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Abstract. We apply the general framework of the continuous renormalization
group, whose significance for perturbative quantum field theories was recognized
by Polchinski, to investigate by new and mathematically simple methods the
perturbative renormalization of composite operators. In this paper we demonstrate
the perturbative renormalizability of the Green functions of the Euclidean massive
Φ% theory with one insertion of a (possibly oversubtracted, in the BPHZ language)
composite operator. Moreover we show that our method admits an easy proof of
the Zimmermann identities and of the Lowenstein rule.

1. Introduction

In the framework of the BPHZ renormalization theory the first systematic defini-
tion and study of renormalized composite operators has been performed by
Zimmermann [1, 2, 3]. He introduced a special set of composite operators which
can be interpreted as generalized Wick normal products and which ever since have
been called Zimmermann normal products [1, 2]. One of the remarkable features
of these Zimmermann normal products is that they are a convenient tool to prove
the validity of Wilson's short distance expansion in renormalized perturbation
theory [1, 3]. Moreover, Zimmermann showed [1, 2] that these normal products
obey a set of linear relations, the Zimmermann identities, which turned out to be
especially well suited for analyzing some of the main structural properties of
perturbative Green functions; the importance of the Zimmermann identities can
hardly be overemphasized. For instance, Lowenstein and his collaborators (mostly)
have employed Zimmermann's normal product techniques and identities in con-
junction with Lowenstein's rule [4] (another identity which is obeyed by the
Zimmermann normal products) to construct renormalized symmetry generators
(e.g. an energy momentum tensor for Φ% [4]), to search for broken symmetries (e.g.
asymptotic scale invariance in Φ% [4, 5, 6] and in the 2-d massive Thirring
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model [7], or asymptotic restoration of internal symmetries [4, 5]) and to investi-
gate gauge invariance and (anomalous) Ward identities [7, 8] (e.g. also the axial
vector current anomaly in QED [9]). Furthermore, similar methods lead, via the
renormalized action principle [5], to a particularly elegant proof of the Callan-
Symanzik and the renormalization group equations [5]. A review as well as many
more references on this subject can be found in [9, 10].

In recent years renormalization group ideas from statistical mechanics have
started to influence (and in particular suggested the use of new methods in)
perturbative quantum field theory. A discretized form of the renormalization group
has been adapted to prove the perturbative renormalizability and local Borel
summability of non-gauge theories [11] as well as of QED [12-14]. However, the
renormalization of composite operators has not been carried out in this formalism.

On the other hand, also a continuous version of the renormalization group has
been utilized to study problems in perturbative quantum field theory. Namely,
elaborating on Polchinski's seminal work [15] we have been able to cast his
continuous renormalization group or, equivalently, differential flow equation
method in such a shape that a rigorous and simple proof of the perturbative
renormalizability of the Euclidean massive Φ% [16] as well as an extension to the
Euclidean QED with a massive photon [17] has become possible. In our opinion
our method exhibits only a very low degree of mathematical complexity (in
particular it works without any reference to more or less involved combinatorics
like Zimmermann forests or Gallavotti-Nicolό trees) but nevertheless the proofs
are quite short; so we believe that it is probably preferable to BPHZ and, if one
does not care about the large order bounds, also to the GN method [11, 12]. *

In this paper we continue our work on the applications of the continuous
renormalization group method. We demonstrate that it can be used to control in
a rather simple way also the perturbative renormalization of composite operators.
One of the niceties of our approach is that an unexpectedly uncomplicated and
transparent proof of the Zimmermann identities and of the Lowenstein rule
emerges. In a subsequent publication [19] we will apply our method to investigate
Wilson's short distance expansion.

The basic definitions and notations of our method are not standard knowledge,
and the situation studied in this paper is much more general than the one in [16].
So we begin, in Sect. 2, with a detailed definition and analysis of some properties of
the various quantities which later on are seen to enter the differential flow equation
obeyed by the connected amputated Green functions (with none or one insertion of
a composite operator) of the Euclidean massive Φ%\ some overlap with [16] is
unavoidable, but note that in contrast to [16] we do not insist on the symmetry
φ \—> — φ. We derive the above mentioned differential flow equation and discuss
the renormalization conditions which are imposed on the connected amputated
Green functions (with or without one insertion).

