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Abstract. In this paper, we studied the regularity problem for harmonic maps into
hyperbolic spaces with prescribed singularities along codimension two submani-
folds. This is motivated from one of Hawking’s conjectures on the uniqueness of
Kerr solutions among all axially symmetric asymptotically flat stationary solutions
to the vacuum Einstein equation in general relativity.

1. Introduction

In the last three decades, much progress has been made on harmonic maps between
Riemannian manifolds. Among the outstanding ones, for instance, are the existence
of Eells and Sampson [ES] on harmonic maps into nonpositively curved mani-
folds, with the generalization of R. Hamilton [Ha] to manifolds with boundary, the
ones of Sacks and Uhlenbeck [SU], Lemaire [Le] and R. Schoen and S.-T. Yau on
harmonic maps defined on Riemann surfaces, and regularity theories of R. Schoen
and K. Uhlenbeck [SU1, SU2]. Prior to [SU1, SU2] there had been some
regularity theorems due to Hildebrandt, Giusti, Giaquinta (see for example [Gi])
under various assumptions on the target manifolds. These results have brought
tremendous new understandings of the geometry of manifolds.

In this paper, we consider the following problem. Let (M, ds?) be a n-dimen-
sional complete Riemannian manifold with or without boundary, and N =« M be
a codimension two closed submanifold; let 4 be a smooth map from M\N into the
naturally compactified hyperbolic space H™ such that h(M\N) < H™, where H™ is
upper-half-space model of m-hyperbolic space form. Then we would like to find
a harmonic map from M\N in H™ with “similar” asymptotic behavior to h along N.
One natural approach is to perturb /4 to obtain the harmonic one. To make it
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precise, we let (y4, . . . , ¥m) (m > 0) be the global coordinates of H™ inherited from
R™ and 0H™ = H™ H™ is just defined by y,, = 0. Write h = (hy, ..., h,), then
h, =0 and h,, > 0 in M\N.

We denote by H, o(M) (respectively H, ,,. 0(M)) the completion of C§ (M)
(resp. C&(M\N)) under the norm

Iz, = JIVyl>dr, (L.1)
M

(resp. [ Y Mz = [ B | VY12 dV), (1.2)

where dV is the volume form on M, and the norm on Vi is taken with respect to
the metric ds® on M.

We want to find a harmonic map into H™ of form (¢, ..., @u-1,hme’™)
satisfying: ¢; — h;e Hy y,, o(M)fori=1,2,... ,m— land ¢, € H, ((M). Equiv-
alently, we are bound to find the critical point of the functional on
(T (e + Hy o, 0(M))) x Hy, (M) defined as follows:

2Vh,Vo,
F((pb9(pm—1’q0m)=§[|vq)mlz+—h—(€_
M m
m—1 12
+<Z 'Vh"j'l e“zwmﬂdV. (1.3)
i=1 m

In the case log h,, is harmonic, i.e., 41log h,, = 0 on M\ N, the second term in the
above integration may be taken away from F. Under suitable conditions on
hy, ..., h,,one can prove the existence of the minimizer by a standard method (see
Sect. 2 or [Wel]). For instance, in order to make the functional F meaningful, we
have to assume that all integrals [y h,?|Vh;|*dV are finite, where i=1,
2,...m— 1. In fact, the solution is unique among the admissible functions. See
[Wel] for more details. One is then led to the problem how regular the critical
point (¢4, ..., ¢,) could be along the submanifold N in M. This is our main
concern in this paper. We demonstrate the smoothness of (¢4, . . . , ¢,) under mild
nondegeneracy conditions on 4,,. Namely, we show

Theorem 1.1. Let (M, g) be a smooth n-dimensional Riemannian manifold without
boundary, N =« M be a smooth (n — 2)-dimensional closed submanifold, hy, . ..,
hn -1 be smooth functions on M, h,, > 0 be smooth in M\N and

Alogh,(x) =0, xe M\N, (1.4)

log hy(x)
p(x)—0 a log p()C)

where p(x) = dist(x, N) is the distance between x € M and N, o. > 0 is some positive
constant.

Let (¢y,..., @) be the minimizer of F defined in (1.3) in the space
(10 (e + Hy o, 0(M))) X (Hy o(M) A L®(M)). Then for any &>0, &< 2a,
(@15 - - -5 @) € C* * with k, = [20 — 2¢] and 1, = min {20 — 2¢ — k,, 1 — ¢}.

(1.5)

The conclusion of the above theorem still holds if, instead of (1.4), we assume
that Alogh,,(x) can be extended to N as a smooth function. More generally, if
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N is a submainfold with boundary, this theorem implies that the minimizer
(¢4, - - ., @) is Holder continuous in the interior of N. But our method also yields
Holder continuity of the minimizer on the boundary of N. This is discussed in
[LT1].

The existence of such h,, is elementary and has been explicitly written down in
terms of the Green’s function. At those points where h,, > 0, the regularity of
(01, ..., @n) is just the same as that of the harmonic map (hy + @y, ...,
Pp—1 + Qp—1, hyy €°) into H™, and it then follows from the well-known regularity
theorem for harmonic maps (cf. [SU1]). Therefore, in order to prove our main
theorem, we only need to give the regularity of (¢4, . . . , ¢,) at those points where
h,, = 0. Some easy computations show that the Euler—Lagrange equation of (1.3) is
degenerate at these points. This is the essential difficulty to the proof of Theorem
1.1. The proof we have here is in the spirit of [SU1].

For harmonic maps, it is well known that C*-regularity (« > 0) automatically
implies higher order ones (cf. [Sc]). However it is not clear in our case because
of the degeneracy of the Fuler-Lagrange equations. Therefore, we also need to
derive the regularity estimates of higher order for (¢4, . . ., ¢,,) from C*estimate
(o > 0).

We also give an existence theorem of such a harmonic map in case h;
(i=1,...,m—1)are constants along the connected components of N.

One of our motivations towards such a problem is from one conjecture of
Hawking in the formulation of G. Weinstein [Wel]. Hawking’s conjecture asserts
that Kerr solutions are the only asymptotically flat, axially symmetric, stationary
ones of Einstein Vacuum Equation in general relativity with certain nondegenerate
conditions on event horizons. In case the event horizon is connected, it was settled
down by Robinson [Ro] in the 70’s. Robinson’s proof is based on the uniqueness of
harmonic maps into hyperbolic space and earlier work by Ernst and Carter ([Er,
Ca]). But this conjecture is still open in general. As an application of our
theorem, we will prove that there are no asymptotically flat, axially symmetric,
stationary solutions of EVE with disconnected event horizons of small angular
momentum.

The organization of this paper is as follows. In Sect. 2, we prove the existence
and boundedness of the minimizer of the functional F in (1.3). In Sect. 3, we discuss
some total energy estimate. Section 4 contains a modified monotonicity formula for
our solutions. Then the Holder regularity follows from the standard De Giorgi
estimate. In Sect. 5, we discuss the regularity of higher order. The application of our
theorem is given in the last section (Sect. 6).

Finally, we would like to remark that two possible generalizations can be made
in the future. The simpler one is to remove the smoothness condition of N; instead
we assume that N is a union of submanifolds intersecting with each other transver-
sally. The more interesting one is to lift the assumption on the hyperbolicity of H™.
In general, when the target may not have nonpositive curvature, one expects the
regularity of the minimizer of (1.3) outside a subset of M of codimension 3 as R.
Schoen and K. Uhlenbeck found for harmonic maps. All these generalizations will
be discussed in the future.

After we finished this work, we learned from G. Weinstein that in the special
case where M = R3 N is the z-axis, m = 2 and (¢;, ¢,) is the minimizer among
axisymmetric functions; our theorem is also proved independently by G. Weinstein
([We2]). His method is completely different from ours and seems to be unlikely to
be generalized to higher dimensional or nonaxially symmetric cases.
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We would like to thank F.H. Lin for bringing [HL] to our attention. We would
also like to thank D. Christodoulou, F.H. Lin and W. Shu for useful discussions on
the problem.

2. Existence

The existence results in this section are essentially due to G. Weinstein [Wel]. We
present them here for the sake of completeness.

Let (M", g) be a n-dimensional (n = 3) smooth compact Riemannian manifold
with smooth boundary, N"~2 =« M" be a (n — 2)-dimensional smooth closed sub-
manifold. Let « > 0 be some positive number, p(x) be a function defined on M,
p(x) = dist(x, N) for x near N and smooth, strictly positive elsewhere. Let u be the
solution of

— du(x) = A(alogp(x)), xeM,
ulaM = 0 .

