume that Bλσ(Xi)nN Φ 0 for all i. This time we define

Ψ)(x) = - 7 " φλχi + σ ^ ) ' 7 = 1, 2,. . . , w - 1 ,

I/CM = -(φm(λi + (fix) - φm) , (4.31)
εi

where x is in #i(0) and φ m denotes the average of φm over £σi(Xΐ).
Under the transformations: x -> xt + σtx in Rn, the preimages of iV are Nt

parallel to the subspace Rn~2 a Rn and in the distance π(Xi)/σi9 where π is the
orthogonal projection from Rn onto Rn~2. Since Bσi/ιo(Xi)nN + φ, we have
|rc(Xi)MI ^ 1/Ό = 4 Thus we may assume that Nt converge to an aifine subspace
N^ in Rn within the distance l//0 from Rn~2. Let p t , Poo be the distance from Ni9

Nn, respectively. Then

W y ) } V = 1 . (4.32)\
Bi(O) I \j=ί

Note that φm is uniformly bounded. Apply the Corollary 4.1, we have

ί hψ^ + pΓ^-^ΣlΨiAdV^C. (4.33)
βi(O) t 7=1 J

Recall our convention that C always denotes a uniform constant. As in the
previous case, these ψι

m, \j/lj (1 ̂ 7 rg m — 1) converge to ι̂ m, ι/̂  in //2-norm and
//2,p- norms respectively, where

( ^ ^ W . (4.34)

~ ^ 1
Moreover, the functions φm = ψm and ̂  = —— ψj satisfy the following equations in

Poo

the weak sense:

Δφm = 0 , (4.35)

oo \ Poo

where θj are smooth outside N^ in ^i(O) and \Vθj\ ^ C'sp^3 for any ^ < 1 and
some constant C^. So we still have the estimate (4.29) for this φm. Also, these φj are
uniformly bounded outside the set

t/ = | p - 1 > 2 m a x max {VθjVp

since p^ is smooth here. On the other hand, for any x in C7,
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Applying Closer's iteration (cf. [ G T ] , Chap. 8), one can show
1

+ J \φj\2dv)2, j=ί,2,...,m-l. (4.37)
Bi(0)

In particular, these φj are uniformly bounded, or equivalently, p^Ψj are uniformly
bounded. It also implies that φj vanishes along N^ nBί(0).

Next, we need the following lemma, whose proof will be given later.

Lemma 4.4. Let v be a smooth function outside N^ n #i(0) and \ Vυ\ ^ C pZ? with
β < l,fbe a smooth function in B1(0) with m a x 5 l ( O ) ( p ^ ~ 2 α | / | ) ^ C". Then for any
ε > 0, there is a uniform constant C ε , depending only on C", jS, ε, such that if u is
a solution of the equation

Δu = 2Vu(^^- +Vv)+f in B^O) (4.38)

V Poo /

and |M|co(aB2/3(0)) ^ C> u\Nκ = 0, then

\u(x)\ύCεpi«-2ε(x) forxinB,(0). (4.39)

Applying the lemma to φj (j = 1, 2,. . . , m — 1) with ε = α/4, we obtain

\φj(x)\SCPa,(x)% xeBiφ)

j = 1, 2,. . . , m - 1 . (4.40)

Here, as usual, C denotes a constant independent of φj and x.
Now we use (4.1) with βj = 0 for; ^ m - 1 and ε^m(0) for βm, and deduce as we

did for (4.30),

z i r m-i
ε? Σ ̂ π ; ί V i 2 a Σ l^ - ΦJ\2 +

s = 1 δ l ό Λ 0 ; Bg I

ί (

( l ) ' l ^ sup
δ

(use (4.29) and (4.40))

\Ψl -Φm\2 + PZUΣ \ΦJ- h
° BS'Λ.(0)\B, (0) V .7=1

+ C4εf(λ2

0 + (m - 1) sup p«β ) . (4.41)
V B 8 ' Λ O ( 0 )
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Note that both C 3 and C 4 here are uniform constants depending only on n,
C 1 / 8 in (4.1) and C in (4.40). Now we take Jo to be 2(8C4(m - l))1 / α, and then choose
λθ9l as before such that l/4/0 ύ 2ιλ0 ^ l//0 and (4/ 0)"" 2 ^ 8 1 " 1 . Since
β2 l A o(0) c B1/2Zo(0) and B1 / / o ( O ) n i V ^ Φ φ , we have

( m - l ) C 4 sup P α oo^^.