In Sect. 3 we prove that for any renormalization conditions the Green functions
of the (possibly non Z2 -symmetric) Euclidean massive Φ%, with none or one
insertion of a composite operator, are perturbatively renormalizable.

1 For reasons of completeness let us also mention ref. [18] where a hybridization of the discrete
and of the continuous renormalization group methods is employed to prove the perturbative
renormalizability of the Euclidean massive Φ%. The techniques used are still more complicated
than ours, and it seems as if they are also not sufficient to yield the wanted large order bounds.
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Section 4 is devoted to the study of Zimmermann's normal products. Using the
fact that the differential flow equation for the Green functions with one insertion is
linear we readily realize that very general linear combinations of Green functions
with one insertion of arbitrary composite operators also obey the same (linear)
differential flow equation. It is trivial to check that a solution of this linear
differential flow equation vanishes if the boundary conditions are zero. Now, the
nontrivial boundary conditions on the Green functions with one insertion are
determined by the renormalization conditions. Combining this we arrive without
too much effort at our main conclusion (Theorem 8) that for quite general
renormalization conditions on the Green functions with one insertion there exist
linear relations among composite operators of equal or unequal dimensions. This
result might be called a generalized Zimmermann identity. In particular, it holds
true if we impose those renormalization conditions which define Zimmermann's
normal products, Np[ •], where the index "p" is not at all standard but is useful
for our purposes. Now, the Np[- •] are defined by renormalization conditions
which in principle look natural but which are imposed on the proper functions
containing one insertion of the corresponding composite operator (thus our index
"p"). This is natural for BPHZ but not for us, because all we ever need to "see" in
our approach are the connected Green functions, i.e. we do not have to care about
the substructure of the connected Feynman diagrams. So for us it is more natural
to define the new Zimmermann normal products Nc[ •], defined by the same
natural renormalization conditions but imposed on the connected amputated
Green functions with one insertion. Theorem 8 applies to the Nc[ •] as well, and
it is easy to compute the coefficients in the Zimmermann identities obeyed by the
Nc[ •]. Moreover Theorem 8 can be used to show that JVC[ •] may be written as
a (in general nontrivial) linear combination of the standard normal products
Np[' •]. We then apply the same simple scheme (i.e./solves the linear differential
flow equation + / h a s zero boundary conditions =>/ = 0) once more to prove the
Lowenstein rule and the 0(4) covariant transformation property for the AΓC[ •].
As far as we can see the normal products Nc[ •], which from our point of view are
more natural, are just as well suited for applications as Zimmermann's original
JV'[ •]•

2. Flow Equations for Green Functions

2.1. Let Λo, 0 < Λo < oo, be a momentum space cutoff and Λe[0, Λ0~\ a scale
parameter. We take m2 > 0 and define, for x j e R 4 , the regularized free Euclidean
propagator, CA

A\ by

Λ "I ^ o > P) - R(Λ> P)) (2-1)

Here R(Λ, p) is a momentum space regularizing function which is chosen to have
the form

R(Λ,p):=(ί-e-(A/m)°) K 0 £ λ , (2.2)

where θ is an arbitrary but fixed real number obeying θ ^ # m i n , 6>min ^ 4 to be
specified later on, and where KeC°°[0,oo) satisfies 0 ^ K ^ 1, K(a) = 1 for
0 S a <; 1, K{a) - 0 for 4 ^ a.
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In fact it is irrelevant for our purposes which θ is chosen, as long as θ Ξ> 0m i n,
because we prove in the Appendix that in the limit Λo -* oo the renormalized Green
functions regularized with θ coincide with those regularized with θ', if θ, θ' ̂  θ m i n .
Note that R(0, p) = 0, so R(Λ, /?)GC°°(IR 4 ) for all Ae[0, oo), and θ has the effect
that R(A,p)eC{°-1)(lO,oo)xW.*); obviously R(Λ,p)eC™((0, oo)xR4). Similar
smoothness properties hold for Ci°(x, y); moreover C^°(x, y) = (C^°(x, y))* =
Ci°(y, x) = Ci°(x - y). Observe that, roughly speaking, Ci° is obtained by integ-
rating out all the momenta p with \p\ e [A, ΛQ~\.