Here 4 denotes the Laplace-Beltrami operator with respect to the metric of M.

It is obvious that u is smooth away from N. The question is how smooth it is
across N. After some essentially elementary calculations, we see that w is at least
Holder continuous. In fact, for any ¢ € (0, 1), there exists some positive constant
C(¢) > 0, such that,

| Vu(x)| £ C(e)p(x)~! Vxe M\N.

Let h,,(x) = p(x)*e*™, x € M, clearly A(logh,) =0 on M\N.
Let f: M>R (1 £i<m) be H'(M) function and bounded on dM. For
i=12...,m—1,f=0on N. We look for harmonic maps

(@15 Om—1, hpe®™): M\N -> H"
with prescribed boundary data:
Gilom=f, 15i=
@iln=f=0, 1Sism—1,

and the prescribed singularity on N in the sense that | ¢,,| < constant.
Let us set up the problem rigorously, consider

m—1
H(py, ..\ Om-1, 0m) = I{IV<pm12+h;ze’2"’” > |V<pi|2}dV, 2.1
i=1

M i
where
o;—fieH;,, oM) fori=1,2,... m—1, (2.2)
O — fn€ HY(M) . (2.3)
It has been explained that if we can obtain a minimizer of H(¢q, ..., ¢@m)

among the admissible functions with | ¢,,| < constant, we will have the harmonic
map with prescribed singularity.
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Theorem 2.1. The minimum of H(¢4, . . ., @,,) can be attained among those admis-
sible functions ¢4, . . ., @, which satisfy (2.2) and (2.3). Furthermore the minimizer
satisfies | ¢,,| < constant.

Remark 2.1. The condition on the boundary dataff =0onN(i=1,2,...,m—1)
can be replaced by , =c;on N (i=1,2,...,m — 1) with ¢; € R being constants.
One only needs to make a translation in (¢4, . . ., ¢,,—1) to achieve this.

Remark 2.2. The assumption of N"~2 < M" being a closed submanifold can be
relaxed to N""2 < M" being a submanifold with dN = dM, then we need the
boundary conditions { f}/=;' to be compatible on N and on dM. The proof is
exactly the same.

Sketch of the Proof of Theorem 2.1. Let ® = (0¥, ..., 0% |, ¢¥) be a minimiz-
ing sequence, with the boundary conditions (2.2) and (2.3). Since f,, is bounded on
OM, we can replace ¢% by @% = max{¢n., —C}. The new sequence
o® = (P, ..., 0% |, »¥) will have energy no more than ¢®, and the same
boundary value as ¢®. Therefore $® is also a minimizing sequence. We replace
¢ ® by ¥, but for simplicity, we still denote it as ¢®. After this truncation, the
minimizing sequence ¢® satisfies

oWz —C. (2.4)

Once we have (2.4), we can use a simple density argument to replace
e®P (i=12...,m=1by p®P (i=1,2...,m—1) with o — e CF(M\N).
Once again we replace ¢ by @, but still keep the old notation.

In order to get an upper bound on ¢ ¥, we explore the isometry group of H™.

Let us denote

¢ = (4517 L) ¢m—l’ (pm) = ((plﬁ LI (pm—bhm e‘l’m)e Hm‘ (25)
We know that
— P,

2L+ ) @7
i=1

B @ (2.6)
(Dm = mm—l
oL+ ) &7
i=1
is an isometry of H™, namely,
m—1 m—1 _ _
Y Ao} +dol Y, AP} + dD
i=1 =121 . (2.7

P2 P2
Let us write @ as

=Py, Pt Pp) = (Prs - s P, i ™) (2.8)
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It follows easily from (2.7) that
m—1 m—1
|Voul? + X | Voil? e72mhy? = | Vou* + 3 [Vil* e h]

i=1 =1
—2V(og hy) V(om + @) -

Integrating the above over M,

J1vonl” + Z |Vl e ha® = | Voul* + S Vol e 2o

i= i=1

—2[ V(log hy) V(@m + P -

Since ¢® =0 (i=1,2,...,m—1) near N, it follows from (2.6) that
@m + @m = Onear N. Using Stokes theorem and the harmonicity oflog h,,, we have

M
which depends only on the boundary data { f;}. Hence
-1

m—1
L e T Vol ek
M

i=1 i=1
+ constant

clearly, ®,, = — C on dM, therefore we can chop it off from below as before with-
out increasing the energy. Therefore we can assume that our minimizing sequence
™ has the property that ¢, = — C, which, according to (2.6), implies that

oW =C. (2.9)

The new minimizing sequence might lose the lower bound (2.4), but we can
chop it off from below and gain back this property easily.

Putting the above together, we have obtained a minimizing sequence ¢® with
bounds on ¢¥ from above and below ((2.4) and (2.8)). With these bounds, one can
easily obtain a minimum by using some standard functional analysis argument.

Remark 2.3. In Theorem 2.1, if there are finite disjoint n — 2 closed dimensional
submanifolds N;,...,N,= M, one can prove the same result by letting
p(x) = dist(x, N;) (j = 1 2,..., 1) near U ._, N; and smooth, positive elsewhere,
alsof=C/onN;(i<j<]|, 1 <i<m-— 1) The proof is very similar, just perform
the chopping off procedure one by one.

3. Energy Estimates

Let (1, . .., @, be the solution of the Euler—Lagrange equation of (1.3), i.e.

1 _ m—1
Apn= —j7e e Y 1 Vel
=1 on M\N (3.1)

e—z‘/’m
div< W2 V(pi>=0 fori=12,...,m—1
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with | ¢,,] £ C. Note that here we need to use the assumption in Theorem 1 that
Alog h,, = 0 outside N. In our proof below and the next two sections, we always use
C to denote a universal constant, although its actual value may vary in different
places. From now on, we fix a point x, in N < M.

Write p to be the distance function from the subspace N with respect to the
metric ds®. By our assumptions in Theorem 1.1, we have

By = p*e* (o> 0) (3.2)

in a neighborhood of x,, say the unit geodesic ball B;(x,), where u is smooth in
Bi(xo)\N such that for any 0 <& < 1, there exists some positive constant
C(e) > 0,| Vu(x)| < C(e) p(x)* ™1, Vx € N.

We denote by r,(*) the distance function on M from x,.

Lemma 3.1. The solution (¢4, . . . , ¢,,) can be extended across M n B (x,) to be the
weak solutions of (3.1) in the sense: for any smooth functions y, . . . , \, with compact
support in B;(x,), we have

1 m-—1
| {W’m V‘//m—h—ze 2m Y |V<Pi|2*//m}dV=0, (3.3)
B1(0) i=1
Vhy
By m

Proof. Outside N, the second equation in (3.1) is equivalent to

2V<p,<‘;h — Vo ) 0. (3.5)

Let # be a cut-off function from R* into R satisfying #(t) = 0fort < 1, 5(t) = 1 for
t=2 nt)z0, |#(t))<1. Then the lemma is proved by multiplying
(10g( — logp)
log( — loge)
respectively, integrating by parts, and then taking the limit as ¢ goes to zero. Note
here that we need to use the fact
1 dp

]

—_— < 0
op(log p)*

Lemma 3.2. There is a uniform constant C such that for any x in By(x,),

2
J’ rx(Z)—n+2< m|2+ Z |V<p1|
i=1

By(x)

Y; (1 =j<m) to the first equation of (3.1) and (3.4) above,

) )dV(z) < C < . (3.6)

Proof. Let G.(z) be the Green function on B;(x,) with singularity at x and
vanishing on 0B;(xe), # be the cut-off function defined as above. Put
A= —1+ infy@,, then — ¢, — 1 = 1. For any ¢ > 0, we smooth the Green
function as follows:

G (2) = ! (3.7)

Vol(B,(z2)) | G.(z)dz .

Bg(2)
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Substituting ¥, in (3.3) by (1 — 7(4r.(2)))*> G%(z) ( — @m(z) — 4) and using the boun-
dedness of ¢,,, we immediately obtain

m—1
J {h;z > 1 Vel +IV(pm]2}(1 — 1(4r))* Gi(2)dV(2)

B1(0) i=1

IA

C{l = | Vou (on—H V(1 - n)zGi)dV}

B1(0)

< C{l + % | (@m—224(1 - ﬂ)zGi)(Z)dV(Z)}
B1(0)
§C{1+1 j ((pm—l)z(l—-n)zAGidV}. (3.8)
231(0)

(Note that C is always a uniform constant.)

