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Abstract. We prove that superselection sectors with finite statistics in the sense of
Doplicher, Haag, and Roberts are automatically Poincare covariant under natural
conditions (e.g. split property for space-like cones and duality for contractible
causally complete regions). The same holds for topological charges, namely sectors
localized in space-like cones, providing a converse to a theorem of Buchholz and
Fredenhagen. We introduce the notion of weak conjugate sector that turns out to
be equivalent to the DHR conjugate in finite statistics. The weak conjugate sector
is given by an explicit formula that relates it to the PCT symmetry in a Wightman
theory. Every Euclidean covariant sector (possibly with infinite statistics) has a
weak conjugate sector and the converse is true under the above natural conditions.
On the same basis, translation covariance is equivalent to the property that sectors
are sheaf maps modulo inner automorphisms, for a certain sheaf structure given by
the local algebras. The construction of the weak conjugate sector also applies
to the case of local algebras on S1 in conformal theories. Our main tools are
the Bisognano-Wichmann description of the modular structure of the von
Neumann algebras associated with wedge regions in the vacuum sector and the
relation between Jones index theory for subfactors and the statistics of superselec-
tion sectors.

1. Introduction

According to the Haag-Kastler approach to Quantum Field Theory [19], the
physical content of the theory is encoded in the net of von Neumann algebras stf{&)
of local observables associated with double cones of the Minkowski space. In this
framework the physical representations (the superselection sectors or quantum
charges introduced in [38]) are to correspond to a family of (unitary equivalence
class of) representations of the quasi-local C*-algebra s/=\J st{β) ~. Since not all
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representations of si (as a C*-algebra) have a physical meaning, criteria are needed
to select the physically relevant representations.

The action of the Poincare group on the Minkowski space give rise to an action
on si. There is a distinguished representation, the vacuum sector, where this action
is unitarily implemented with positive energy, i.e. the spectrum of the unitary
action of the translation subgroup is contained in the forward light cone.

As a selection criterium, Borchers [3] proposed to consider the class of
representations of si that are Poincare covariant with positive energy.

Depending on the principle of locality and with the aim of describing short
range interactions Doplicher, Haag, and Roberts (DHR) [14] considered the class
of localized representations, namely representations that become equivalent to the
vacuum representation if both are restricted to the C*-algebra si(Θf) of the space-
like complement of a double cone Θ. They defined also a parameter, called
statistical dimension, associated with such representations, and restricted their
attention to the finite statistics case. In particular, a suitably defined conjugate
charge exists within this class.

Buchholz and Fredenhagen [7] observed that wider localization regions are
necessary in order to describe general massive representations (representations
where the spectrum of the translation subgroup contains an isolated mass shell), in
particular, topological charges. Indeed, they proved that any massive represen-
tation obeying the Borchers criterium can be localized in a space-like cone and
has finite statistics [16].

Thus Poincare covariance and localizability give related criteria to select
physical representations. But the problem of whether localizable representations
with finite statistics are automatically Poincare covariant is a long-standing
problem since the DHR work [15].

A main result in this paper is that under general hypotheses* any sector with
finite statistics and localizable in a space-like cone is indeed Poincare covariant,
with positive energy. Hence, in the massive case, Borchers condition selects the
same class of sectors as the Buchholz-Fredenhagen localization together with
finite statistics.

Moreover, we shall introduce a notion of weak conjugate sector that becomes
equivalent to the DHR conjugation in the finite statistics case, and show that a
weak conjugate charge exists iff ρ is covariant under the Euclidean group.

Our results are obtained by analyzing the relations among fundamental
properties of a sector localizable in a space-like cone, as it will be illustrated below.
We anticipate these relations in the following summarizing diagram:

Finite statistics

o
3 DHR conjugate => Poincare covariance

3 weak conjugate o Euclidean covariance

ρ is a sheaf map modulo inners o Translation covariance.

1 For example, we may assume the split property for space-like cones and the duality property
for contractible causally complete regions (see Sect. 6)
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Before a more detailed discussion of the content of this paper, we mention that
the original motivation for our analysis was the purpose of a better understanding
of the consequences of the equation

Ind(ρ) = φ ) 2

found in [26]. Here the sector ρ is viewed as an endomorphism of si and the
formula relates its index [24] with the square of the statistical dimension [14] of ρ.
Most of this paper relies on some ideas and results on index theory in infinite
factors [27]. The essential mathematical structure is explained in Sect. 2 and in the
Appendix.

Poincare covarίance, the partίcle-antίparticle symmetry and the notion of weak
conjugate. In the Wightman approach to quantum field theory the particle-
antiparticle symmetry is expressed by the well known PCT theorem; it gives an
antiunitary operator that implements the product of space reflection, time
inversion and charge conjugation. In the DHR setting [14], with space-time
dimension greater than 2, sectors are represented by endomorphisms of s/
(modulo inners) and any sector ρ with finite statistics has a conjugate sector ρ,
characterized by the property that ρ © ρ contains the identity, namely

v + 0: ρoρ(χ)v = vx, xesi. (1.1)

Now, according with a theorem of Bisognano and Wichmann [2], the PCT
antiunitary is the product of the modular conjugation [37] of the von Neumann
algebra 0t{W) associated to a wedge region with a spatial rotation. One may argue
by this point that modular theory of von Neumann algebras and DHR charge
conjugation are to be related.

This is in fact true [27]. If M is an infinite factor the semiring Sect(M), the
quotient of the endomorphisms End(M) of M modulo inner automorphisms, has a
conjugation

ρ = ρ- 1 o 7 ρ , ρeEnd(M), (1.2)

where yρ:M-+ρ(M) is a canonical endomorphism [28] relating the modular
structure of M and ρ(M). If ρ is irreducible with finite index ρ is characterized by
the analogue of the property (1.1).

Now let ρ be a morphism of si localized in a space-like cone Sf. By essential
duality, for any wedge region W that contains Sf, ρ gives rise to an endomorphism
ρw of 3&{W\ the weak closure of si(W). Therefore, we may try to construct a
consistent family of conjugate endomorphisms by the formula (1.2): for each pair
of wedge regions Wl9 W2 containing Sf, we ask for a choice of ρWι9 ρWl (we have the
freedom to perturb by inner automorphisms) such that

If this is possible, the family of endomorphisms ρw, as W varies, determines a
morphism ρoίsi that we call a weak conjugate of ρ. Depending on the geometrical
meaning of the modular objects of the algebra of a wedge region, we will prove that
the existence of a weak conjugate is equivalent to the Euclidean covariance of ρ.
Indeed, we shall obtain the global formula

Q=J°Q°J,

where j is the antiautomorphism of Ά(3^) implemented by the PCT antiunitary,
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thus relating the charge conjugation in the Wightman formulation with the DHR
conjugation of a sector in the local algebras formulation.

In finite statistics, weak conjugates and DHR conjugates coincide and we
therefore deduce the Euclidean covariance. The covariance with respect to the full
Poincare group is obtained (in finite statistics and arbitrary space-time dimension)
by the Bisognano-Wichmann theorem and the Connes Radon-Nikodym theorem
for the modular group [11].

By means of a recent result of Borchers [4] on the Bisognano and Wichmann
theorem in the algebraic setting, we will prove in Sect. 10 that finite statistics
implies translation covariance within the Haag-Kastler framework.

The sheaf of local algebras. Roberts [33] has long proposed to consider a sheaf
structure arising from the net of local von Neumann algebras, that clarifies the
mathematical structure of the superselection sectors.

In this paper we are naturally led to consider a related but different sheaf
structure. First of all with each open set Θ we associate the usual local von
Neumann algebra 0t{G) defined by additivity. Then, to get a presheaf, one has to
assign restriction maps, namely (homo-)morphisms

into 0l(&) for any open sets ΘcΘ with the properties

One obtains a sheaf if, furthermore, the following holds: if & = (J Gi and we pick
i

an %i in each 0t{Θ^ with the property that xf and Xj have the same restriction to
ΘiΓ\Θp there exists a unique xeffl(G) with Xi = y^βl(x).