Assume that φ e ^ ( l R 4 ) and introduce the notation δφ(x):= δ/δφ(x), </i,/2>
:= \dAxfι(x)f2{x). We define the functional Laplace operator, A(Λ,Λ0), by the
formula

Δ(Λ,Λo)'=\<δφ,CΛoδφ>. (2.3)

2.2. We introduce formal variables gu g2 and λ, an intermediate volume cutoff F,
i.e. a finite volume V a R 4 , and a source function χ, χ e ^ R 4 ) . Then the effective
Lagrangian at scale A, LΛ> Λ°; κ, is defined as follows.

a) We demand that LΛ'Λ°; v is a formal power series (fps) in gx, g2 and λ, thus

LΛ,Λ0;V.= ^ grλtLΛttA0;V9 ( 2.4)

| r | ^ 0 , ί ^ O

where r = (rur2\ rur2e¥l0,g
r = g[ιgr

2\ \r\ = rx + r 2.

b) For A = Ao we require that

^ Λ v λ v D w ? (2.5)

where Z^0' κ represents the bare interaction for the possibly Z2-nonsymmetric but
Euclidean invariant Φ 4 theory:

]Λ0;V.=
r '

0, | r | = 0

(2.6)

The coefficients «ίJ), 1 ̂ 7 ^ 5 , will become uniquely determined functions of Aθ9

m2, JR, r and of the renormalization conditions (on the Φ% Green functions without
operator insertions) once the latter are specified. For instance, if we wish to
interpret gu g2 as the "coupling constants" of the φ3 and φ* interaction vertices,
respectively, we will impose renormalization conditions such that at least

(4) _ 1 (5) _ * (4) _ (5) _ 0
"(1,0) — ̂ "j fl(0,l) — Tj ? fl(0,l) — "(1,0) — u

Next, the second term on the r.h.s. of (2.5) is meant to generate insertions of the
local polynomial BD(x\ the index D indicating that BD is of dimension ^ D in the
field φ and its derivatives. Thus we impose that D ̂  1 and that

BD(x) := 6o + Σ Σ K Π d

w = l {w}:|w| 4- n ̂ / )
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where {w} := {w l5. . ., wn}9 \w\ := Σ?=i |w/|, and for j e { l , . . ., n] we have

w, := (wj,!,. . ., wjΛ\ Iw7-1 := £ * = 1 wΛ μ, w Λ μ e N 0 for 1 ^ μ ^ 4, and finally
w^; and b 0 , &*,{*} are fps in gί9g2, i.e.

Here the coefficients br.o and br.n^w} will be seen to be uniquely determined
functions of Aθ9 m2, R, r, {a^} and of the renormalization conditions (on the
Green functions with one insertion of BD) once these latter are specified. In general
BD(x) will not be Euclidean invariant.

c) For A G [0, Ao~] we define the fps SΛ* Λ°; v by the flow equation

aΛ, Λo\ V Λ(Λ Λ \ τΛQ,Λ0,V
β — *> .-— gΔ{Λ, Λo) g —L

Expanding both sides of (2.9) as fps we first note that (2.9) does not fix uniquely the
coefficient S^o^'cΓ because the only condition which it has to respect is
g-s(O\o):o = \ However, since (2.9) tells us that for \r\ + t ^ 1 the coefficients
Sf;t

Λo] v are independent of S(o,o),'(Γ ( s o m particular they are unaffected by the
choice of definition for Sfify\ζ)9 and because in the end we will only be interested in
{SA>t

Λ°; v: | r | _|_ t >̂ | | w e choose now for convenience

ς,Λ, Λo; V,_ /Λ n i m
^(0,0), 0 — ^ \Δ.l\J)