But some direct computations show that the last integral is nonpositive when ¢ is
sufficiently small. Thus our lemma follows from (3.8) by taking the limit as ¢ goes to
zero and the fact that G,(z) is equivalent to r,(z)"*? in B,(x).

Before we go further, we would like to make a few remarks. By the well-known
regularity theory of harmonic maps (cf. [SU1]), we know that (¢4, . . ., @) are as
smooth as (hy, . .., h,) outside N = M, or more precisely, the set where h,, > 0.

Lemma 3.3. For any point x in B{(xo)\N, we have

C
Vol (x) £—, | Voil(x) £ C,(x)" 17, 3.9
lcol()_p(x)lqol() o(%) 3.9
where C is a uniform constant independent of (@1, . . ., Qm)

Proof. Recall that (¢;, ..., Q,-1,h,e’") define a harmonic map @ from M\ N
into H™. Denote by e = ¢(®) the energy density of this harmonic map. Then by the
standard Bochner formula, one finds by using the hyperbolicity of H™,

— A Se(®) < p/e(P), (3.10)

where u is a constant depending only on the upper bound of Ricci curvature on M.
Then by applying mean-value inequality or direct Moser iteration to (3.10), we
obtain (p = p(x))

[ e@@av(). (3.11)

Bi(x)
2

c
AP = Vol(Bz(x))

On the other hand, according to the definition, we have

m—1
e(P) =< 2| V(Pi|2> hn? e 20m + | Viog hy + Vop|*
i=1

2

m—1
=h;2e‘2<""'< Y |qui|2> + ‘oc_pVB+ Vu+ Vo, . (3.12)

i=1
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Thus by the previous lemma and the assumption of Vu near N (cf. (3.2)),

[ e(®)(@)dV(z) < Cp"2 = Cp(x) 2. (3.13)

Bi(x)
2

It follows
e(®)(x) < Cp(x)~>. (3.14)

Note that this C may be different from the previous one, but still independent of
x in B;(xo) and (¢4, . . ., @,). Then (3.9) follows from (3.14) and (3.12).

Without loss of generality, we may assume that By(x,) is geodesically
convex.

Corollary 3.1. Let (¢4, . . ., @,) be the solution of (3.1) with | ¢,,| bounded. Then
[pi(x) — @i(n(x))| = Cp* i=12,....,m—1, (3.15)

where 1 is the map from B,(x,) to N defined as follows: for any x, there is a unique
geodesic y such that y(0) € N, y(p(x)) = x, and y(0) is perpendicular to N at y(0), then
define m(x) = y(0).

Proof. Let y be the unique geodesic joining 7(x) to x with length p(x). Then
|y’| = 1. By the fundamental theorem of calculus,

p(x) p(x)

d
@i(x) — @i(n(x)) = | <E <pi(v(t))>dt= | Voily(©)- (') dt

0 0

p(x) C
SC | 7 tdt =—p*(x),
0 o

where Lemma 3.3 has been used.
In particular, if @ > 1, then @; must be constant in each connected component of
N in M.

Proposition 3.1. (Smallness of the normalized energy). Let (¢y, ..., @n) be the
solution of (3.1) with | ¢,,| uniformly bounded. Then for any ¢ > 0, x in M, there is a o

between e3¢ and % such that
m—1
o;"*? <| Voul> +p72* Y |V<Pi|2>dV§8, (3.16)
B, (x) i=1

where C is the uniform constant in (3.6).

Proof. Define

1 m—1
f(o)=a,,_2 [} <| Voul> +p72* Y IV(Pi|2>dV-

B, (x) i=1
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Then
% % m—1
f@d0=fa""+1< { {lV(pml2+p_2°‘ Y lV(pilz}dV)da
0o 0 0 B, (x) i=1
1 d m—1
= —m=-2f-—0@"""? | <| Voul> +p72* ), ’V(Pi|2)dV°dJ
odo B, (x) i=1
m—1 4
=—-(@n—-2¢"" | <| Vo> +p7 2 ), IV¢il2)d4
B;(x) i=1 0+

1 m—1
+(n-2)fo_"+2< [} <| Vo> +p~2* Y |qui|2)dS>da
0 =1

6B, (x) i

1
r
0

= -—@n-20c "2 <! V<Pml2+p_2“mi W(pilz)dV
i=1

By (x) i +

m—1
+(m—=2) [ rz)™""? <I Vo> +p~ 2 Z | V¢i|2>(2)dV(Z) -

B%_(x) i

By Lemma 3.2 and Lemma 3.3, all last three integrals are uniformly bounded, so it
follows :

f@dag C. (3.17)
0

Then the lemma just follows from a simple estimate on the lower bound of the
integral in (3.17).

4, Holder Estimates

All the notations in Sect. 3 will be adopted in this section. The aim of this section is
to show the Holder continuity of the solution (¢, . . . , @,,) of (3.1) at the points of
N where h,, is of the form (3.2). Such a Holder estimate will follow from
a strengthened version of energy estimate in Proposition 3.1. Usually, this can be
accomplished by means of a monotonicity formula, for instance, in the case of
harmonic maps. But this required monotonicity formula is not at hand in our case,
so we first need to derive it.

Let (¢4, ..., ¢, be a fixed solution of (3.1) with |¢,| =< C as in Sect. 3,
and B,(x,) is a geodesically convex ball at x, in N, in which h,, can be written
as in (3.2). Also, since Theorem 1.1 is local, we may assume that M = R" and
N=R""2cM.

Lemma 4.1. For any 5,0 <6 < %, ¢ > 0 and x € By(xo) N N, there is the following
inequality.
1

By SeE,(9+ | {lwm B+ hpte S (g /f,-F}dV

0" B, (x)\Bz () 1

+ Col ™" 4.1)
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where C, is a constant which is zero if « = 1 and we define
m—1
E,(x)=0¢"""% | {] Voml* + hp2e 2om Y | V(pilz}dV. 4.2)
B, (x) i=1

Proof. Let n,: R' - R' be cut-off functions (1 > 1) satisfying:

n.(t)=1fort < 1;n,) =0fort = p; n,(t) = 0;

1 1\
0] < —: Inl(t)l§<—1> . 3)
H— ®—

There are two cases: (i) By,(x) "N = &;(ii) By,(x) " N # . Presumably, the
first case is easier. Let us consider (ii) and then indicate why (4.1) is also true in case
(i). In case By, (x) "N = J,all p;(i=1,2,...,m — 1)are zeroes according to our
assumption.

We observe that there is o, between 30 and o such that

m—1 8 m—1
[ hp?e™2om Y | Vo2 dV < - ] hp2e 2% 3 | Vo, |*dV (4.4)
B, i=1 O Byo (0)\By, (x) i=1
and
m—1 8 m—1
[ ha?e?m Y loP <= | hpte ™ Y lePdV. (45)
By i=1 031 o \Byq () i=1
Let A be a posmve number < 7%, specified later. We call (p%, ..., ¢¥) an

admissible map if it is in the domain of the functional F (cf. Sect. 1, 2), in particular,
for such a map, we have

F(@i,-- s om) S Flot,. .. 0m).

3 3
Pm(z) = <1 - "%(Ea_o rx(2)>>¢m(2) + 13 <2 rx(2)>ﬂ (4.6)

In order to define ¢} for 1 <i <m — 1, we need to first introduce @; as follows:
define @;(z) to be ¢;(z) — h;(z) for z¢ B, (x) and (¢; — h;) <x + M) for z in
—-Xx

B, (x). In case o = 1, we may assume h; are constants in By(xo).
Now we define

qo,?"(z)=<1 ((1 (i)) ))(ﬁi(z)+hi,i=1,2,...,m—1. 4.7)
- ro

0o(z — x)
|z — x|
B, (x)\B,,,2(x), one can easily check that (¢, ..., ¢}) is an admissible map,

Define

Using the fact that p<x + is uniformly equivalent to p(z) for z in
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moreover, ¢ F and the derivatives of ¥ (i= 1,2, ..., m — 1) coincide with ¢,, and
those of @; outside B, (x), respectively. Therefore, we have

-1
J {Il?qoml2 mle 2 Z |V(p,-12}dV

B, (x) i=1

m—1
< {IV¢$I2+h;2e'2“"”" > Iqu?‘IZ}dV

B, (%) i=1

3 , 9 /i .
(RIS R

3 .
- 2‘772) <_ rx) er. V(pm(q)m - ﬁ) + hr;z e 20m
20'0

g9 2

m—1 r (’Z)
; — —x o, ——— oV,
V'"+<1 ”‘—((1—1)60»‘7"" T o "