We further assume Coλo ^ £. Then by the strong convergence of φ) to φj in
ZΛnorms, for i sufficiently large, we have

f

A contradiction! The proposition is proved. Note that λ0, ε0 are obviously indepen-
dent of x in B-L(X0).

Proof of Lemma 4.3. We will construct the barrier to obtain the decay estimate
(4.39). First, we remark that it suffices to show (4.39) in a neighborhood of
NQO n B±(0) in 2^(0), since the coefficients of the linear equation (4.38) are smooth
in any compact subset outside N^.

Easy computations yield

\ Poo / /

= ypl~2{(y - 2a) - 2α/9O0 Vv VPoo}, (4.42)

ΛfXo(x)2 = Wx) 2{& - δ)(y - 2α - δ ) ^ 5 " 2

- 2 α ( y - δ ) p £ Γ ' - ^ i Fp^}

+ 2(w - 2)pl~3 δ 2

(4.43)

where Γχo(x) is the projection onto N^ of the distance between x0 and x for any
fixed x0 in B^(0).

Therefore, for any given δ ^ γ < 2α and 0 < (5 < 1, there is a neighborhood Uy

of AT n 5i(0), depending only on ε, y, jS, such that

A _ 2 ^ ? ^ + VΛ . ^ Λ L + p]7%(χ)Λ ^ - C>L-2 in Uγ . (4.44)

Note that the assumption \Vv\^Cp^β (β < 1) is used here. The function
Pi + PVoo"'rXo(x)2 ^ (DVoo"5 for those x with r j x ) ^ f. So these pi + p^Γεr,o(x)2

can be served as upper barriers for u. Now fix ε such that lε = 2a — 2ε for some
integer / > 0. First we take δ = γ = ε. Using maximum principle and comparing
u with pi + rχo(x)2 for any x 0 in N^ n £L(0), we obtain

|t/(x) |^C α p 0 0 (xf i n £ / β .
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Then we repeat this argument successively with y =jε, δ = ε for 2 ^ j ^ I to
conclude the proof of this lemma.

Remark. Proposition 4.1 can easily be modified in the axisymmetric case, where we
need to construct an axisymmetric comparison map.

Now we are ready to give the main theorem of this section.

Theorem 4.1. There are two uniform constants C and δ > 0 such that for any x in
i

Eσ(x) ^ Cσ2δ . (4.45)

In particular, it implies that φm is δ-Holder continuous (cf. [GT], Chap. 8).

Proof. Fix any x in B±(x0). Let ε0, λ0 be given in the last proposition. Then by
Proposition 3.1, there is a σx between e~3C/εo and J, where C is independent of x in

and ( φ ! , . . . , φm), such that

Eσχ(x) S ε2

0 .

Combining this with the last proposition, we have

£ ^ w ^ ^ ; £ - ( x ) = U / ε ° { o τ k = ι

Now for any σ g £ and σ ^ σx, choose /c such that λk

0

+1σx < σ g λ%σx, then

-(n-2) 2 Λ X f e

η_r 7λ ? / i \ ~ S ^ i ^
~λ° So\2)

logσx

Put 2δ = - ^ f > 0, C = λo"("-2)εgl -2 )
 l°6λ\ then

Eσ(x) ^ CV2<5 for σ ^ min i ^ σz 1 . (4.46)
I 8 J

On the other hand, σx is uniformly bounded from below, therefore, the estimate
(4.45) for 0 ^ σ ^ i follows from (4.46).