Second, the coefficients S£\Λ°' v, \r\ + t ^ 1, can by induction be seen to be poly-
nomials in φ and χ which are uniquely determined; they are finite for all A e [0, Ao~]
and V < oo. Moreover they are endowed with all the smoothness properties which
are naively expected to hold, e.g. w.r.t. A they belong to C ( θ ~ υ [0, Ao~\ and
C°°(0, ΛQ~\. Due to (2.10) the S?;t

Λ°; v, \r\ + t ^ 0, are polynomials in φ and χ and so
we may define IΛi Λ°; v to be the fps which comprises precisely the field independent
parts of SΛ'Λ°' v (where both φ and χ are called fields). Using (2.9), (2.10) we observe
that SΛ'Λ°'> v - IΛ'Λ°; v exhibits the same smoothness properties as SAΛ°; v. Because
(2.9), (2.10) also imply that SΛ°> A°> v = LΛ°> Λ°; v and since LΛ^ A«> v contains no field
independent contributions (cf. (2.5), (2.6)) we see that lA**Λ°> v = 0; in other words
jr/io, ΛO; v = SΛ0,ΛO v _ jΛ0, ΛO; F Therefore it makes sense to define, for A e [0, Λo)9

LΛ,Λ0;V.= SΛ,Λ0; V _ jΛ, Λo; V ^ (2.11)

2.3. The effective Lagrangian LΛ'Λ°' v is the generating functional for the connec-
ted Green functions (at perturbative order \r\ + t ^ 1), and this fact can be proven
as follows.

Proposition 1. (At least) for φ9 χ, J e ^ ( R 4 ) we find that

Φ = CΛ°J

Proof. The proof is a combinatoric exercise which perhaps is best carried out by
expanding (2.12) in powers of LΛ°'Λ°; v and by verifying that (2.12) holds at each
power in LΛ°'Λ°; v separately. For the purpose of proving (2.12) it is sufficient to
assume that LAχ Λ°' v is a monomial in φ (and χ); so the proof of (2.12) is reduced to
proving that (2.12) is true if we replace e ~ L °' °' by a monomial in φ (and χ) which
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is not difficult if we use induction in the degree of this monomial and remember
that CA°(X, y) = Ci°(y, x). More details can be found in ref. [16], Lemma 2. •

The generating functional, ZΛ>Λ°> V(J, χ), of the unamputated and un-
normalised Green functions of the Euclidean quantum field theory built from the
free propagator C^° and from the interaction vertices Z/0,Λ; v j s given by

where dμcΛo is the Gaussian measure with mean zero and covariance ci°. Combin-

ing (2.13), (2.12) and (2.9), (2.11) we see that (modulo an irrelevant 2πiΈ)

l o g z ^ o ; v{Ji χ) = i < j 5 c^J} - LΛ>Λ°> v(φ, χ) - 1^°* v\φ = cfJ . (2.14)

Since <J, CA°J} is 0 t h order in g, λ and IA>Λ°> v contains no fields we arrive at the

Proposition 2. LΛ'Λ°; v(φ, χ) is the generating functional of the order \r\ + t ^ 1
perturbative connected amputated Green functions of the Euclidean quantum field
theory defined by the propagator C^ and the vertices LA**A^ v.

In retrospect this result shows that the definition (2.10) has also been sensible
(apart from being convenient), because due to (2.10) the 0 t h order contribution to

LΛ*Λ°'tV vanishes implying that - - < i , C^°J> alone generates the 0 t h order

connected Green functions, as it should be.
As a Corollary to Proposition 2 we observe that for all Λe[0, ΛQ~\ the limit

LA>A°:= l i m LA>A<>>V (2.15)

exists, because LA' Λ°; v is a sum over connected Feynman diagrams each of which
possesses at least one external field (φ or χ) and because the propagator C^° has
fast decay in x-space.

Set dΛ:= d/δΛ. With this notation the definitions (2.9), (2.10) and (2.3) imply
that, for Λe[0, Λ o ] , SΛ'Λ°' v obeys the functional differential equation

dΛSΛ,Λ0; V = {d/[A{A Λo))SΛ,Λo; V _ I < ^ S ^ e > ; K {βACiηδφS^A^ V} .