3

i=1

2
Jav

3r 2
< — | == 2 0 2 (ms)? + 15D om — I}dV
=B,j(x,{<1 n%<260>)|7¢m| + 207 + 115Dlon 5
-1
+4 j h,2e 29 Z | V@12 dV
Boy (X)\ Bi1 - 3ya (%) i=1
1 m—1
tms [ hateT¥m Y pRaV
A"G5 B,y @)\ B - ) i=1
m—1
+2 [ hp2e 2R Y | Vh|*dV. (4.8)
B, (%) i=1

In particular, it implies

200
[ 1Voul?dV+ [ hy?e 2m Z \VoilPdV=— [  lon— B’V

B3s,(x) B, (%) i=1 00 B, o (%) \B3so( x)
' = 26
+2C | hy,? Z |Vq7),~|2dV+i2 [} hy,? Z @zdv, (4.9)
B, (\ B -y, (X) i=1 o35, o GO\ Bt - 10, () i=1
where C is a constant depending only on the supremum of | @,,|. Since x € N and

%olz = T)) are uniformly equivalent for

|z —x

~

A £ 15, two quantities h,,(z) and h,, <x +
zin Bao(x)\B(l—}.)aO(x)a say

Ci ' hn(2) < hy, <x +

M) < Cih(@), (4.10)

|z — x|

where C; is a universal constant. Thus by using

hy? Z |V:2dV <Cy [ hy? Z | Voo, |2dS - j t"dt
By (X)\ B1 - 2y0,(X) i= 0B,,(x) i= -4
-1
<ic,C | h,;ze‘z“’mz | Vo, )2 dV

0B, (%) i=1

m-—1
<81C,C [  hpte Y |Vo,*av. (4.11)

B, (x)\B; ,(x) i=1
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Similarly,' we also have

II/\

_ _ - ~ m—1
hm _Z @AV =8IC,C [ pr2em20m Y o241, (14.12)

B, (3)\ B - 1y, (X) i B%a (x) \B%,, (%) i=1
Combining (4.9), (4.11) and (4.12), we obtain

[ 1Veul?dV+ | h,%e 2“""Z|V !dV<@ | |om — B?AV

Bsao(x) B,,(x) i=1 o Bﬂo(X)\Bsao(X)
%

~ m—1
+ 16/1C2C1{ j hy2 e~ 2om z 'V(Pilde
B1,(x)\By, () i=1

1 m—1

+W j h;ze_z‘p’" z (Dlde} (4.13)
0 Byq(x)\Bg, (x) i=1

Now we choose A such that 16AC2C; < &. Then there is a uniform constant C, such

that

m—1
| {I Voul> + hp?e 2oy |V<pi|2}dV

B, o(x) i=1
Co 2 -2 ,-2 "~ 2
SeE,(0)+—54 | {lom—BP +ha?e 2 Y |Vo,l* |dV ;.
€07 (B, (x)\By,(x) i=1
3 7 3 1
Note that 4_16 <09 = 86 SO % = 50’ 0o < 0, s0 the lemma follows from the above
inequality.

Lemma 4.2. For any f, 0 <o <%, ¢ >0 and x € By(x,), there is the following
inequality:

C B _ m—1
Es(x) S eE,(x) + = | {lcpm =B+ hye7 2 Y loi— B,-Iz}dV
&0 Bv(x)\B%(x) i=1
+ CaO'I_a,

where f3,, . .., fm—1 are any constants if B,s(x) "N = (& ; zeroes otherwise, C, is
a constant which is zero if « = 1 and we define

Proof. There are two cases: (i) Bys(x) " N £ F; (ii) B,;5(x) " N = . In the first
case, let y be a point in B,;5(x) " N, then

B%(x) < Bg«(}’), Bi.(y) = B,(x) .
Applying Lemma 4.1 with ¢ replaced by ¢ = 47"*2¢, we have
m—1
) {Icpm — B+ hye Y o — ﬁilz}dV
i=1

U
€0 B3, (»\B3o O

Eq(x) < 3" {s/E;?(
+ Cao‘l_“}

C B B m—1
<8E (X)+_ j {'¢m_ﬂ!2+hmze 20m Z l(p,—ﬂ,lz}dV

€o” B, (x)\Bg (x) i=1
+ Cot .
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In the second case, we may simply take

8
0¥(z) = ( - m( Ix >>¢J + r]§<§_>ﬁj, 1<j<m

as comparison functions in the derivation of (4.8) and proceed as in the proof of
Lemma 4.1; we can still obtain (4.12).
Next, we give a weighted Poincaré inequality. It should be well-known.

Lemma 4.3. Fix 0 < 0 <43, x in By(x,) with B;(x) " N + . Then

Y | vy 2
“2a+2 d V = 2a
B,(x)\By, (x) P B S(\Bs(x) P

av (4.14)

for any C* function \ in B,(x) vanishing on B,(x) N N, where y is a universal constant
possibly depending only on n.

Proof. Firstlet us make a few observations: (i) ds? is very close to the Euclidean one
in By(xo) by the assumption at the beginning of Sect. 3. Therefore, it suffices to
show (4.14) in case of Euclidean space with N being a subspace; (ii) (4.14) is
invariant under scaling, so we may take g to be 2.

Choose Euclidean coordinates (x4, ..., x,) such that x = (0, ,0)and N
is defined by x,_;=0, x,=u>0. Since B;(x)n N =+ Q u<l Now
p = /X1 +(x, — Wi Letr_\/xl, ...+x,,_2,p—\/r +x2_, + x2

Let n be a function on B,(x)\B;(x) satisfying: n =1 if # <4, n=0if F =4
| Vy] < 10. Then ny vanishes outside 7 < 4, so the standard Pomcare inequality
implies: for a uniform constant C,

[ m)yavsc | |Vmy)2av

B> (x)\B1 (x) B (x)\B1 (x)
§20C< | Iwdy + | 1//de>. (4.15)
B2 (x)\B1(x) B; (§)>B> 1 ix)
However, in case # <4,3 = p = . It follows that for some C,
2 V 2 2
i+2dV< C< | l//I dv + ] ;é”dV) 4.16)
B2()\Bi(») P B 0By P B2()\Bi () P
Therefore, to prove (4.14), it suffices to show
Y2 . | vy
s —dV=C | av . 4.17)

2a
B2x)\B1(x) P~ € Ba(c\Bi(x) P
7z

Using the spherical coordinates for (x4, . . . , x,-,) and polar coordinates (p, )
for (x,-1, X, — ), one can easily reduce (4.17) to the following inequality:

i:n—3p—2a—1 ]¢IZ df‘dp

1 <r2+(p+usm0)2+u cos2 <4
F2i

<c if F1=3p= 201 12 didp (4.18)

1 <2+ (p+psin@)2+pu2cos20 < 4
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where 0 < 6 < 27. Note that using u < 4 so we may simply write u for ysin 6 and
putb =4 — p*cos’ <4d,a=1— p*cos?0 =3, thenb —a=3. Writet = p + p,
then p =t — p; we obtain the equivalent form of (4.18),

([ P le—plm =y Rdride<y  ff PR e— T VR dRde
asF2+i2<h as<i2+t2<b
Pz

(4.19)

Using the polar coordinates (p, 8) of (7, t), we can easily see that (4.19) follows
from the inequalities:

-2a—1
j (cos 8)"~3|sinf — = [y|?do
05822
—2a+1 2
<y | (cos@)y~3|sind — £ A (4.20)
pcose.g p de

where 2 < p <4, |u| < 1. Note that y vanishes at those points with sin8 = p/p,
which are indeed in the path {pcosl = %}.

The inequality (4.20) can be proved by using integration by parts, the Schwartz
inequality and the fact that cos f is bounded from below.

Corollary 4.1. For 1 < ¢ < %, x in B;(x,) with B,(xo) "N + . Then
4

) ‘ﬁide< I“;‘fa'de (4.21)

B,(x) B,(x)

for any C! function  in B, (x) vanishing on B,(x) n N, where § is a universal constant
depending only on n.

Proof. Choose a point X in B, 4(x) n N, then
B,(x) = B3 (%) = B,(x).
2 49

According to Lemma 4.3, we obtain

2 V 2
;/:z+2 dV =Y l lzpal dV
B, (x)\ Bg(x) p B, (x)\Bg(x) p
l/jz ) l//2
j 2a+2dV= Z .f 2a+2dV
B34(%) i=0 BL34(9\B, 1 30(%)
- | VlPI2
<y Z

av

B_ZL #(9)\ B_L 34() p*

‘$

——dV
.Lr(x) p2

therefore (4.21) follows with § = 2y.

|
‘—%

Proposition 4.1. There are gy and Ay, independent of x in By;5(x,), such that whenever

1
E,(x) <S¢}, 0<o=-,

= xeB,(x), 4.22)
4 7
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we have

Erne(0) S 3B, (). 4.23)

Proof. We will prove this proposition in case « = 1. The proof of the remaining
case « <1 is completely identical except that we use @; — h; in place of ¢;
i=12...,m—1). Since h; are assumed to be smooth across N for
i=1,2,...,m~— 1, this modification won’t affect any argument below.