Our first observation is that if y^fΘ is the canonical endomorphism oϊ&(Θ) into
0t(&) with respect to the vacuum vector (where 0 C Θ are bounded non-empty) then
the ^2(0)'s form indeed a sheaf.

Now observe that the canonical endomorphisms γ^tΘ have a geometrical
meaning for particular regions [25]. For example, if WD W are wedge regions, as a
corollary of the Bisognano-Wichmann theorem, γ^ w is a space-time translation
on 0Ky/\

If ρ is an endomorphism of si localized in Θ, the translation covariance
becomes the property

Q°yw,w = ad(u)°yw ,w°Q (1.3)

for some unitary u e $(W), namely ρ is a sheaf map modulo inners on the wedges
containing Θ.

Furthermore, if we suppose ρ to have finite statistics, we obtain property (1.3)
not only for wedges, but also for double cones containing Θ.

This "geometrical" formalism appears as the natural language for the analysis
of theories on topologically non-trivial manifolds, possibly arising from curved
space-times. For example, conformal theories on S1 give sheaves (and cosheaves),
but not nets, of local algebras (pre-compact contractible open sets do not form a
direct set in S1).

According to these ideas we provide a construction of the conjugate sector in
this case, where the existing method (shifting the charge at infinity) 'fails. Our
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method is to define a conjugation on Roberts cohomology classes [34], which are
in one-to-one correspondence with sectors, and this will be done by providing a
conjugation on cocycles. The construction is also related to the universal algebra
of Fredenhagen [17], that we regard from a cosheaf point of view. It works for
covariant sectors, possibly with infinite statistics, a case that we expect to be
important. In Sect. 11 we shall give a first insight to this case, so far not envisaged.

This paper is an expanded version of an unpublished manuscript of the second
named author.

2. Mathematical Preliminaries and Abstract Covariance

In this section we put in a convenient form and develop certain results on
endomorphisms of factors; we refer to [27, 31] for more on this matter.

Most of this paper is based on Lemma 2.1 here. However, we also present
abstract results that clarify the role of the hypotheses and have their own interest.

Let M be a properly infinite von Neumann algebra, that we assume for
simplicity to have separable predual. Recall that if AT is a properly infinite von
Neumann subalgebra, the canonical endomorphism γ:M->N is defined by

y(x) = ΓxΓ*,

where Γ = JNJM is the product of a choice of the modular conjugations in the
standard representation space of M. The endomorphism y is defined up to inner
automorphisms of N.

Denote by End(M) the family of unital injective normal endomorphisms of M.
If ρ e End(M) then a conjugate ρ of ρ is the endomorphism given by

where yρ: M^ρ(M) is a canonical endomorphism [25]; ρ is unique modulo inner
automorphisms of M, i.e. it gives a well defined conjugation in the semiring
Sect(M), the quotient of End(M) with respect to inner automorphisms. If M is a
factor and ρ is irreducible [i.e. ρ(M)'nM = <C1] with finite index (see [24,22,26]), ρ
is characterized (modulo inners) by the existence of a non-zero intertwiner v e M of
ρoρ with the identity ([27], see also [23]):

ρ © ρ(χ)v — vx, xeM.

Lemma 2.1. Let M be a properly infinite von Neumann algebra in a standard form
and ρeEnd(M). If U is a unitary that implements ρ

= ρ(x), xeM,

then U = JU*J implements a conjugate ρ of ρ

xeM,

where J is the modular conjugation of M.
Every conjugate endomorphism arises in this way.

Proof The canonical endomorphism yρ: M-+ρ(M) is implemented by the unitary
Γρ = JρJ, where Jρ is a modular conjugation of ρ(M). We may choose Jρ= UJU*,
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therefore
Γβ==jρj=UjU*j

and ρ = ρ - 1 °yρ is implemented by JU*J.
If V is a unitary, V implements ρ iff V= Uv for some unitary v e M\ i.e. iff

V= wO for some unitary w e M, iff F implements an endomorphism of M whose
class in Sect(M) coincides with the class [ρ] of ρ. •

Let now NCM be an inclusion of infinite factors and ρeEnd(M) such that
ρ(N)cN. We shall say that an endomorphism ρ eEnd(M) is a coherent conjugate
of ρ (with respect to N) if ρ is a conjugate of M with ρ(N) C N and ρ\N is a conjugate
of ρ\N.

We choose the modular conjugations of M, N and denote them as usual by
JM>JN- We denote by Mx =JMNΊM the extension of NcM.

Theorem 2.2. Let NcMbean inclusion of infinite factors and y: M-+N a canonical
endomorphism, and let ρeEnd(M) with ρ(N)CN.

The following are equivalent:
(i) There exists a coherent conjugate ρ of ρ.
(ii) ρ commutes with γ modulo inner automorphisms of N, namely

y o ρ(χ) = uρ o y(x)u*, xeM, (2.1)

for some unitary usN.
(iii) There is a choice of the canonical endomorphism γ:M^>N that restricts to a
canonical endomorphism of ρ(M) in ρ(N).
(iv) There is a choice of the canonical endomorphism γρ: M-+ρ(M) that restricts to
a canonical endomorphism of N in ρ(N).
(v) ρ extends to an endomorphism ρ of Mx in the same class of γ~1oρoγ in

Proof (i) o (ii): Fix U a unitary implementing ρ so that Ό = JMU*JM implements
a conjugate ρ of ρ. Then (i) holds iff there exists a unitary veM such that

JMU*JMxJMUJM = vJNU*JNxJNUJNv* (2.2)

for all xeN, as follows by the uniqueness modulo inners of the conjugate.
Equivalently,

v' = JMUJMvJNU*JNeN'

or

(2.3)
where Γ = JNJM and jM( ) = JM'JM a n d s o o n

Again this is equivalent to

= ad(«)oad(ί/Γ)|M ) (2.4)

namely

y o ρ(χ) — uρo γ(χ)u*, x e M.

(ii) o (iii): Setting y = ρ(x) in (2.1) we obtain

oρ-1(y)9 yeρ(M). (2.5)
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This shows that ad(w*)y is a canonical endomorphism of ρ(M) in ρ(N), thus we
obtain (iii). On the other hand, formula (2.5) is equivalent to (2.1), thus (iii) => (ii).
(i) <=> (iv): ρ is a conjugate of ρ iff

y Q = Q ° Q > ( 2 6 )

therefore, if ρ is a coherent conjugate of ρ, then yρ\N is a canonical endomorphism of
N into ρ(N). Conversely, if the latter holds, then ρ is a coherent conjugate by (2.6).
(i) <=> (v): By Lemma 2.1, in the equivalence (i) <=> (ii) we may choose U so that
vsN, therefore, (2.4) becomes

l = ad(iι)oad(t7Γ)|M l,

namely

ρ(y) Ξ ad U(y) = ad(w) o y ~ι o ρ o γ(y) (2.7)

for all yeMί with w ^ y ' ^ t O e M ^ because y(Mί) = N. Π

The next position should be compared with the notion of a commuting square
of finite factors [32].

Proposition 2.3. Let

N

u

jV0

C

C

M

u

Mo

be a square of inclusions of infinite factors and ε:M^M0 a normal faithful
conditional expectation with ε(N) = N0. Suppose that NOCN and MOCM are
irreducible inclusions with the same finite index

Ind(iVo,iV) = Ind(M o ,M).

Then there exists a canonical endomorphism y: M->JV whose restriction to Mo is a
canonical endomorphism of Mo into No.

Proof We assume for simplicity that M acts on a separable Hubert space. Let φ be
a bicyclic state for No C M o , namely φ is a normal faithful state of M o represented
by a jointly cyclic and separating vector for No and M o in the GNS representation.

Then φ = φo£ is a faithful state of M that we represent by a cyclic and
separating vector ξ.

Then

is a Jones projection for M 0 C M and we let Mί = (M,e) be the extension of
M0CM. Denote by

the von Neumann algebra generated by N and e; if ξ is cyclic for N, then Nt is the
extension Nx of N0CN.