Due to (2.11) we obtain the differential flow equation for LA'A°:

dΛL
A>Λ° = (dAA(Λ, vlo))^^olfieid-dep. -\<βφL^\ (dΛCi°)δφL

Λ> Λ°y |Γ i e l d.d e p. .

(2.16)

2.4. We expand LΛ>Λ° as a fps in gl9g2 and λ

LΛ,Λ0==: £ grλtLA,tΛom (2.17)
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From Proposition 2 we know that Lf;0

Λ° and L£\Λ° have the following momentum
space representation and interpretation:

t = 0: L£ O

A' = J??;0?ϊ J d4xφ(x)

+ Σ ί Ϊ
(2.18)

where

a)p«:=-Σ;=ί^;
b) we may assume without loss of generality that, for n ^ 2, «Sfr,Ό;ί(Pi5 > Ai-i)

( ), , ( ) ()
c) the sum over n in (2.18) actually extends only over finitely many n because, as we
noted earlier, L^\Λ° is a polynomial in φ and χ; in particular, since just the
connected Φ4-diagrams contribute to JSf̂ bf» w e easily see that

&£<£i = 09 i f n > 2 | r | + 2 ; (2.19)

d) for \r\ ̂  1 ^^oTn0^0 *s the connected amputated rc-point Green function of the
Φ% theory, with no insertions of BD, at perturbative order r and with UV-cutoff Λo;
for \r\ = Owe have ^ ' Λ Ξ O ;

e) J^bfn°e C ( θ - 1 } ([0, τ i 0 ] x R 4 ^ - 1 ) ) ; i^ 'ofte C°°((0, yl0] x R 4 ( " - 1 } ) and is invari-
ant under the orthogonal group; this latter property implies that for all A

dΐ&tU(Pu .,Pn-i)\Pί = -- = Pn_^o = 0 , if | w | = 1 , (2.20)

where w is the multiindex w = (w l 9 . . ., ww_1), d™ = d^1. . . ^".V, and for n = 2
e.g. we have the proportionality

dPβdPΎ&ϊ$(p)\p=0~δβtV. (2.21)

+ Σ ί Π
w = l j = i l^TΓj

(2.22)

where remarks similar to a)-d) before apply to if '̂if/?. In particular ^C^un is the
connected amputated n-point Green function of the Φ% theory with 1 insertion of
BD(x) at x = 0, at perturbative order r, \r\ ̂  0, and with UV-cutoff Λo. In general
J?£\fll will not be invariant under the orthogonal group.

We insert the expansions (2.18), (2.22) into (2.16), and after some easy calcu-
lations we arrive at the differential flow equations for {J?£\?n' t = 0, 1}:

dAq dΛR(A q)
1 (2π) 4 q2 + m 2

r ' + Γ" =
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, „<,,_! [δΛR(Λ, Q)
n'n'T ι — T-+ Σ

n' + n" = n + 2

, (2.23)
nm

where Σ * indicates that the sum extends over n* ^ 2, if t = 0, and over n' ^ 2,
π" ^ 1, if t = 1; moreover Q:= — Σ ^ V Pj> a n d C' ' 'Jsymm nieans symmetrization
w.r.t. the momenta pl9. . .,pn. Although it may seem at first sight that the
differential equation (2.23) holds only for those J^'r^ 0 with n + t — 1 ^ 1 , it in fact
remains valid if n + t — 1 = 0; obviously in this latter case the second sum on the
r.h.s. of (2.23) is absent.