In case o = 1, we may assume that ¢; are zero along N fori=1,2,...,m—1
(cf. Sect. 2).

We prove (4.23) by contradiction. Suppose that this proposition is not true. Then
there are sequences of {x; };> 1 in By,2(xo), {&i}i>1,and {0, };> such that 0 < 6; < %,
lim;. & =0, and

Eiz = E(Ti (xi) > (424)

Era0) > 3 e, () = (4.25)

1 2
2 l b
where g is a small number, determined later.

For simplicity of notations, we assume that B, (x,) is the Euclidean ball in R"
with x, being the origin, ds? is just the Euclidean metric and N = R"~2 = R™. The
proof in general case is completely analogous.

By taking a subsequence of {x; }, we may assume that x; converge to a point X in
Bj/2(x0). Since the solution (¢4, . . . , ) has been known to be regular outside N,
such a point X must be in B;,,(xo) N N.

First let us consider the case: there is a subsequence of {x;} such that for any x;
in this sequence, B,,,(x;) " N = &, where l, will be determined later prior to the
determination of A,. We remark that this I, will be independent of x in By, (xo).
For simplicity, assume {x;} is just this sequence. Then p(x) = g;/2l, for y in
B, 21, (x;). Define functions on B;(0) = R" as follows: i = 1,

l//j.(x) =——/(@;(x; + 0:x) — (p}), xeB(0), j=1,2,...,m,

plx )“
Y (x) = f(qom(xi +0iX) = ¢), x€B,(0), (4.26)

where ' s @', are the averages of @;, @, over By, 21, (x;), respectively.
Now E,,(x;) = & implies that

I I1wirav<4 forj=1,2,...,m ix1. 4.27)
By taking the subsequence, we may assume that W converge weakly to ¥; in

Hj-norms. Note that we need to use the fact that the averages of i/} are zeroes in
Bi/21,(0). Moreover, the standard argument shows that ¢; converge strongly to ¥

in LP-norms for any p < " in case n > 2 or p < oo in case n = 2. Using (3.1),

-2
one can easily show that in the sense of distribution,

Ay =0 .
{A%:z%_m j=1,2...,m—1, (4.28)
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where 6 is a smooth, uniformly bounded function. Then we conclude from the
standard elliptic theory (cf. [GT]) that

[Wi(x) = ¢;0) = Cylx| forxinBr(0) j=12,...,m. 4.29)

Let 4o be smaller than 35. Applying (4.1) with ¢ = § and &;p(x;)*¥;(0) as B; for
j<m—1,and ¢y,,(0) as §,,, we obtain
¢ {|¢m_8in(0)|2
(2003)" By (x\ By, 5

o2 Z lo; — ep(x:)*y;(0)*}dV

Jj=
<1 1 {lom — ebm(0)|?
—Eg oai(Xi) + 8C Py rram— " rem
8’ o100 (X0) Z 1 8°8°2004)" B, (x\Byr o (x0)

+07Y L0y — el O} aV

j=1
(choose [ such that 8'4y < %)

1
&8 = Ejo,(x:) < §E8lom(xi) +

1
< g‘Eslaoa.(x:)
1 “ i
+2543C2 Y — : . | Z,l Iyt — ¥, (0)1%)dV
1 s=1 8 (8 10) Bg®1,(0\Bg"~*,,(0)
= g‘Esuua.(x )
! L
+2544Ce2 Y — : _ <j;1 s — ;7
s=1 8 (8 AO) Bg*1,(0)\Bgs~1,,(0)
+1y;— '//j(0)|2>dV
1
é 8—E8'loo‘|(x )

1

1 mo
+ e Y — 4204 — [ Y W= y,rdY, (4.30)
=18 (%) By, 008 0) i

where C, depends only on C and C,. Note that C always denotes a uniform
constant, although its value may vary in different places.

1

1 1
Now we choose Ao, [ such that C,13 <1, a S <8, F and —(410)'l 2 < 3
4]

then take i sufficiently large such that the last term in (4.30) is less than 4. Here we
use the convergence of ¥/ to ¥;(j = 1,2,. .., m). Therefore, we have

1
E;qo (x;) = “812 .

2

It contradicts to the inequality (4.25).
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Next, we may assume that B‘lm(xi) NN =+ ¢ for all i. This time we define

; 1
lp_li(x)=ﬁq0j(xi+o-ix)’ j=152,""m_1’

iGi

. 1
Yom(x) = ;((Pm(xi + 0iX) = Pm) , (4.31)
where x is in B;(0) and ¢,, denotes the average of ¢,, over B, (x;).

Under the transformations: x — x; + o;x in R", the preimages of N are N;
parallel to the subspace R"~2 = R" and in the distance n(x;)/o;, where 7 is the
orthogonal projection from R" onto R"~2. Since B,,,(x;)n N =% ¢, we have
|m(x;)/o;| < 1/l £ %. Thus we may assume that N; converge to an affine subspace
N, in R" within the distance 1/I, from R"~2. Let p;, p,, be the distance from N;,
N, respectively. Then

m—1
j {l V‘Mnlz + 22<om(x;+a.-x)< Z |Vl//j-|2>pi_2“}dV= 1. (4_32)
B1(0) j=1

Note that ¢, is uniformly bounded. Apply the Corollary 4.1, we have

) {Ilﬁi}.lz +pi 22 Z 1'% IZ}dV< C. (4.33)
B1(0)

Recall our convention that C always denotes a uniform constant. As in the
previous case, these ¥, 1// (1 £j<m—1) converge to ¥, ¥; in Hi-norm and
H} o+ Iorms respectwely, where

Vi 2 2
Wiy = | ('p‘i' +p§ﬁ+2>dV (4.34)

B1(0)

~ ~ 1 . . L
Moreover, the functions ¥,, = ¥,, and y; = —; satisfy the following equations in
P

the weak sense:

M =0, (4.35)

AJ, =2V, V8, +°§p1<°‘ 1 VHijOO), (4.36)

0 0

where 0; are smooth outside N, in B;(0) and |V0;| < Cj p;" for any 6 < 1 and

some constant Cj. So we still have the estimate (4.29) for this n//m Also, these |// jare
uniformly bounded outside the set

U={p;1>2max max {VG,-pr(x)lxeBl(O)}},

l=sj=m-1

since p,, is smooth here. On the other hand, for any x in U,

<°‘+ L VGijm>(x)>O.

0
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Applying Moser’s iteration (cf. [GT], Chap. 8), one can show
1

~ ~ 2
supr.//,.|§c<1+ | |lpj|2dV>, ji=L2...,m—1. (4.37)
B%(O) B1(0)
In particular, these J ;are uniformly bounded, or equivalently, p.*i; are uniformly
bounded. It also implies that y; vanishes along N, n B, (0).

Next, we need the following lemma, whose proof will be given later.

Lemma 4.4. Let v be a smooth function outside N ,, N B 1(0) and |Vv| < C'p P with
B < 1, f be a smooth function in B(0) with maxB‘(o)( ~2¢| f1) < C'. Then for any
e > 0, there is a uniform constant C,, depending only on C', B, ¢, such that if u is
a solution of the equation

Au = 2Vu<°‘f}”‘° + Vv> +f in By(0) (4.38)

and [ulcogs, 0y < C', uly, =0, then
lu(x)| < C,p2%~**(x) for x in B4(0) . (4.39)
Applying the lemma to ¥; (j = 1,2,...,m — 1) with & = /4, we obtain
V()] £ Cpu (¥, xeBy(0)

j=1,2...,m—1. (4.40)

Here, as usual, C denotes a constant independent of y; and x.
Now we use (4.1) with ; = 0 for j < m — 1 and ¢;y,,(0) for §,,, and deduce as we
did for (4.30),

1
Ejooi(x:) = §E8'Aoa.(xi)

+c3szz : | {-Z“Zw Ui+ 10,1

1 88 0)" Bg,(0)\Bg'~*5,(0)

+ W = YO + [ — lﬁmlz}dV

= G Esiaon(x)

OO|>-A

2
C3f‘ | (‘“Z(W vil2 + Yl — n/zm|2)>dV

0 By'3,(0)\B;,(0)

j
1

+ C,é? <82’/18 +(m—1) Z 5 sup p@)
s= Bg*3,(0)\Bg*"*,,(0)

(use (4.29) and (4.40))
C 2

P (= tal 028 W)

1
= §E8’loa,(~x ;) +
0 Bg'1,(0)\B,,(0)

+ C43i2</13 + (m—1) sup p°§0> ) (4.41)
Bg!,,(0)
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Note that both C; and C, here are uniform constants depending only on n,
Cysin(4.1) and C in (4.40). Now we take I, to be 2(8C,4(m — 1))'/, and then choose
4o,! as before such that 1/4l, <2'4g <1/l and (4ly)" 2 <81 Since
B313,(0) = By;21,(0) and By;1000) " N # ¢, we have

1
(m—1)Cy sup p5 <3
B;1,(0)
We further assume Coldo < $. Then by the strong convergence of n//j. to ¥; in
L*-norms, for i sufficiently large, we have

1
Exoa.»(xi) =< 5812 .

A contradiction! The proposition is proved. Note that 1,, ¢q are obviously indepen-
dent of x in By (x,).