In general, there is a normal homomorphism Φ of JVX onto iVΊ mapping iV0

onto JV0, N onto JV and e in the Jones projection eoϊ N0CN (this may be checked
directly by definitions).
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The dual expectation ε!:Mγ^>M is characterized by

while the dual expectation ε:Nγ-^N is characterized by

ε(e) = A( = Ind(iV0,iV)-1),

hence

g φ = φ - s'.

This implies that Φ is faithful since

z e Nf , Φ{z) = 0 => Φ(ε(z)) = 0

=> ε(z) = 0 => z = 0

because Φ\N is faithful as JV is a factor.
We thus conclude that e is a Jones projection for JV0 C N, too. We apply now

[26] and write the operator Γ = JMoJM as

where Fe M'o (C N'o) and We JVX (C Mx) are isometries with final projection e. This
also represents the operator JNoJN for suitable choice of the modular
conjugations. •

Corollary2.4. Let NcM be infinite factors and ρeEnd(M) an irreducible
endomorphism with finite index. Suppose that ρ(N)cN, φ(N)cN, where φ is the left
inverse of ρ, and ρ\N is irreducible with

) = Ind(ρU).

Then there exists a coherent conjugate endomorphism ρ of ρ with respect to NcM.

Proof Immediate by Theorem 2.2 and Proposition 2.3. •

3. Covariance and Conjugates

In this section we start with a Euclidean covariant sector and derive some
consequences, mainly the existence of a (weak) conjugate sector. Previous
constructions are contained in [15,16,18]. Our construction is new from several
points of view. First of all neither finite statistics nor positivity of the energy
assumptions are needed here. Moreover, we have an explicit set up for a conjugate
morphism that will give the explicit formula of Sect. 4. Finally, under some
regularity assumption, most of the arguments may be reversed, and we shall show
in the next sections that covariance and existence of a conjugate are equivalent
properties.

We briefly recall the main standard assumptions and definitions we will use in
the following.

In R d with Minkowski structure we consider double cones, i.e. all Poincare
transformations of the regions

<r}, r > 0 ,
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wedges, i.e. all Poincare transformations of the region

{( f l o ,a)eR d /K|< f l l } , (3.1)

and space-like cones, i.e. cones generated by a double cone and a point in the
casual complement of its closure.

Then we will consider a net of C*-algebras st(G) associated with double cones
with locality and isotony properties, and define the algebra of quasilocal
observables si as the inductive C*-limit of all local algebras st{β\ We define the
algebra s/^6) associated with a more general region ^ as the C*-algebra
generated by the algebras stf(&) with ΉD&.

Poincare transformations of R" induce an action of the Poincare group on the
C*-algebra s/9 and there is a unique invariant state, the vacuum state. Positive
energy(-momentum) in the vacuum representation π 0 is also assumed. We may
omit the symbol π 0 in the following. We will write 0H!$) for the weak closure in the
vacuum representation of the algebra «a/(#). If 0 is a double cone we may and do
assume stf(Θ) to be weakly closed, namely sd(&) = M{&). We recall that with this
hypothesis von Neumann algebras associated to wedge regions are factors of type
lllx (and injective if the split property holds), see [30].

Moreover, we shall need essential duality, i.e.

M{W)f = M{W) (3.2)

for each wedge W, and the identification of the modular conjugation of 0t{W)
(with respect to the vacuum) with the product of the PCT transformation and
a rotation around the α^axis for W given by (31). These properties have been
proven by Bisognano and Wichmann [2] if local algebras are generated by
Wightman fields [35], and a recent theorem by Borchers [4] shows that they hold
with more generality.

As we said in the introduction, we shall deal with localized representations of
s/, i.e. representations π that have vacuum equivalent restriction to the casual
complement of any space-like cone. Given a space-like cone Sf we identify the
Hubert space of π with the vacuum Hubert space 3tf0 in such a way that
π oU(^') = π\s/(#"y We will call morphίsm localized in Sf such a localized representa-
tion on J^o. A morphism ρ is transportable: for each space-like cone S£γ there is
a morphism localized in $fγ and unitarily equivalent to ρ. We observe that a
transportable morphism localized in Sf maps the algebra of a wedge s/(W), S^CW,
into 01{W) by essential duality, and it is unitarily implemented on s/(W) by
transportability, hence its restriction to s/(W) can be extended to a normal
endomorphism ρ^ of 3t(W). Moreover, if ρ were localized in a double cone and
duality occurred [i.e. Eq. (3.2) held for double cones], then ρ would be an
endomorphism of stf.2

Now we use the definition of conjugate endomorphism for von Neumann
algebras to get a conjugation relation between morphisms of si. We say that
two morphisms ρ and ρ localized in Sf are weakly conjugate if for each wedge
WD^, ρw and ρw are conjugate in the sense of Sect. 2.

Now let us consider the following local equivalence relation between mor-
phisms: a morphism ρ' is equivalent to a morphism ρ localized in Sf if we can
transport it to a morphism ρ" localized in Sf such that, for each wedge WDέf, ρ'ψ
and ρw define the same element in Sect(̂ ?(VK)) (see Sect. 2), i.e. there exists a unitary
2 In general, ρ becomes an endomorphism of the universal C*-algebra associated with the
pre-cosheaf of the local von Neumann algebras on wedge regions, see Sect. 8
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ueM{W) with

A class [ρ] of locally equivalent morphisms will be called sector and the symbol
Sect(j^) denotes here the set of all sectors of si. We shall say that a sector
is irreducible2' if, given a representative ρ localized in Sf, for each wedge WD£f, ρw

is irreducible:

ρ{M{W)')n®{W) = <£. (3.3)

Then, if an irreducible weak conjugate sector exists, it is unique, and [ρ] = [ρ]
(cf. [27]).

We point out soon that if an irreducible DHR conjugate sector ρ exists (this is
possible only if ρ has finite statistics) then ρ is also conjugate in our sense by [27].

With these premises we may now state our first result. As always we assume the
vacuum sector to be Poincare covariant.

Theorem 3.1. Let ρbea morphίsm localized in the space-like cone ίf and covariant
under the Euclidean group. There exists a conjugate morphism ρ localized in Sf,
unique up to local equivalence.

The reason why only the Euclidean group appears in this statement will be clear
later; in the next sections we discuss the Poincare covariance.

By definition ρ is covariant under the group GcP\. if there exists a (projective)
continuous unitary representation V of G such that

ρ(φ))=VgQ(x)Vg*, xerf, geG,

where ag(x)=UgxU* and U is the unitary representation of G on the vacuum
Hubert space. Equivalently, ρ is G-covariant if

namely if there exist unitaries

with

In fact, g->zg is a α-cocycle and must be continuous. Moreover, zg

and in particular, if WD^vg^, then zg belongs to 01{W\
Thus ρ is covariant iff there exists a unitary map g->zg (in fact, an α-cocycle)

such that

ρg(x) = zgρ(x)z*, x e sJ. (3.4)

We note that since in the following G will be a connected group, to prove
covariance it is sufficient to check Eq. (3.4) with g in a neighborhood % of the
identity of G.