5. Higher-order Estimates

We will fix the solution (φ1,. . . , φm) of (3.1) with \φm\ ^ C in a geodesic ball
£i(xo) as in Sects. 3 and 4. Note that this center x0 is in N a M and hm is of the
form (3.2) in the ball. In this section, we complete the proof of our main theorem
stated in the introduction. We will always use C to denote a uniform constant
depending only on (hl9. . . , hm\ N, etc.

Lemma 5.1. There is an ε0 > 0, independent of (φ1,. . . ,φm) and the point x in
B±(xo)9 such that

(5.1)
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Proof. Given any point x in B±(x)\N, put 2σ = p(x). Then p ^ σ in £σ(x). Let
Gz(j>) be the Green function in Bσ(x) with Dirichlet boundary condition and
singularity at z. Then one can easily check

ί

\VGx(y)\βdVyίC, forj8<

άV<C,

B - l '

δBσ(x) dnv

(5.2)

(5.3)

where Cβ depends only on β and ny denotes the outward normal vector of dBσ(x).
Using the first equation in (3.1), we have

φm(z)-φm(x)=
dBσ(x)

- ί >
Bσ(χ)

m - l

i = 1

Wφi\
2(y)Gz(y)dVy

It follows

£ ί \<Pm(y) ~ <Pm(x)\
JdG,
\dny

(y)dVy

(5.4)

Wψι\2(y)\VGx(y)\dVy

Bσ(x) ί = l

(Theorem 4.1 and (5.3)) g C2σ
a + d j p " 2 * Σ | Fφ

m - l

Bσ(x)

where δ > 0 is given in Theorem 4.1.
By Holder inequality, we have

J ί J fp- 2 ""ϊ ; 1 | ^

ί WGx(y)\βdv

β_

,2 \β~l

(5.5)

j g - 1

(Lemma 3.3) ^

(Theorem 4.1) ^ C\-C£ σ

Lp~2"
-| + (n - 2 + 2δ)β~t

(5.6)

Now choose 1 < 0 < - ^ such that (n - l)β - n + 25(β - 1) = βε0 > 0

for some ε0 > 0. Such a /? can be taken only dependent of <5, so is ε0 Then

- - + (n - 2 + (5)^-—— ̂  - 1 + ε0? and by (5.5), (5.6), we obtain
P β

I Vφm(x)\ S

The lemma is proved.

C 5 σ" 1 + ε ° g Cp(x) (5.7)
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Corollary 5.1. For any ε > 0, ε < α, there is a uniform constant Cε > 0 such that

\φj(x) - hj(π(x))\ ^ Cεp{x)2«-2\ x in B,(x0) , (5.8)

where j = 1, 2,. . . , m — 1 and π is the projection from B^XQ) into N as given in
Corollary 3.1.

Proof In case α ^ 1, h} = const, in iM^o) π JV. Then (5.8) follows from the pre-
vious lemma and Lemma 4.3. In case α < 1, we may extend ft,- such that
Vhj Vp ^ Cp near N. Then we apply Lemma 4.3 to ^ — /ι7- and obtain the estimate
(5.8). Note that p^ = p and N^ = N in the application of Lemma 4.3.

In particular, the solution (φί,. . . ,φm) is ^-Holder continuous and its
δ-Hόlder norm is uniformly bounded, where δ = δ(<x) depends only on α. However,
in case α > 1, we can have more estimates on the second derivatives of this
solution.

Corollary 5.2. Suppose that α > 1 and hm is of C1>β, where leZ+ and 0 < β < 1.
Then for any ε > 0, ε < 2α, there is a uniform constant Cε > 0 such that

max

where fcα = min{[2α — 2ε], / + 1}, and λa = min{2α — 2ε — ka, β).

Proof Note that h} = const, for j = 1, 2,. . . , m - 1 in case α > 1. By Corollary
5.1, it suffices to bound on the (/cα, Aα)-Hόlder norm of φm in B±(x0). In the first
equation of (3.1), φm is Holder continuous and h~2YJ™=1 \ Vψj\2 is ([2α — 2 — 2ε],
2α — 2 — 2ε — [2α — 2ε — 2])-Holder continuous by Corollary 5.1. Therefore the
bound on the (/cα, /ία)-Hόlder norm of φm follows from the standard Schauder
estimate (cf. [GT]).