Proof of Lemma 4.3. We will construct the barrier to obtain the decay estimate
(4.39). First, we remark that it suffices to show (4.39) in a neighborhood of
N, n B4(0) in B4 (0), since the coefficients of the linear equation (4.38) are smooth
in any compact subset outside N .

Easy computations yield

Voo _ _
(A —2<°‘ Py Vv)-V)pxo =90 — 20972 = 20 VoVp,o pl

P

=05 () — 20) — 2005, Vo Voo } . (442)

<A - 2(0‘/‘)7/%0 + Vv> . V) PR (%) = 70, (0P — Oy — 20 — E)pr? 2
—2a(y — 9)pk " Vo Vp,}
+ 2(n — 2)pl % — 20p2 Vo VF, (x)?
+2(y — 8)pl P Vp,, Vi (%)%,
4.43)

where 7 (x) is the projection onto N, of the distance between X, and x for any
fixed X, in By (0).

Therefore, for any given 6 <y < 2a and 0 < § < 1, there is a neighborhood U,
of N n B4(0), depending only on ¢, y, f, such that

<A - 2(“‘7"“’ + Vv)- V) (pgo + p?,o"jfgo(xf) < —Cpr? inU,. (444)

Poo

Note that the assumption |Vu| £ Cp.? (B < 1) is used here. The function
Pl + pl %, (x)? = (3)*pl? for those x with 7 (x) = 5. So these p?, + ply “Fe (X)?
can be served as upper barriers for u. Now fix £ such that I[§ = 2o — 2¢ for some
integer [ > 0. First we take 6 = y = & Using maximum principle and comparing
u with pl, + 7, (x)? for any X, in N, N B,(0), we obtain

u(x)] £ Copo(x)® in U, .
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Then we'repeat this argument successively with y =j§ d=2¢ for 2<j <1 to
conclude the proof of this lemma.

Remark. Proposition 4.1 can easily be modified in the axisymmetric case, where we
need to construct an axisymmetric comparison map.

Now we are ready to give the main theorem of this section.

Theorem 4.1. There are two uniform constants C and 6 > 0 such that for any x in
B}(xo), O<o é %,

E,(x) £ Co*. (4.45)
In particular, it implies that ¢, is 6-Holder continuous (cf. [GT], Chap. 8).

Proof. Fix any x in B;(x,). Let ¢y, 4o be given in the last proposition. Then by
Proposition 3.1, there is a o, between e~ 3/% and 4, where C is independent of x in
By(ao) and (@, . . ., @), such that

E,(x) S &5 .

Combining this with the last proposition, we have

1 k 1 k
Ejx,.(x) = <§> E, (x)= <§> e fork=1.

Now for any ¢ < § and ¢ < o, choose k such that 15" 'o, < ¢ < 40, then

1 k
E,(x) £ 40 " PE,.(x) < i&‘"‘”S%(-)

2
logo

1 _é‘,{‘s —log2

< 26("_2)3(%(5) o logle -
logo,
log2 _ 1 logo

[ [ n=2).2(
Put 26 log /e >0,C =1 &é <2> , then
. {1
E,(x) £C'g? foro < mln{g, az} . (4.46)

On the other hand, o, is uniformly bounded from below, therefore, the estimate
(4.45) for 0 < o < 3 follows from (4.46).

5. Higher-order Estimates

We will fix the solution (¢, . .., ¢,) of (3.1) with |¢,| < C in a geodesic ball
B, (xo) as in Sects. 3 and 4. Note that this center x, is in N = M and h,, is of the
form (3.2) in the ball. In this section, we complete the proof of our main theorem
stated in the introduction. We will always use C to denote a uniform constant
depending only on (h4,. . ., h,), N, etc.

Lemma 5.1. There is an ¢, > 0, independent of (¢4, ..., ¢,) and the point x in
By (xo), such that

|Vl £ Cp(x)"1*%, x in By(xo)\N . (5.1)



2 Y. Li and G. Tian

Proof. Given any point x in By(x)\N, put 26 = p(x). Then p = ¢ in B,(x). Let
G,(y) be the Green function in B,(x) with Dirichlet boundary condition and
singularity at z. Then one can easily check

| VG dVy < Cp for p<—=, (52)
B,(x)
%Wy < ¢ (5.3)
3B,(x) on,

where C; depends only on f and n, denotes the outward normal vector of 9B, (x).
Using the first equation in (3.1), we have

0G,
one)~ o) = | (o)~ oul) "2 av,
OB,(x) y
m—1
= | hale ¥ Y Vo (y)G.(y)dV, . (5.4)

B,(x) i=1

It follows

(»)dv,

y

Vo) = [ 1on(y) — om(x)]

0B, (x)

()
on,

m—1
+Ci [ p7 Y Ve PWIVGL(y)laV, ,

B,(x) i=1

m—

(Theorem 4.1 and (5.3)) < C,0° + c1< [ p 2 ZI [Vl VGx(y)ldVy> , (5.5)

B,(x) i=1

where 6 > 0 is given in Theorem 4.1.
By Holder inequality, we have

B B—1
m—1 m—1 R F__ 2
[ (p y rV¢i|Z>|VGx(y)|dVy§< | (p-” y IquiP)’“dVy) ’

B,(x) i=1 B_,(x) i=1 !
B n
< §weowran ) (5<m0).
B,(x) h—=
1 ﬁ_l
1 gy 2 m- B
(Lemma 33) < CjpCf o ”( [ p72 Y |V(p,-|2dVy> ¢ , (5.6)
B,(x) i=1

B v m—-2+20%

(Theorem 4.1) <Cj-C/ o

Now choose 1 < f < n——n—l,,fl such that (n — 1) —n+ 26(f — 1) = feo >0
for some ¢y > 0. Such a f§ can be taken only dependent of §, so is ¢,. Then
2 -1 .
- B +m—-2+ 5)BT = — 1 + ¢y, and by (5.5), (5.6), we obtain
| Vom(x)| < C10° + Csa™ 1 7% < Cp(x) ™1 % (5.7

The lemma is proved.
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CorollaryIS.l. For any ¢ > 0, ¢ < o, there is a uniform constant C, > 0 such that
l9;(x) = hi(r(x)] £ Cop(x)**~ %, x in By(xo) (5.8)

where j=1,2,...,m— 1 and 7 is the projection from B(xq) into N as given in
Corollary 3.1.

Proof. In case o = 1, h; = const. in B;(x¢) N N. Then (5.8) follows from the pre-
vious lemma and Lemma 4.3. In case « <1, we may extend h; such that
Vh;Vp < Cp near N. Then we apply Lemma 4.3 to ¢; — h; and obtain the estimate
(5.8). Note that p,, = p and N, = N in the application of Lemma 4.3.

In particular, the solution (¢4,...,®,) is J-Holder continuous and its
o-Holder norm is uniformly bounded, where é = d(x) depends only on o. However,
in case o > 1, we can have more estimates on the second derivatives of this
solution.

Corollary 5.2. Suppose that o > 1 and h,, is of C*'*, where leZ, and 0 < f < 1.
Then for any &€ > 0, ¢ < 20, there is a uniform constant C, > 0 such that

max {[ ;] Cka'}'a(Bi_(xo))} =C, (5.9)

15jsm
where k, = min{[20 — 2¢], | + 1}, and 2, = min {20 — 2¢ — k,, B }.