Lemma 3.2. Let Ήbea region in the Minkowski space and u a unitary implementing ρ
xg\zguon stfi<β). Then u~γ{zu) implements ρ on

This implies the morphism is irreducible as a representation. For the converse see Sect. 6
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Proof. We have

^(zgu)\^m = ad(z^) o ρ\^m = ρg\^m,

therefore,

α " x o ad(zgu) o ocg\^{g- ^ = ρ \ ^ i g - l γ ) ,

that is

adK"H^BLto-'«)=βLte-^) •

Proof o/ Theorem 3.ί. Let Wo be a wedge that contains Sf and Ό the
antiautomorphism of si

implemented by the modular conjugation J o of &(W0); j 0 is associated with the
reflection r0 in the Minkowski space with respect to the edge of Wo. Choose a
unitary u0 that implements ρ on jo(jtf'(&")) = s^(r^'\ LetWDίf be another wedge
and j,r be as before; since g=ro-r is an element of the Euclidean group (any
element of the Euclidean group can be obtained as a product of reflections),

implements ρ on
Now

= ad(;o(ttj)) o adOΌ(z*)) \Λ(WonW)

= ^\iθ\Uθ))\0t{WonW) ~ Qwo\@(WonW) •>

where we have used that jo(z*) e @(ro&"nr&")' hence adOΌ(z*)) = id on St{Won W)

This shows that the ρw form a consistent family of endomorphisms (W a wedge,
W"D£f) thus defines a morphism ρ of si that, by definition, is a (weak) conjugate
of ρ. •

4. The Formula ρ=joρoj

We present here an explicit formula for the conjugate sector in the same context of
Sect. 3. In fact, we give a construction of a conjugate morphism that relates the
description of the particle-antiparticle symmetry by the PCT antiunitary in a
Wightman theory [35] with the DHR conjugation of sectors [15] in algebraic
quantum field theory.

Theorem 4.1. Let ρ be a morphism localized in a space-like cone and covariant with
respect to the Euclidean group. A representative of the weak conjugate sector is given
by

Q=J°QaJ,
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where j is the anti-automorphism of B(J^) implemented by the PCTantiunitary Θ

associated with any given coordinate system.

Proof. Since ρ is rotation covariant, it is enough to show that

Q=Jo°Q°Jθ9

where j 0 = J J is implemented by the modular conjugation J associated to 0ί{W)
and W is a wedge that contains the localization region Sf of ρ.

To simplify the argument we shall use the time-slice axiom, that can be avoided
by a more refined argument (see Sect. 8). Note that the conjugate morphism ρ
constructed in the proof of Theorem 3.1 is localized in y , hence, by additivity
and the time-slice axiom, it is determined by

"adOo(ii*)) on

id on

where u is a unitary that implements ρ on jtf(r£f') and r is the reflection around the
edge of W.

On the other hand, j 0 ° ρ °Jo *s localized in rίf' and is determined by

. fid on
7 o ° ρ θ J o ~ladOΌ(κ)) on

Therefore,

that shows j 0 ° ρ % t 0 be equivalent to ρ. •

We note that other wedges Wgive as representatives of the conjugate sector the
morphisms j w <> ρ°jw, where j w is the antiautomorphism of si associated with the
modular conjugation of the algebra 01{W\ The morphisms j w °Q°jw

 a r e unitarily
equivalent iff the morphism ρ is Euclidean covariant.

Let r be the symmetry r(x)=— x of the Minkowski space, and 9 the
automorphism of the Poincare group P\. given by

Given a unitary representation U of P\ one obtains a new representation
U° = Uo$oϊ P\.

The following corollary is a stronger form of results in [3, 15].

Corollary 4.2. Let ρ be a Poincare covariant morphism and Uρ the corresponding
unitary implementation of P\.. The conjugate morphism is also Poincare covariant
and UQ is equivalent to the conjugate representation of UQ9 in fact,

where Θ is the PCTantiunitary.
In particular, UQ and U^ have the same spectrum.
A similar conclusion holds if P\ is replaced by the Euclidean or the conformal

group.
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Proof. We have

hence

where ρj=j°ρ°j and so on. Now

therefore,

as desired. •

5. Regular Nets, Simple Subfactors and Covariance

In this section we shall show that, under a certain regularity property, every DHR
sector (with finite statistics, with a global conjugate) is Poincare covariant.

We begin to explain our assumptions here. Let Θt (i = 1,..., 4) be the regions of
the Minkowski space JR.d determined by having projections in the ao — a1 plane as
in the next figure

and the remaining coordinates free. In particular, &γ and &4 are wedge regions and
# 2 , 0 3 are cylinders that projects onto double cones in the ao — a1 plane.

We shall say that the net stf{Θ) is regular if the C*-algebra associated with the
union of the Θ{ is irreducible, i.e.

for any region %> = \]Θi as in the figure.
Notice that the analogous property with 3 regions would follow by Haag

duality and the factoriality of the von Neumann algebra of a double cone in two
space-time dimensions [a factor and its commutant generate 5(jf)].

Nets associated with free fields, hence with locally Fock fields in two
dimensions, are regular (cf. e.g. the explicit calculation in [21, Appendix]) and we
have no examples of a non-regular net that fulfills Haag duality.

We shortly digress now to recall the main features of simple subfactors [29]. Let
M be a factor; a subfactor N of M is simple if the identity correspondence of M
restricts to an irreducible N — N correspondence, in other words

where J is any modular conjugation of M.
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If M' is a simple subfactor of N' we say that N is a cosίmple subfactor of M. A
simple subfactor N of M determines the automorphisms of M, hence if N is a
cosimple subfactor of M, JV has trivial normalizer in M,

u unitary of M, uNu* = JV => w e N.

This is the property relevant to our situation.

Lemma 5.1. Let sί{Θ) be a regular net and WίCWbe an inclusion of wedge regions,
where W1 and W have positive distance. Then 0t{W^) is a cosimple subfactor of

), with Θ =

Proof We have to show that fflψ) v M{W) is a simple subfactor oϊ@(WJ or, by
essential duality, that 8(Θ)v3l(W') is a simple subfactor of 3t(W[).

By the Bisognano-Wichmann theorem the modular conjugation J of^WJ is
associated to a reflection of W± onto W[ mapping Θ, Pronto regions &0, Wo. With
N = M(0)vM(W) we have to show that

N v JNJ = M{Θ) v 9ί(W) v

is irreducible, that is true by the regularity assumption. •

In the following theorem we shall make use of the time-slice axiom.

Theorem 5.2. Let stf{&) be a regular net and [ρ] a sector with finite statistics. We
have:
a) [ρ] is covariant under the Poincarέ group with positive energy.
b) // [ρ] is localized in a double cone and the vacuum sector is conformally
covariant, then [ρ] is covariant under the proper conformal group.

Proof To prove part a) we may assume that ρ is localized in a proper subwedge Wo

of a wedge W. If at, t e R, are the automorphisms oϊ0l(W) implemented by the pure
Lorentz transformation leaving W invariant (boosts), then all the morphisms

Qt = atoQo(x_t, \t\<\,

are localized in a proper subwedge W1 of W. With Θ = W[nW, in particular, ρt acts
identically on @1{Θ), | ί |< l .

As in the proof of Theorem 7.1, finite statistics gives rise, by Bisognano-
Wichmann theorem and Connes-Radon-Nikodym theorem, to a unitary zt e &(W)
with

ρt(x) = ztρ(x)z*, ίeR, xe@{W). (5.1)
In particular,

\t\<ί.

We shall show that zt normalizes ^(W^, \t\<l, thus, by Lemma 5.1, zt e ̂ ( WJ and
the time-slice axiom will entail that (5.1) holds for all xejtf, namely ρ is αf-co-
variant. Since the boosts with respect to all wedge regions generate the Poincare
group we conclude the proof. To show that zt normalizes 0ί{W^) note first that

because ρt is localized in W1. On the other hand, ̂ (W^) is generated by ρ(^(P^))
and the Jones projection e [24] we use here that ρ has finite statistics, heηce finite
index [26]. But e = vv*, where υ is an isometry that intertwines ρoρ and the
identity.
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Since ρ is globally defined and can be chosen localized in Wo, e belongs to
by essential duality. By the same reasoning vt = ztvz* intertwines ρt°ρt and
the identity and the Jones projection et = υtvf for Qt(β(W^)) belongs to 0t{W^),
| ί | < l ; since et = ztez*, zt normalizes ^(W^.

Finally, the spectrum condition is obtained in the finite statistics case by the
original argument in [15].

b) may be obtained as is in a) by using the geometrical description of the
modular group of 0ί(β) when & is a double cone [21]. The corresponding one-
parameter transformation groups generate in fact the connected component of the
identity of the conformal group, i.e. the proper conformal group. •

Corollary 5.3. Let sf{G) be a regular net. A sector [ρ] has finite statistics iff there
exists a DHR conjugate [ρ].