Theorem 1.1 follows from Corollary 5.1 and 5.2.
In the following, we will prove that the solution (φi,. . . 9φm) has more

regularity along the tangential directions of N in ΰi(x 0 ), precisely, by a local
diffeomorphism, we may assume that Bί(x0) is an open neighborhood of the origin
in Rn with N nB1(x0) being in the subspace Rn~2 c Rn, let ( x l 5 . . . , xn) be the

Euclidean coordinates, then — ^ j

 l n 2 (lx + + ln-2 = 0 have the same

estimate as (5.9) in the half-ball B±(x0) as long as hm, N and the metric ds2

are of Cz + 2 in 2?i(xo) To avoid the complexity from the presence of curvature
of N and ds2, we simply consider the case where M = Rn. N = Rn~2 a Rn and
ds2 is the flat metric. The proof for general cases is identical. Furthermore, we
assume that log hm is harmonic outside N. By adding a C00-function to φm, we may

take hm to be pα, where α > 1 and p(xu . . . , xw) = y x f - i + x« The equations in
(3.1) become

m-ί

Aφm = p-2«e-
2(p»> V I J7φ | 2

 ? (5.10)

j = l , 2 , . . . , m - l . (5.11)
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L e m m a 5.2. For any integer I ^ 1, and nonnegative integers Z 1 ? . . . , Z π _ 2

/ = h + * * * + Ή-2> we toe

, m " 1 # «
= -2p-2 αe-2^'» £

7 = 1

m - 1

•Σ
J = l

r 2 α e- :

,-2« e-2φ (5.12)

διφj /α7
1 — + Vφn

\ P

2VφjV
dιφm

; = (5.13)

where P\u.. 5 / π 2 ,P™uXiare polynomials of degree at most I + 2 in

dkφm

dkφn

and V
xn_2

, where 0 ^ /c ̂  Z — 1, fcx +

dxγ . . . dxk

n"_-2

+ feM_2 = k. Furthermore,

P™,... ,/π_2 is at least quadratic on the derivatives of ψj (j = 1, 2,. . . , m — 1).

Proof, These equations follow from the direct computations, (5.10) and (5.11).

Theorem 5.1. Let N = Rn~2 a Rn = M be the subspace, hu . . . ,hm be C^-fun-

ctions with hm — p α in B1(0). Then for any (n — 2)-tuple of nonnegative integers

(Zi, . . . , / „ - 2 ) an<d ε > 0, there is a constant Cεj, depending only on ε and

I = li + ' + ln-2> such that

dιφj
max < — r ^ - F — I I ϊS-CεJ

where ka = [2α — 2ε], λa = 2α — 2ε — ka as in Corollary 5.2.

(5.14)

Proof We will prove (5.14) by induction on Z = Y^Zl h for fixed small ε > 0. In

case Z = 0, (5.14) is just (5.9). Now we suppose that (5.14) is true for all

(Zi,. . . , lf

n-2) with Zi,. . . , Vn-2 < Z. By induction, we may further assume that on

S - 2

(x) S 2α-2ε

and

\> . . . dxk

n

2_:
(x) ^ Q,,p(x):2α-2ε-l

(5.15)

(5.16)

where 0 ^ fc ^ J — 1, l ^ j ^ m — 1 and CKt are constants independent of the

solution.
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Then by Lemma 5.2, in Eqs. (5.12) and (5.13), for some uniform constant C,

\PZ...,ι,Jx)\^Cp**~4ε~2(x) xinB^O), (5.17)

| i>ί , . . . Λ _ 2 (x) |^Cp 2 *- 2 ε - 1 (x) , i = l , 2 , . . . , m - l . (5.18)