Proof. Note that h; = const. for j=1,2,...,m— 1 in case « > 1. By Corollary
5.1, it suffices to bound on the (k,, 4,)-Holder norm of ¢,, in By(x,). In the first
equation of (3.1), ¢,, is Holder continuous and h,, >y "' |[Ve;|* is ([200 — 2 — 2¢],
200 — 2 — 2¢ — [2a — 2¢ — 2])-Hélder continuous by Corollary 5.1. Therefore the
bound on the (k,, 4,)-Holder norm of ¢,, follows from the standard Schauder
estimate (cf. [GT]).

Theorem 1.1 follows from Corollary 5.1 and 5.2.

In the following, we will prove that the solution (¢4,..., ®,) has more
regularity along the tangential directions of N in By(x,), precisely, by a local
diffeomorphism, we may assume that B, (x,) is an open neighborhood of the origin
in R" with N n By(x,) being in the subspace R"~2? < R", let (x4, ..., X,) be the

1
l_@q)JT (I3 + -+ +1,-, =1) have the same
ox%. .. 0xin-3
estimate as (5.9) in the half-ball B,(x,) as long as h,, N and the metric ds®
are of C'*? in B;(x,). To avoid the complexity from the presence of curvature
of N and ds® we simply consider the case where M = R". N = R"~? — R" and
ds* is the flat metric. The proof for general cases is identical. Furthermore, we
assume that log h,, is harmonic outside N. By adding a C *-function to ¢,,, we may

take h,, to be p? where o« > 1 and p(xy,. .., X,) = /x2_; + x?. The equations in
(3.1) become

Euclidean coordinates, then

m-—1
App=p~2"e 2 3 |Vo,l*, (5.10)

i=1

1%
A(pj=2[7¢j<a—pp—+ V(pm), j=12,...,.m—1. (5.11)
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Lemma 5.2. For any integer | = 1, and nonnegative integers l,...,l,_, with
I=1,+ -+ 1,5, we have

1

al m m—1 0 m
A(a b . >= =207 e 3 Vol 4
X1 j=1

ln-2 ) ln-2
.o 0xns2 oxy ... 0x;n=2

m—1 11
Lo e Y Yo v lO
= T \oxd L oxgr2

n—2
+ P p T PRe (5.12)
oo d'e aV
4 ! =2V J 2 1 Ve,
<axl‘ 6xfl"_‘2’> <6x’1‘ . Oxbo2 Ve

+PL L, i=12...,m—1, (5.13)

",

are polynomials of degree at most | + 2 in ———————
h-s A€ POLY f deg axk .. oxns

.....

0o
and V<W1—q’ﬁn—_~z>,where0 <kgl—-1,ki+ - + k,—, =k. Furthermore,
1 e n—

2
PT' . .._, is at least quadratic on the derivatives of @; (j=1,2,...,m —1).

Proof. These equations follow from the direct computations, (5.10) and (5.11).

Theorem 5.1. Let N = R" 2 < R"= M be the subspace, h,,. .., h, be C*-fun-
ctions with h,, = p* in By(0). Then for any (n — 2)-tuple of nonnegative integers
(li,...,0,—3) and ¢>0, there is a constant C,,, depending only on ¢ and
I=1li+ - +1,-,, such that

max { } é Cs,l 5 (514)
1<j<m C*a%2(B4(0))

where k, = [200 — 2¢], Ay = 200 — 2¢ — k, as in Corollary 5.2.

1
d9;
I In-
Oz ... 0zr"2

Proof. We will prove (5.14) by induction on [ = Zf;f [; for fixed small ¢ > 0. In
case [ =0, (5.14) is just (5.9). Now we suppose that (5.14) is true for all

0y, ..., L—y)ywithly,...,1,_, <l By induction, we may further assume that on
B4(0),
@kqoj
I o < C 2a—2¢ 1
0x’§‘ . 3xﬁ2_2 (x) = k,ep(x) (5 5)
and

(x) £ Crep(x)®* =271, (5.16)

*o; )
V| _—.J_z_
’ <6x’{‘ coL0xE,

where 0<k=<I—-1,1<j<m-—1 and C,, are constants independent of the
solution.
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Then Ey Lemma 5.2, in Egs. (5.12) and (5.13), for some uniform constant C,

|PI. ()] < Cp*™*72(x) xin B4(0), (5.17)
[Pl SCp 2 (x), j=1,2...,m—1. (5.18)
On the other hand, by induction
al(pm ) al_l(pm
VWWee—""—}|(x) Emax | -—/———
‘ <ax’1‘ Co0xnm3 Oxt . OxEn 2 | 2By O Iky + o + ks =1 — 1
é Cs,l—l .
Therefore
2Vep,V —al?L + Pl |x) S CpETl< Cpr2,
ooty ) T e 2 =
. d'o;
Now we can apply Lemma 43 to (5.13) with u=_————+— for
Oxy ... 0x;2
j=1,2,...,m—1 to conclude
99| <o xin B,O 5.19
XY ... OxIn2™ ) = px) > xin B4(0). (5.19)
. d'o; .
Note that the estimate for W corresponding to (5.5) and (5.16) can be
... 0x"3

easily derived from (5.19). Therefore, (n5.14) follows from (5.19), (5.12), (5.13) and the
standard Schauder estimates (cf. [GT], Chap. 6).

Theorem 5.1’ (The version of Theorem 5.1 in general case). Assume that M is
a C®-manifold, N is a C*-submanifold and (hy, . . . , h,) are C*-smooth. Let B,(x,)
be the geodesic ball with xq in N in which h,, is of form (3.2). Then for any ¢ > 0, any

vector fields Ty, . . ., Ty in B{(x) which are tangential to N along By (x,) N N, there
is a constant C, = C, (T4, . . ., T;), independent of the solution (¢4, . .., @n), such
that

sup [Ty ... 1,0l Ceis (5.20)

<
15jsm Cta(By(xo))
where k,, A, are given as in Theorem 5.1.

The proof of it is identical to that of Theorem 5.1 except for some possible
complexity due to the bending of M and N.

6. An Application

In this section, we apply the regularity theorem in Sect. 5 for harmonic maps into
H? to the uniqueness problem of axially symmetric, asymptotically flat, stationary
spacetimes (cf. [Ca, We] for the definition) in general relativity.

The Einstein vacuum field equations of general relativity are

Ric(g) =0, (6.1)
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where (M, g) is a 4-dimensional Lorentzian manifold and Ric(g) denotes its Ricci
curvature. In view of the great difficulties involved in the study of these equations,
one is led to consider special cases with symmetry. The solutions of Schwarzschild
are found in 1916, the first explicit ones parameterized by the mass. They are all
static and spherically symmetric. The Kerr family of solutions to (6.1), discovered in
1963, has two parameters, the mass and the aungular momentum, and is both
stationary and axially symmetric. In the 70’s Robinson shows that the Kerr
solutions are unique among all asymptotically flat axially symmetric stationary
spacetimes that have a connected event horizon. His proof is based on some results
of Ernst [Er] and Carter [Ca]. They reduce the Einstein vacuum equation in the
asymptotically flat, axially symmetric stationary case to an axially symmetric
harmonic map from 3-dimensional euclidean space into a hyperbolic plane HZ.
Then the uniqueness of Kerr solutions is the same as that of the harmonic map into
H?, Rzobinson affirmed the later by using the convexity of the distance function
on H-.

After this striking result of Robinson, there is a “little” problem left, i.e., is it
possible to drop the extra assumption on the connectedness of the event horizon.
Following a suggestion of D. Christodoulou, G. Weinstein considered this problem
in his thesis [Wel]. In order to describe his basic result, we need to first introduce
some notations.