Proof If ρ exists then ρ has finite statistics [27]. Conversely, if ρ has finite statistics,
ρ is Poincare covariant by Theorem 5.2, hence a DHR conjugate exists
[15,18]. D

6. Split Property, Duality and Covariance

In this section we assume the split property for space-like cones and the duality
property for causally complete contractible regions. Under these general hypo-
theses the arguments in Sect. 3 can be reversed and the results in Sect. 5 hold in a
more stringent form without the regularity condition.

More explicitly let W be a wedge region and Sf a space-like cone properly
contained in W (namely the closure of £f is contained in the interior of W). We
shall assume the net si to have the split property: 3t(£f)C0ί{W) is a split inclusion
of von Neumann algebras [12] for each Sf and W as above, namely there exists a
type / factor F such that

@(£f)CFc@(W). (6.1)

This is an analogue of the split property for double cones (see [10,12]). It holds in
the free massive field, but cannot occur in a dilation invariant theory [13].

We further assume that duality holds:

Λί«γ = #(«") (6.2)

for all contractible regions ί? such that <€" = V (see [1] for the proof of this property
in the free field case). Indeed, we need to assume (6.2) only for regions # of the form
%>=£f?tc\W. This implies essential duality (taking 9> empty) and duality for space-
like cones (using the split property). The result of the following lemma contains the
only consequence of the duality and the split property we will use in this section.

Lemma 6.1. Let Sf> W be as above. Then

Proof By duality, @(%)f = @(&?vWf) = @(&?)v01l(Wf) and, by split property,
@(y)v@(W) is naturally isomorphic to the W* tensor
Then the relative commutant of @(W) in #(#') is 9t{?\ D
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Lemma 6.2. Let ρ and ρ' be morphisms localized in a space-like cone ίf properly
contained in the wedge W. If the endomorphisms ρw and ρ'w defined in Sect. 3 are
equivalent, then ρ and ρ' are unitarily equivalent as representations.

Proof. By the hypotheses there exists ue$(W) such that 2iάuoρw = ρ'w. By the
localization of ρ and ρ' we see that adw acts as the identity on @t(£f'nW)9 hence,
using Lemma 6.1, ue@(£f'nW)'ng$(W) = &(&>). Then adwoρ and ρ' coincide on

and on s/(W)9 hence on the quasilocal C*-algebra s/. •

Proposition 6.3. If ρ is a morphism of s/0, then
a) ρ is irreducible (Eq. (3.3),) iff it is irreducible as a representation of s/.
b) A morphism ρί is locally equivalent to ρ iff it is unitarily equivalent to ρ as a
representation.
c) If ρ has finite statistics, ρ is a weak conjugate iff it is a DHR conjugate of ρ.

Proof, a) Let ρ be an irreducible representation of s/9 choose a wedge W that
properly contains the localization space-like cone ίf and take xeρw(<ffl(W))'
n&(W). As in Lemma 6.2 x belongs to 9t{£f). Now take any wedge W1DW and
consider the morphism ρWί. We have:

WJ v 0t{W)Y = St(?) v Λ{WJ v ρw{β(W)Ί,

therefore, xsρw^0t{W^j. By the arbitrariness of Wl9 xeρ(s/)\ hence it is a mul-
tiple of the identity. The converse is obvious.
b) If ρ and ρι are locally equivalent and ρ is localized in S?9 we find a morphism
ρ' unitarily equivalent to ρx and localized in Sf such that for each wedge W
containing Sf ρw is equivalent to ρ'w. By Lemma 6.2 adwoρ = ρ/. The reverse
implication is immediate as before.
c) If ρ is a weak conjugate of ρ, both localized in y , and W is a wedge properly
containing Sf9 we get veffl{W) satisfying ρ o ρ(χ)v = vx for all x in 0t{W). As above, v
turns out to be localized in 01(9*), hence the previous equation holds for each x
ins/. D

Theorem 6.4. Let ρ be an irreducible morphism localized in a space-like cone £f. If
the split and duality properties (6.1) and (6.2) hold, the following are equivalent:
(i) ρ is covariant under the Euclidean group.

(ii) ρ has a weak conjugate ρ localized in £f.
Moreover, if ρ has finite statistics, ρ is Poincarέ covariant.

Proof (i) => (ii) is shown in Theorem 3.1.
(ii) => (i). If ρ is a weak conjugate of ρ and W a wedge that properly con-
tains £f9 we take U implementing ρ on Jw0t{Sf')Jw and consider the morphism
Q' = aά(JwU*Jw)ojwoQojw. Since ρ'w is equivalent to ρw and ρf is unitarily
equivalent to j w o ρojw, by Lemma 6.2 ρ is unitarily equivalent to j w ° ρ°jw. This
gives us the equivalence of all the morphisms jw°Q°Jw if WDέf, hence the
equivalence of ρ and j W ί ojWi o ρojWi ojWι when Wt and W2 properly contain ίf.
Since any ocg with g in a suitable neighbourhood of the identity of the Euclidean
group can be written as j W ί o j W i with W1 and W2 properly containing £f9 we get the
covariance of ρ.

If ρ has finite statistics it is easy to see that the proof of Theorem 5.2 a) works
substituting regularity with the result of Lemma 6.1. •
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7. Theories with Countably Many Sectors

In this section we prove the covariance of the superselection sectors with finite
statistics in the case when the family of sectors is countable. We use without further
mention the general assumptions stated in Sect. 3, but neither the regularity
condition nor assumptions in Sect. 6 are needed here.

Theorem 7.1. // Sect(j/) is countable, then for any [ρ]eSect(j/) with finite
statistics, the morphism ρ is Poincarέ covarίant with spectrum condition.

Proof We may assume that ρ is localized in the wedge region W. Let αf, t eR, be
the one parameter group of automorphisms of si implemented by V(2πt), where V
is the unitary representation of the boosts leaving W invariant. The restriction of α
to srf{W) extends to the modular group σWo of the von Neumann algebra
Jί = m{W) [2].

Since we have

Ind(ρ(.Λr),Ufr) = d(ρ)2 <oo,

there exists a normal faithful conditional expectation eoίJί onto Q(JΓ). Let φ be a
normal faithful state of M leaving ε invariant, namely φ = φ0 ε for some faithful
φoeρ(Jf)t. Then σφ leaves ρ(Ji) globally invariant and restricts to σφo on ρ(Jί).
We have

namely

ρoσ<p'β = σ<Poρ,

Let

ut = (Dφ: Dωo)t, υt = (Dφ ρ: Dωo)t e M

be the Connes-Radon-Nikodym cocycles [11], then

σr =
so that

namely

ztρ(x)z* = α ί oρo α _ ί (χ) (7.1)

for all x e Jί with zt = ufρ(vt) e M.
We have to show that

cctoρocc_t = ztρ( )z_t on s/;

to this end note that ρt = octoρooc_t is a representative of a sector for every
and the group

is dense in R since otherwise {[ρf], teJR] would be uncountable.
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Let wteB(j^0) the unitary such that

ρt = wtρ(')wf, te9. (7.2)

Since ρ is localized in a proper subwedge of W, there exists a proper subwedge Wo

of W such that all ρt are localized in Wo for \t\ < 1. It follows by essential duality that

By (7.1) and (7.2) we have that

wt = ctzt, ,

with cteρ{Jί)r\Jί that is a finite dimensional algebra. Given any te( — 1,1) let
tne@,tn-*t; since ρ(Jί)'r\Jί is finite dimensional we may assume that c ί n is norm
convergent; since ztn-*zt strongly, w, is strongly convergent to a unitary wί0.
It follows that

ρ ί 0(x)= \imρt{x) = \im wtρ{x)w*

Namely ί0

 e ^ a n d ^ = R . By composing different boosts we may generate all the
Poincare group, hence ρ is Poincare covariant. •

Corollary 7.2. In Theorem 7.1 assume further that the vacuum sector ίs conformally
covariant. Then ρ is covariant with respect to the proper conformal group.