On the other hand, by induction

V (x) ^ max
dx\' . . . C2(Bi(0))\kί

Therefore

(x) S Cp 2 α - 2 ε - l <- S~<~2OL-2

Now we can apply Lemma 4.3 to (5.13) with w =

j = 1, 2,. . . , m — 1 to conclude

0V,

d'Ψj

l n 2
n — L

for

x
S Cp (x)2 α" 2 ε, x in J5^ (0) . (5.19)

Note that the estimate for ^ - corresponding to (5.5) and (5.16) can be

easily derived from (5.19). Therefore, (5.14) follows from (5.19), (5.12), (5.13) and the
standard Schauder estimates (cf. [GT], Chap. 6).

Theorem 5.Γ (The version of Theorem 5.1 in general case). Assume that M is
a C^-manifold, N is a C^-submanifold and (hu . . . , hm) are C^-smooth. Let Bx(x0)
be the geodesic ball with x0 in N in which hm is of form (3.2). Then for any ε > 0, any
vector fields Tu. . . ,Txin Bx(x0) which are tangential to N along B1(x0) n N, there
is a constant Cε = Cε (7\,. . . , Tι\ independent of the solution ( φ l 5 . . . , φm\ such
that

sup II 7Ί . . .

where /cα, λa are given as in Theorem 5.1.

(5.20)

The proof of it is identical to that of Theorem 5.1 except for some possible
complexity due to the bending of M and N.

6. An Application

In this section, we apply the regularity theorem in Sect. 5 for harmonic maps into
H2 to the uniqueness problem of axially symmetric, asymptotically flat, stationary
spacetimes (cf. [Ca, We] for the definition) in general relativity.

The Einstein vacuum field equations of general relativity are

= 0 , (6.1)
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where (M, g) is a 4-dimensional Lorentzian manifold and Ric(g) denotes its Ricci
curvature. In view of the great difficulties involved in the study of these equations,
one is led to consider special cases with symmetry. The solutions of Schwarzschild
are found in 1916, the first explicit ones parameterized by the mass. They are all
static and spherically symmetric. The Kerr family of solutions to (6.1), discovered in
1963, has two parameters, the mass and the aungular momentum, and is both
stationary and axially symmetric. In the 70's Robinson shows that the Kerr
solutions are unique among all asymptotically flat axially symmetric stationary
spacetimes that have a connected event horizon. His proof is based on some results
of Ernst [Er] and Carter [Ca]. They reduce the Einstein vacuum equation in the
asymptotically flat, axially symmetric stationary case to an axially symmetric
harmonic map from 3-dimensional euclidean space into a hyperbolic plane H2.
Then the uniqueness of Kerr solutions is the same as that of the harmonic map into
H2. Robinson affirmed the later by using the convexity of the distance function
on// 2 .

After this striking result of Robinson, there is a "little" problem left, i.e., is it
possible to drop the extra assumption on the connectedness of the event horizon.
Following a suggestion of D. Christodoulou, G. Weinstein considered this problem
in his thesis [Wei]. In order to describe his basic result, we need to first introduce
some notations.

Let (p, φ, z) be the cylindrical coordinates for R3 and A be the z-axis. Choose
parameters {ai,bi,ci}ίύi^L for any fixed positive integer L satisfying:

— oo < ax < bt < a2 < < bL- x < aL < bL = 0 . (6.2)

Define Γ = ^4\{(0, φ9 z)\at < z < bt for some ί}. Then the distance function
d((p9 φ, z), Γ) is Lipschitz in R3 and the Laplacian of its logarithm is bounded
except at those boundary points. By Fourier transformation, one can find a smooth
function u outside A\Γ such that h = 21ogd( , Γ) + u is harmonic outside Γ and
h is asymptotic to 21ogd( , Γ) at the interior points of Γ. In fact, such a h can be
explicitly obtained by superposition of Schwarzschild metrics. Namely, we can
write

L

h = 21ogp + X M, ,
i=ί

^ ) (6.3)

where (r ί} 0,-) are given by transformations

Y (6.4)