Let (p, ¢, z) be the cylindrical coordinates for R® and A be the z-axis. Choose
parameters {a;, b;, ¢; }; <:<, for any fixed positive integer L satisfying:

—oo<a1<b1<a2<"'<bL_1<aL<bL=0. (62)

Define I' = A\{(0, ¢, z)|a; <z < b; for some i}. Then the distance function
d((p, @, z), T') is Lipschitz in R*® and the Laplacian of its logarithm is bounded
except at those boundary points. By Fourier transformation, one can find a smooth
function u outside A\I" such that h = 2logd(,, I') + u is harmonic outside I" and
h is asymptotic to 2logd(, I') at the interior points of I'. In fact, such a h can be
explicitly obtained by superposition of Schwarzschild metrics. Namely, we can
write

L
h=2logp+ Y u,

i=1

b — a
T log<1 _ —r"—) , (63)
where (7;, 0;) are given by transformations
b, — a.\*
p=r,.(1— = “'> siné; , (6.4)
bi + a; bi — a;
z— — = <r,~ N >cosH,~ (6.5)

(cf. [Wel]).
Let (X, Y) be a harmonic map from R*\4 into the upper half plane with
standard hyperbolic metric, satisfying.
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' X is smooth across I" away from its boundary points and ,
X, 0,2)=c; forb;<z<a,, i=12,...,L—1,
X0, 0,2)=cp forz> b, ,
X0,¢,2)=—c forz<a,, (6.6)
both X and Y are axially symmetric, i.e., they are independent of ¢ . (6.7)
Y is of the form e"*? and y is smooth across I away from

its boundary points. (6.8)

7o)
0?2 + 22
By the harmonicity of (X, Y) and (6.3)—(6.5), one can easily check that the

differential 1-form ¥ is closed and smooth in R3\(4A\I'), where A\I" denotes the
closure of A\I" and

1 o, ((aY\* [ox\* [oY\* [oXx)\?

e {(5) (5) - (5) (5] b
1T oY\ [0Y 0X\[0X
{(G)E) (55 o oo

Therefore, there is a smooth function w in R3\(4\I') satisfying dw = ¥. Such an
 is unique up to constants, so we may normalize (w — u — y)(0, ¢, 1) = 0. The
following proposition is essentially due to Ernst [Er] and Carter [Ca], but the form
of it presented here is formulated in [Wel] with some changes on the notations.

Both X and y are of order 0< as (p, ¢, z) near infinity . (6.9)

Proposition 6.1. The asymptotically flat axially symmetric stationary solutions of
EVE (6.1) with n connected components of even horizon are equivalent to those
harmonic maps described as above with one extra condition

p=0 onI\OI', (6.11)
where B is defined to be w — u — y in R3\(A\I').

Note that our EVE solutions always have a nondegenerate event horizon in the
sense in [Ca]. Also, the condition (6.11) is nothing else but an interpretation of the
regularity of the EVE solutions along the axis away from event horizon.

The parameters {a;, b;, ¢;};<;< have the following physical interpretations.
The differences a;+1 — b; (1 £i £ L — 1) are the distances between two adjacent
components of the event horizon, the length b; — a; of the interval [a;, b;] can be
regarded as the mass of the i'"™-component of an event horizon. Finally, the angular
momentum J; of the i'"®-component is §(c; — ¢;—;) fori = 2 and §(c; + ¢)fori = 1.
In particular, the total angular momentum is +c, . We refer the readers to Sect. 6 in
[Wel] for details. The solutions of EVE (6.1) without rotation, i.e., all ¢; vanishes,
were discussed a long time ago by Bach and Weyl [BW]. The corresponding

harmonic maps are of form | 0, pzee; “), where u; are given by (6.3)—(6.5). Let us

first compute  on the bounded components of I' for these particular nonrotational
solutions.
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Lemma 6.1. Let <0, p’e a;u‘) be the harmonic map corresponding to one solution of
Bach and Weyl, ie. all c; vanish. Thenfor ze(b;,a;41),i=1,2,...,L—1,
(b — bj)(ak - aj)
BO, ¢,2) = log
k= 21 ,21 (bx — a;)(a. — bj)
<0
B, ¢,z) =0 for either z> b, orz<a. 6.12)
Proof. Let C: be a path in the (p, z)-plane defined by the equation r; = 2m; + ¢,
*. Putd; = —2—b Then by

b —
where r; is defined in (6.4) and (6.5), m; is equal — 5

computations, we find

Ou; — 2m . T
Gp W(i‘ m;) sin 0; {(r; — m;)* sin* 6,
+ ri(r; — 2m;) cos? 6;} 71, (6.13)
ou:
5% = — 2COS Qi{(r,- —_ m,~)2 Sin2 Hi
+ ri(r; — 2m;) cos? 6;} 71, (6.14)

where i=1,2,..., L. ou ou
In partlcular it implies that both a—z’ and B_pl are smooth in the region

{r; > 2m;}. Since (0, p?, ") corresponds to the Schwarzschild solution, we have

() (2))orn32ee

Therefore, using (6.13), (6.14) and (6.15), for z, in (b;, a; + 1) and z, in (b;_ 4, a;), we have
BO, ¢,z,) — B0, ¢, 2;) = lim [ dp

e-0+ Ci

1. ou \? ou\?
“iam 1((5) (%) )

+2pa—:t)@dz}. (6.15)

=—;-lim j(Zdu> O

e=0+ Ci \j+i

= - Z u;(b;) — uj(a;)

e (@ —b)b,—a)
= Lloe (b~ - bi)(a,- ~a)
b)) — ay)
log ————————.
t L (b ~a,)(a — by)

j<i

(6.16)

Now our normalization says S(0, ¢, 1) = 0, so (6.12) follows from (6.16)!
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In particular, any nonrotational asymptotically flat axially symmetric stationary of
(6.1) is not regular on the bounded components of the axis away from event horizon.

In [Wel], G. Weinstein considered the construction of harmomc maps from
R3\A into H? of form X, ¢"*?), where h is equal to 2log p + Y i, u; with u; given
in (6.3)—(6.5). His idea is to minimize the following functional

HX,y)= | <IVy|2+e‘2"‘ZY|VX|2>dV (6.17)
R3\A
in the space H; , x H; (cf. Sect. 2 or Sect. 6 in [Wel]).

Proposition 6.2. For any set of numbers {a;, b;, ¢;}1 <i<y, satisfying (6.2), there is a unique
axially symmetric harmonic map of form (X, e"”) from R3\A into H? satisfying:

j(lVy|2+e’2""2y| VX|2>dV§C (6.18)
RJ
and
suply|=C, (6.19)
RM\A4

where C is a constant depending only on by, — a; and max, <;<r|c;|.

Proof. This is due to Weinstein (cf. in [Wel]).
The following is just a special case of Theorem 1.1.

Theorem 6.1. For any set of numbers {a;, b;, c;}1<i<y satisfying (6.2), there is
a unique harmonic map from R*\ A into H* such that (6.8)—(6.9) hold. Moreover, the
C%3-norms of (X, y) in any compact subset K = = R3\ A are uniformly bounded by
a constant depending only on K and C in (6.18) and (6.19).

Theorem 6.2. Given any two numbers 1y, A, > 0, there is an ¢ = ¢(Ay, A5) > 0 such
that for any set of {a;, b;, ¢;}1<i<y Satisfying max, <;<p|c;| S & by —a; < A, and

min{ inf (b; —a;), inf (a;4; — bi)} =4,
1<isL 1ZisL-

the function B defined in Proposition 6.1 is negative in each bounded component of T.
Equivalently, there is no regular asymptotically flat axially symmetric stationary
solution of EVE (6.1) such that its event horizon has L connected components disjoint
from each other in the distance at least A, and at most 1,, and each component has
mass = Ay and angular momentum less than e.

Proof. We observe that the C? *-estimates for (X, y) in Sect. 5 are uniform if (6.18)
and (6.19) hold (cf. Theorem 6.1). On the other hand, the harmonic map (X, Y) does
satisfy (6.18)—(6.19) for a constant C depending only on 1, 4, under our assump-
tion on a;,b;,¢; (1 £i £ L) (cf. Sect. 2). Therefore, this theorem follows from
a continuity argument and Lemma 6.1.

Theorem 6.3. Let (X,, Y,) be a sequence of harmonic maps from R*\ A ino H>
satisfying (6.6)—(6.9) for {ayi, bais Coi }1<i<r. Suppose that

(1) sup{lbai - aai', 'cail} é C s

(2) aio, s.t. hm (aai0+1 - baio) = 0 and Sup (|aai+1 - bail) é C

o= © a,i#+io
where C is a uniform constant. Then (X,, Y,) converges to the union of two har-
monic maps from R3\A into H? satisfying (6.6)—(6.9) for two sets of numbers
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{aox)b b i cooi}i§i§io and {aooi) b, cooi}io§i§La respectively, where

Qi = lim (a,; — by,), byi = lim (b, — b,,) fori =i,
a= oo a— o

Api = lim (aai - auio+1)’ booi = lim (bai - baig+1) for i > iO s
a= a— o

Coi = lim Cyi -

a— oo

We omit the proof. It is simply a corollary of the results in Sect. 2, the regularity

theorem in Sect. 5 and some standard arguments.

bl

In particular, this last theorem implies that the solution of EVE (6.1) with two
ack holes constructed in Sect. 8 of [We] converges to the union of two Kerr’s

solutions with opposite total angular momentum as the distance of two black holes
approaches to infinity.
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