Proof. Immediate by the argument in the proof of Theorem 5.2. •

8. Covariance and Conjugates for Conformal Theories on the Circle

As in [6,17] we consider the local algebras on S 1 associated with chiral fields of
two-dimensional conformal theories. Let J / : / - » J / ( / ) be a map from proper
intervals / (i.e. / and its complement have non-empty interior) of S1 to von
Neumann algebras J / ( J ) on a Hubert space f̂0, together with a unitary, positive
energy4 representation of the Mόbius group M o on J^o leaving the vacuum vector
invariant. They should satisfy the following properties:

(i)

(ϋ)
(iii)

ICJ => s

InJ = φ =>

U(g)s/(I)U(g)* = &

^(I)C^(J) (isotony),

s/(I)Cs/{Tf (locality),

f(gl), geM0 (covariance).

We will assume local algebras to be generated by Wightman fields with
Bisognano-Wichmann hypotheses [2]. Hence, if / is a proper interval, the modular
automorphism group of s/(I) with respect to the vacuum corresponds to a one
parameter subgroup of M o , the modular conjugation corresponds to a reflection

The energy operator is defined here as the generator of the rotation subgroup
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and, by t he Tomita commutation theorem, Haag duality holds:

^(Γ) = jtf(I)'5, (8.1)

where Γ denotes the interior of the complement of /.
A positive energy covariant representation of si is a family of representations

π1 of the algebras J/(7) on a Hubert space J^κ9 and a unitary positive energy
representation Uπ of the covering group M of Mo on J^π, with the following
properties:

(i) JU => π%(J) = πJ (isotony),
(o.zj

(ii) ad UgθπJ = πύI ° ad Uύ (co variance),

where geM-+geM0 is the covering homomorphism. Covariance and positive
energy imply [6] that π1 is unitarily equivalent to the identity (vacuum
representation π0) if / is a proper interval, hence we choose a proper interval Io and
identify J f0 and Jfπ is such a way that π1'0 = π o |^ ( Γ o ). We will say that π is localized in
70. A local equivalence class of representations of si obeying (8.2) is a sector (see
Sect. 3).

To describe in a more conventional way the superselection structure, Freden-
hagen [17] has defined a global C*-algebra that plays the same role as the quasi-
local C*-algebra on the Minkowski space. Since proper intervals of S1 do not form
a direct set, si could not be defined as an inductive limit. We digress here to give an
equivalent definition of such an algebra introducing the notion of pre-cosheaf [5].
A pre-cosheaf 8ft of C*-algebras on S1 is a covariant functor between the category
of open subsets of S1 with inclusions and the category of C*-algebras. Namely 8S is
a map

associating a C*-algebra with each open subset of S1 and homomorphisms

where IcJ.

If 8ft were defined only on intervals (or proper intervals) we would say that 8ft is a
pre-cosheaf on intervals (or proper intervals). A cosheaf map φ between the pre-
cosheaves 8ft and ^ is a family of morphisms φu I open subset of S1, such that if
ICJ

l l (8.3)
*(/) ΛM <e(j)

is a commuting diagram.

5 As a consequence of the Bisognano-Wichmann theorem, in a conformal theory of any space-
time dimension d, the modular conjugation of 0t(&) is associated with the ray inversion map,
where G is a (unital) double cone [21]. As pointed out recently in [9], formula (8.1) does not
hold in general on the cut circle Sx\{pί} = R . This phenomenon is analogous to the case of the
free massless field, where time-like duality (if d is even and twisted time-like duality if d is odd)
holds: j^(Θ)' = ̂ /(Θt), with Θ% the time-like complement of Θ, but stψ*) is not defined by
additivity (d>2) but by fields smeared on testfunctions not vanishing at infinity [21]
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Now the map /-><$/(/) given by the local observable algebras is a pre-cosheaf on
the proper open intervals of S^ if the εftJ are the inclusions. We look for an
extension of si to a pre-cosheaf sit on S1, that is universal. Namely, if 36 is any other
extension of si on S1 there exists a unique cosheaf map η: ^ - > ^ on the intervals
[i.e. (8.3) holds if I and J are intervals], such that

is a commutative diagram, where φ and i/̂ are the cosheaf embeddings of si into si
and 0H. The universal C*-algebra s/0 = s&(S1) is unique up to isomorphisms. To
construct sb let Ψ be the direct sum of all cosheaf maps ψ on proper intervals
from si to pre-cosheaves 0& on S1 extending si as above. Then Ψ maps si (I) into
the direct sum of all the algebras J*(J). The C*-algebra s/0 is the C*-subalgebra
generated by εItSi(Ψ(si(I)) as / varies in the proper intervals. Since the vacuum
representation provides an extension to a pre-sheaf on S1 by additivity, the si (I)
are faithfully embedded in s/0

 a n d we identify the local subalgebras with their
image in si0.

It follows from the definition that representations of the J/(/)'S extend uniquely
to representations of s#0, that is the universality property of Fredenhagen. The
cosheaf maps ad Ug give therefore rise to an action g-»αff of Mo on the universal
algebra sίΛ.

We denote by ά the action of M on si defined by άg = ccg. In the following
our analysis slightly differs from that in [17] in the way be build up an endomor-
phism of si describing a representation π. We need a canonical construction
that we obtain by the covariance of π. We shall use the correspondence between
localized endomorphisms and localized cocycles (Roberts [34]) and describe
endomorphisms and their conjugates in terms of cocycles (in particular, in co-
homology). The map

g V g = υ^Jl-, (8.4)

is a cocycle with respect to the action geM-»adl^, that is

By the covariance and the localization of π we get

π*'° = ad U*β o π'° o ad l / * U , b ) = ad V*

Again by the localization of π, the preceding equation implies

VgG j/(/oug/o) if Iovglo is a proper interval.

We will denote by % the open set in M defined by

^ = {geM//oug/o is a proper interval}.

Now we will define a ά-cocycle in si. If g e °li, since π 0 is locally faithful, there exists
a unique wge fl/(/oug/o) such that
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In particular, if g, h, g h e tfί, Eq. (8.4) becomes

^•Λ = ά , ( w > Γ (8.5)

Proposition 8.2. The map geffl^Wg extends to a unitary ά-cocycle on M with
values in s/0 and

π o « ) = P ; , VgeM.

Proof. The group generated by ^l is open and closed, hence, by connectedness,
coincides with M. Therefore, each geM can be written as

g Π& &
i=ί

If we define in st0 the unitary ^g = ̂ gi'0igi(wg2)...agi_gri_1{wgn), a standard
deformation argument shows that the definition does not depend on the choice of
the gπ's, by the simple connectedness. The cocycle property follows from the
definition of w. Π

Notice that wg is an ά-cocycle localized in Jo, i.e.

(i) w*.* = i *( w *K> g,heM,

(π) wE^(/ug/) ( 8 ' 6 )

where <stfd(I) = jtf(Γ)' and / o ug/ o is contained in a proper interval. To assign a
localized ά-cocycle is equivalent to assign an endomorphism of J / 0 localized in 70,
covariant with respect to the action ά (cf. [34]). Given w as in (8.6), the
corresponding endomorphism ρ is determined by

Since any proper interval of S1 can be written as g/'o for a suitable g e M and the
homomorphisms ρ\^{1) form a consistent family (coincide on intersections), the
endomorphisms ρ is well defined on J / 0 by the universal property. By definition, we
get

) = ad Vg ° πo\^igΓo) = π 0 ° ad wg\^(gΓo) = π 0 °

hence

π = π 0 oρ o n i ' , (8.7)

namely the representation π is re-obtained by the endomorphism ρ. The co-
variance of π is thus encoded in the cocycle properties of wg, and can be written

ρ^ά^oρoά^.^ geM. (8.8)

Now we are able to state the analogue of Theorems 3.1 and 3.3.