2 v 2 y ι

(cf. [Wei]).
Let (X, Y) be a harmonic map from Λ3V4 into the upper half plane with

standard hyperbolic metric, satisfying.
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X is smooth across Γ away from its boundary points and ,

X(0, φ, z) = d for bi<z <ai + l9 i = 1, 2,. . . , L - 1 ,

X(0, φ9 z) = cL for z > bL ,

X(0, φ9 z) = - cL for z < aγ , (6.6)

both X and Y are axially symmetric, i.e., they are independent of φ . (6.7)

Y is of the form eh+y and y is smooth across Γ away from

its boundary points. (6.8)

Both X and y are of order 01 , I as (p, φ, z) near infinity . (6.9)

V V 2 + 2

By the harmonicity of (Xy Y) and (6.3)-(6.5), one can easily check that the

differential 1-form Ψ is closed and smooth in J R 3 \ ( ^ 4 \ Γ ) , where A\Γ denotes the

closure of A\Γ and

(6.10)
ί J \ UZ J )

Therefore, there is a smooth function ω in R3\(A\Γ) satisfying dω = Ψ. Such an

ω is unique up to constants, so we may normalize (ω — u — y)(0, φ, 1) = 0. The

following proposition is essentially due to Ernst [Er] and Carter [ C a ] , but the form

of it presented here is formulated in [ W e i ] with some changes on the notations.

Proposition 6.1. The asymptotically flat axially symmetric stationary solutions of

EVE (6.1) with n connected components of even horizon are equivalent to those

harmonic maps described as above with one extra condition

β = 0 on Γ\dΓ , (6.11)

where β is defined to be ω — u — y in R3\(A\Γ).

Note that our EVE solutions always have a nondegenerate event horizon in the

sense in [ C a ] . Also, the condition (6.11) is nothing else but an interpretation of the

regularity of the EVE solutions along the axis away from event horizon.

The parameters {ai9bi9ci}1^i^L have the following physical interpretations.

The differences ai + 1 — bt (1 ^ i S L — 1) are the distances between two adjacent

components of the event horizon, the length bt — a{ of the interval [ α ί s b{] can be

regarded as the mass of the / t h-component of an event horizon. Finally, the angular

momentum Jt of the i t h-component is £(cf — ct _ x ) for i Ξ> 2 and ^(cx + cL) for i = 1.

In particular, the total angular momentum is \cL. We refer the readers to Sect. 6 in

[ W e i ] for details. The solutions of EVE (6.1) without rotation, i.e., all c{ vanishes,

were discussed a long time ago by Bach and Weyl [BW]. The corresponding

harmonic maps are of form I 0, ρ2e^Ui j , where u{ are given by (6.3)-(6.5). Let us

first compute β on the bounded components of Γ for these particular nonrotational

solutions.
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Lemma 6.1. Let I 0, p2e^Uι I be the harmonic map corresponding to one solution of

Bach and Weyl, i.e. all ct vanish. Then for ze{bi,ai+1\ i = 1, 2,. . . , L — 1,

< 0

/?(0, φ, z) = 0 for either z > bL or z < ax . (6.12)

Proof Let CJ be a path in the (p, z)-plane defined by the equation rf = 2mt + ε,

where rf is defined in (6.4) and (6.5), m, is equal — -. Put dt = — -. Then by

computations, we find

* ,i (ri — m. ) s i n 0 f i ( r f — m^)2 s i n 2 θ.

r^ -2m,) cos2 Θ J " 1 , (6.13)

+ r i ( r i - 2 m I . ) c o s 2 0 j - 1 , (6.14)

where i = 1,2,. . . , L.

In particular, it implies that both —- and —- are smooth in the region
oz op

{rf > 2mJ. Since (0, p2, eUί) corresponds to the Schwarzschild solution, we have

Therefore, using (6.13), (6.14) and (6.15), for z2 in (bhai+ί) and zx in (&;_ t , αe), we have

jB(0,φ,z 2)-j8(0,φ,z 1)= lim J dβ

= - Σ Mj(fe/) - uλai)

( 6 1 6 )

Now our normalization says β(09 φ, 1) = 0, so (6.12) follows from (6.16).1
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In particular, any nonrotational asymptotically flat axially symmetric stationary of
(6.1) is not regular on the bounded components of the axis away from event horizon.