Theorem 8.3. To each covariant endomorphism ρ localized in a proper interval J o ,
there corresponds a weak conjugate endomorphism ρ localized in J o , namely ρ\^(I)

and ρ|^ ( / ) are conjugate endomorphisms for each proper interval
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The weak conjugate sector [ρ] is unique up to local equivalence.
An explicit formula for a representative ρ1 of [ρ] is

where I is any proper interval of S 1 and jj is the associated reflection
antiautomorphism.

To prove the theorem we will construct a family of endomorphisms in terms of
a family of ά-cocycles. Then we will show that they belong to the same sector and
are conjugate to ρ in the appropriate sense. We will call reflection a diffeomor-
phism r of S1 that is Mobius conjugate to the diffeomorphism z^>z~ι. Notice that
r2 = id and r φMo. It is easy to see that each reflection leaves two points invariant,
and it is determined by them. The conjugation by a reflection,

is an automorphism of Mo, and extends uniquely to an automorphism of the
covering group M. We will still use the notation r g r, if g e M, to denote the
action of this automorphism. By the Bisognano-Wichmann theorem and [21] the
reflection rι associated to an interval /, i.e. the reflection such that r/ =/', acts on
j / 0 by the antiautomorphism jr=jι implemented by the modular conjugation of
the algebra <stf(I) in the vacuum representation. In particular,

) = s/(r I),

Proof We will prove Theorem 8.3 in three steps,

a) If h e M and r is a reflection, the map

is a cocycle localized in h rlo which corresponds to the endomorphism
Qh'r = άhoJr°QoJro<Xh-i'

In fact, we only need to prove that Eq. (8.5) holds:

b) All endomorphisms ρKr are in the same sector:

If g, h e M and r, s are reflections,

c) ρh r is conjugate to ρ for each heM and for each reflection r:

By a) and b) and using Lemma 2.1, it is sufficient to show that for each region
/D/ o there exists a unitary u implementing ρ on / and a pair (ή,r) such that
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Let r be the reflection associated with / and then choose an h e M with h-rlo = lo.
Hence

r\^(r h rΓ0)
 = Q\^(r-h rΓ0)

 = Q\^(rΓo) '

and since rΓ0Dl, we can choose u = w?.h.r. Moreover, using the identities (7.5)
and (8.7),

therefore,

Again since rΓ0Dl, we get

adji(tι*)L(/) = ρ* Γ L ( J ) . D

Reversing the above arguments, the results of Sects. 5 and 7 extend, mutatis
mutandis, to obtain the automatic Mόbius covariance of sectors in the above
setting. Because the treatment is analogous, we omit the details.

The analysis in this section suggests to consider a cosheaf structure [5]
associated with the local algebras. This is possible, but goes beyond the purpose
of this paper. Instead, we shall see in the next section the role played by the
sheaf structure.

9. Covariance and Sheaves of von Neumann Algebras

In this section we give a first insight on a geometrical interpretation of the
covariance of superselection sectors. We shall see that local algebras have a natural
structure of sheaf of von Neumann algebras and covariance is equivalent to the
fact that superselection sectors are sheaf maps, modulo suitable inner
automorphisms.

Roberts [33] has long considered a sheaf structure associated with the
local von Neumann algebras. Although his structure is closely related to ours it
differs both because his von Neumann algebras (or the commutants) in general do
not coincide with ours, and, more significantly, restriction maps are different.

As a consequence we obtain an abstract covariance result that contains for
example the covariance with respect to further geometrical transformations in
conformal theories.

Let now X be a topological space. A presheaf of von Neumann algebras on X is
a map ΘcX^»stf{Θ) from open subsets Θ of X to von Neumann algebras si{G)
together with a homomorphism γ^tΘ of stφ) into s/(Θ) for any inclusion of open
sets ΘcΘ that satisfy:

a) 7φ29Θιyφ3,Θ2 = 7Θ3,Θ1

 i f &iC(92CΘ3,

b) y<pf0 = id.

The maps γ^tΘ are called restrictions and if xe<stf(Θ) we may also write
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The presheaf si is a sheaf if given an open covering Θ=[)Θi and elements
/i&i) with

there exists a unique x e si(&) with

We shall consider the case where X is the Minkowski space. For any proper open
set G, namely an open non-empty set with non-empty space-like complement &\
the vacuum vector is cyclic and separating for si{G) by the Reeh-Schlieder
theorem, and the associated canonical endomorphism

(9.1)

provides a natural restriction map6 for any inclusion of proper sets GcG.
We shall speak of sheaves on a family of open sets if the above properties are

satisfied for open sets in this family.
Next proposition shows that si gives rise to a sheaf on proper open sets.

Proposition 9.1. Let si be an additive net of von Neumann algebras on the
Minkowski space. If the restriction maps

yφy.si{G)-+si{G)

are the canonical endomorphisms of si(G)^>si{G) with respect to the vacuum, then si
is a sheaf of von Neumann algebras on proper open sets.

Proof. The chain rule follows from the canonicity of the endomorphisms. To check
the sheaf property let G=\JGh where the Gt are proper open sets and x{esi{ΰ^

i

W ί t h v I - v I
xMinΘj — χj\ΘinΘj

With JΘ the modular conjugation of si(G) with respect to the vacuum, let

yi^JΘJΘixiJφiJΘeB{3e)9

then

hyih = hXihi\ (9.2)

By assumptions we have

namely

therefore, it follows by (9.2) that

6 If there is no vacuum vector the natural restriction maps are the classes of canonical endo-
morphisms (9.1) modulo inner automorphisms of stf{Θ) [29]
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and this means that x = y( does not depend on i. Now

JφxJΘ=JeytJe = JΘiXiJΘ. e

hence
JΘxJΘ E Πsf(Oίf = (V « W

°Γ xes/(O)

andjc|φ| = x£. D

Let s/u s/2 be sheaves of von Neumann algebras. A sheaf map ρ:s/ι-+s/2isa.
collection of homomorphism {ρΘ} of s/x(Θ) into stf2(&) associated to open sets
ΘcX such that

where the y(ΐ) are the restriction maps of s/t. We shall say that ρ is a sheaf map
modulo inners if for 0 C Θ there exists a unitary u e sJ2(Θ) (depending on Θ, Θ) such
that

One of the implications in the next proposition needs the split and duality
assumptions in Sect. 6.

Proposition 9.2. Let si be a sheaf of von Neumann algebras on the Mίnkowski space
as above and ρ a morphism localized in a space-like cone Sf. Then ρ is translation
covariant iff ρ is a sheaf map modulo ίnners on the family of the wedge regions

If the vacuum sector is conformally covariant and ρ is covariant with respect to
dilatations, then ρ is a sheaf map modulo inners with respect to double cones Θ as soon
as ρ is localized in Θ.

Proof. The restriction map associated with an inclusion of wedge regions has the
geometrical meaning of a translation (see Sect. 10). If ρ is translation covariant it
follows by Theorem 2.2 and the comments before Lemma 3.2 that ρ is a sheaf map
modulo inners on wedges W~2>£f. The converse is true as in Sect. 6, by using the
split property for space-like cones and the duality for contractible regions.

The case of a conformally invariant theory is analyzed similarly making use of
the geometric interpretation as dilatations of the restriction maps associated with
inclusions of double cones [25]. •

Proposition 9.3. If si is a sheaf as above and ρ is localized in a double cone and has
finite statistics then ρ is a sheaf map modulo inners for all double cones ΘC& with ρ
localized in Θ.

Proof It follows from the analysis in Sect. 2. •

10. Translation Covariance Within the Algebraic Setting

A crucial tool in this paper was the Bisognano-Wichmann theorem, so far
established within the setting of Wightman fields. Borchers [4] has recently
obtained a partial converse to this theorem, that will suffice to prove the automatic
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translation covariance of superselection sectors in the Haag-Kastler framework.
In this section we assume the vacuum sector to be only translation co variant, with
positive energy-momentum; denote by V and τ the corresponding unitary
translation group and action on local algebras. We fix the wedge
W={(aθ9a)eΈLd/\ao\<a1}9 so that by Borchers theorem

JV{a)J=V(-a), αelRd,

where J is the vacuum modular conjugation of 01{W) and we put
— a = ( — α0, — aua2,a3,...). Let a be a space-like vector with ^ = 0, i>\9 so that
W-! = a + We W. We denote M = 0l{W) and N = @t{W_ x). As a corollary one has:

Proposition 10.1. The canonical endomorphίsm y:M-+N (with respect to the
vacuum) is equal to the action of τ2a on M.

Proof. We have JN= V(a)JMV(—a\ hence

Γ = JNJM=V(a)JMV(-a)JM=V(2a). D

Thus the geometrical interpretation of the canonical endomorphism is purely
algebraic.

We now assume that essential duality holds and the net s/ is regular in the
sense of Sect. 5. We consider an irreducible morphism ρ localized in a space-
like cone 6fc2a+W and have:

Theorem 10.2. // ρ has finite statistics, ρ is translation covariant.

Proof. There exists a DHR conjugate, hence a weak conjugate ρ, localized in W_ γ.
Let U be a unitary that implements ρ on M as in the proof of (i) o (v) in Theorem
2.2, so that formula (2.7) gives by Proposition 10.1

= ad (w)oy-1oρoy(};) = ad (w)oτ_2floρoτ2fl(3;) j yeMl9 (10.1)

for some unitary weM1 = <M(Wi), with Wi = W—a.
We now use the fact that ρ is localized in W_ l9 thus ad(£7) = ad(JM£7*JM) acts

identically on M(Θ) with & = WL1nW, therefore, UeStφ^ where Gγ = -Θ
= W'nW1. Therefore, since ρ acts identically on Θί + 2a, formula (10.1) shows that
w e 3t(Θ Jn^Wi). By the argument in the proof of Theorem 7.1, w normalizes
0l(W) and w belongs to 38(W) by the cosimple subfactor argument in Sect. 5. At this
point we see that formula (10.1) gives

ad U(y) = ad(w) o τ _ 2 α o ρ o Xla(y)

holds not only for all ye^W^, but also for all ye^t(Wf), hence for all y in the
quasi-local C*-algebra by additivity, and this proves the theorem as explained in
Sect. 3. •

11. A Look at Infinite Statistics

The analysis of this paper is to a large extent independent of any finite statistics
assumption. For a massive theory finite statistics follows automatically [16] and
there is no known example of (irreducible) superselection sector with infinite
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statistics. In this section we sketch a construction of the unbounded normal left
inverse of a morphism with infinite statistics that indicates that infinite statistics
could be associated with physically relevant situations.

Suppose that ρ is a morphism localized in a wedge region W, Poincare covariant
with infinite statistics. We show here how to construct an unbounded, locally
normal, left inverse φ of ρ, indeed, we shall have

where E: st-+ςfe&) *s a locally normal operator valued weight [20]. We construct
a normal operator valued weight Ew\ M^ρ(M\ where M = M(W); Poincare
covariance implies, as in Sect. 3, that as W varies Ew is a consistent family
determining E.

To construct E recall that the covariance with respect to the boost action
{αί? teΊR] leaving 0ί{W) stable is equivalent to

α,(ρ(α _ t(x))) = zfρ{x)zt, x e j / ,

where zt is a α-cocycle that belongs to M{W) by essential duality. By the Bisognano-
Wichmann theorem αJM is the modular group of M with respect to the vacuum
state ω0 (we rescale the boost parameter by 2π) hence, by a theorem of Connes
[11], there exists a normal faithful semifinite weight φ of M such that

σf(x) = ztoct(x)z*, xeM,

where σφ is the corresponding modular group, in fact, (Dφ:Dωo)t = zt.
We thus have

= zt(θLtoρocc_t(oct(χ)))z*

= ρ(oφc)),

in particular, σf leaves ρ(M) globally invariant and a theorem of Haagerup [20]
guarantees the existence of the operator valued weight M.

It is possible that infrared particles may be described within this formalism,
seemingly related to the concept of particle weight [8].

It is a natural problem to check whether conformal models on the circle provide
examples of sectors with infinite statistics, cf. for example the models in [9].

Appendix. Induction, Restriction and Covariance

In this supplement of Sect. 2 we outline an interpretation of the covariance by the
notion of induced representation and correspondences. The concept of induced
representation was originated by Frobenius in the context of finite groups and was
generalized by Wigner and Mackey to general locally compact groups; it was
extended to the setting of bimodules by Rieffel; we refer to the book of Fell and
Doran [Al] for a general treatment of the subject. A generalization of this notion
is natural in the framework of correspondences and was considered in the
J/i-subfactor theory [A2].
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Let M be a von Neumann algebra, that we may assume to be properly infinite
(after tensoring by a type 1^ factor). We recall that sectors of M and M — M
correspondences (modulo unitary equivalence) can be identified by an argument
of Connes, see [27].

There are, however, two restriction operations: if JVCM is a (properly infinite)
von Neumann subalgebra and ρ e End(M), then [ρ] e Sect(M) can be restricted to
JV is a sector (namely one restricts the associated correspondence). Of course, this
sector restriction is only defined up to inner automorphisms of JV. It is given by

where y:M^N is a canonical endomorphism. However, if ρeEnd(M) and
ρ(JV)c JV, then ρ can be restricted to an endomorphism of JV in the usual way; we
call this operation map restriction.

liηe End(JV) we may induce η to a sector of M. The sector induction is given by

Yet, if possible, we can extend η to an endomorphism of M as a map; we refer to
this operation as map extension. The comparison of map restriction and extension
with sector restriction and induction is the content of the abstract covariance.
Indeed, denote by End (JV,M) the endomorphisms of M that map JV into JV;
Theorem 2.2 shows that the endomorphisms ρ e End(JV, M) that admit a coherent
conjugate are the ones such that the following diagram commutes:

ρeEnd(M1)
map. exl.yS N^ s e c t . rest.

ρ e End(iV, M) RJJ'(§) * IJffeU) e End(iV, M),

where the map extension ^6End(M t) of ρ is unique as a sector and ρ i ^ ρ 2 in
End(JV,M) means that there exists a unitary ueN with ρi=ad(w)oρ2.

Suppose now G is a locally compact group and H c G a closed subgroup, thus
N=VN(H) is contained in M=VN(G) (the von Neumann algebra of the left
regular representation). Following Connes a representation π of G on the Hubert
space Kπ determines a M—M correspondence Jtifπ on L2(G)®Kπ\ G acts on the
left by /(g)®π(g) and to the right by r(g)(g)id (geG), where I and r are the left and
right regular representations of G (/ is quasi-equivalent to Z(χ)π). Call the associated
sector ΘπeSect(M). An analogue statement is, of course, true for JV: a represen-
tation σ of H determines a sector (9σeSect(JV). If σ = π\H one may show that

and if π is the induction of σ to π

Therefore, sector induction and restriction extends the notion of induction and
restriction for group representation.
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Suppose now that N is isomorphic to M (this is possible after tensoring by a

suitable von Neumann algebra [31]); namely N = α(M) for some α e End(M). Then

we may identify M with N, thus Sect(M) with Sect (AT). The sector restriction

becomes a map R: Sect (M)-> Sect (M). If ρeEnd(M) we have

R(ρ) = α o ρ o α,

in fact, R(ρ) = y o ρ | N ^ α ~ 1 oyoρoα = α~1 oαoαoρoα = αoρoα, where ~ denotes
the above identification and y = αoα by [27]. Analogously, the induction is

I(ρ) = α o ρ o α ?

namely induction and restriction are maps of the same type.

In particular one may show the Frobenius reciprocity theorem, see [A 2] for

implicit statements. If M is a factor and ρ,ηeEnd(M) are irreducible with finite

index, then α o ρ o α > ^ (with multiplicity n) iff α o ^ o α > ρ (with multiplicity n),

provided that α is a direct sum of sectors with finite index.
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