In [Wei], G. Weinstein considered the construction of harmonic maps from
R3\A into H2 of form (X, eh+y\ where h is equal to 21ogp + Σf=1 ut with ut given
in (6.3)—(6.5). His idea is to minimize the following functional

H(X,y) = J (\Vy\2 + e-2h'2y\VX\2)dV (6.17)
R3\A \ )

in the space HUh x Hί (cf. Sect. 2 or Sect. 6 in [Wei]).

Proposition 6.2. For any set of numbers {ai,bhci}1^i^L satisfying (6.2), there is a unique
axially symmetric harmonic map of form (X, eh+y)from R3\A into H2 satisfying:

\Vy\2 + e~2h~2y\VX\2 )dV^C (6.18)

and
s u p | j ; | ^ C , (6.19)

R3\A

where C is a constant depending only on bL — αx and m3.x1^i^L\ci\.

Proof This is due to Weinstein (cf. in [Wei]).
The following is just a special case of Theorem 1.1.

Theorem 6.1. For any set of numbers {ai,bi,ci]1^iύL satisfying (6.2), there is
a unique harmonic map from R3\A into H2 such that (6.8)-(6.9) hold. Moreover, the
C2'*-norms of(X, y) in any compact subset K a c R3\A are uniformly bounded by
a constant depending only on K and C in (6.18) and (6.19).

Theorem 6.2. Given any two numbers λl9 λ2 > 0, there is an ε = ε(λl9 λ2) > 0 such
that for any set of {ahbi,ci}1^i^L satisfying m a x ^ ^ l c * ! ^ ε, bL — ax ^ λ2 and

min < inf {bt — α^), inf

the function β defined in Proposition 6.1 is negative in each bounded component ofΓ.
Equivalently, there is no regular asymptotically flat axially symmetric stationary
solution of EVE (6.1) such that its event horizon has L connected components disjoint
from each other in the distance at least λγ and at most λ2i and each component has
mass ^ λx and angular momentum less than ε.

Proof We observe that the C2' i-estimates for (X, y) in Sect. 5 are uniform if (6.18)
and (6.19) hold (cf. Theorem 6.1). On the other hand, the harmonic map (X, Y) does
satisfy (6.18)—(6.19) for a constant C depending only on λί9 λ2 under our assump-
tion on ai,bi9Ci (1 ^ i ^ L) (cf. Sect. 2). Therefore, this theorem follows from
a continuity argument and Lemma 6.1.

Theorem 6.3. Let (Xa9 Ya) be a sequence of harmonic maps from R3\A ino H2

satisfying (6.6)-(6.9) for {aai9bai9cai}lziύL. Suppose that

(1)

(2) 3 i 0 , s.t. lim (αα i o + 1 - baio) = oo and sup ( | α α i + 1 - bai\) ύ C ,
α-> oo α , i φ io

where C is a uniform constant. Then (XΛ, Ya) converges to the union of two har-
monic maps from R3\A into H2 satisfying (6.6)-(6.9) for two sets of numbers
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ό Cαoi}i£i£io a n d {flooi»

a^i = Hm (ααί - bα ι 0 ) ,
α-> oo

Uaoi = l im (aai - α α ί o + 1

, respectively, where

,,• = lim (&α/ - baio) for ι ^ ί0,
a-κχ>

,* = lim (bai - baio + 1) for i > i0 ,

We omit the proof. It is simply a corollary of the results in Sect. 2, the regularity

theorem in Sect. 5 and some standard arguments.

In particular, this last theorem implies that the solution of EVE (6.1) with two

black holes constructed in Sect. 8 of [We] converges to the union of two Kerr's

solutions with opposite total angular momentum as the distance of two black holes

approaches to infinity.
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