2.5. On the space of sufficiently regular functions/: R 4 n -> <C we introduce a set of
norms, || ||(α,fc), where α, be!R + . For instance we define that for z e N 0

ll(3z/i)/2ll(α.b):= max \((dΐfx)f2)(Pu ,Pn)\ (2.24)
Pi,. . ., pn: \pj\ ^ max{α, 6}, 1 t^j = n

w: |w| = z

Next, we choose for technical reasons a scale, Al9 which is supposed to obey
0 < Ax < Ao and to be independent of Ao; Aί is fixed once and for all. For
example, this can be accomplished by requiring (without loss of generality) that
Λo ^ Λ),min > 0 and that Aγ := $ΛOttain. Put

m 2 ) β , β^O. (2.25)

Using (2.2) and (2.24), (2.25) it is not difficult to check that

'-T-V-., ' f Λ " Λ o , (2-26)
where c, c' do not depend on A, but of course c, c' depend on z, #, m2, y41? ^.

Acting with d™ on the differential flow equation (2.23) and estimating it with the
help of (2.26) we find that for t = 0,1 and η ^ 0, η arbitrary, and Λe[0, Aγ\

\\8Λd
z^tfn\\(2Λ,η) S const-

+ Σ II 2ΪA\ VIA, η)' II dz ̂  t + {\\{2Λt η)
r' + r" = r

Σ*
r' + r" = r

n' 4- n" = n + 2
z' + z" <Lz

\\?\Z' O?Λ,Λ0 || n^z"(vpΛ,Λ0 || (
Wϋ ^r\ 0; ri 11(2/1, ?/) II ̂  «^r", ί; n" 11(2/1, /y) f" ?

(0^Λ^Λί9 z^θ-l) (2.27)

where "const" stands for some number which depends neither on A nor Ao nor

on ιy. Of course \\ds^ϊ\\(a.t) = 0, for z ^ 1, and ||JSfr^f ||(βfft, = 1^'ofiΊ, and
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similarly for J£?r/i;o. On the other hand, for Λe[Λ1?ylo] and z ^ O w e employ
(2.26) and the bound \dΛR(Λ, 0)| ^ c-Λ~3 to obtain, for t = 0, 1 and arbitrary

2Λ,η) g const L || dz£e?;$+ 21

r' + r" = r

V * / I - 3 - z ' " . M az' <v?Λ, Λo ||

r' + r" = r
ri + n" = n + 2

z' + z" + z'" = z

(2.28)

2.6. In this and the next subsection we will investigate in some detail the boundary
conditions (be) which the flow of effective Lagrangians obeys, i.e. we will take
a closer look at ̂ ^n

Λ°tΛ° and ^^^Λ°- The ensuing results together with (2.27),
(2.28) will turn out to be the main tools to prove perturbative renormalizability. As
a start let us concentrate on the t = 0 sector (the t = 1 sector will be treated in the
following subsection).

The general structure of the Green functions, JSf̂ Ό 1/? > °f t n e &1 theory (without
insertions of BD) has been fixed by the Euclidean invariant bare interaction
vertices, lΛ°, and the Euclidean free propagator, c\\ In particular L?$Λo = l?°9

thus by (2.6)

Λ = Λ0: 3 ^ i t e * 0 = 0 , i f n + | w | ^ 5 . (2.29)

From (2.18) and (2.20) we know that among the a ; ^ o ϊ « U o ( 0 ) , n + |w| ^ 4, at
most the terms with (n, |w|) = (1, 0), (2, 0), (2, 2), (3, 0), (4, 6) are nonzero; further-
more (2.21) exhibits the tensorial structure of the (2, 2) term. By comparison with
(2.6) we conclude that we can always inductively adjust the bare parameters a(

r

j\
1 ύί ύ 5, such that the not a priori vanishing relevant and marginal d™^^°n(0)
obey the following general renormalization conditions (i.e. be at A = 0), for \r\ ̂  1:

Λ = 0: a) J ^ l = a^R ,

b) ^%t2(0) = U2)R , dPμdpyr;£°2(Q) =-δμy2-a^R ,

c) J2^°3(O) = a^R ,

d) ^,0Όt4(0) = al5)R . (2.30)

Here the a\.j)R, 1 ̂ 7 ^ 5, \r\ ̂  1, are taken to be finite and (w.l.g.) Λ0-independent,
but otherwise they are arbitrary. It is not difficult to see, by induction in |r|, that
once we require (2.30) to hold the bare parameters a(

r

j) = a\.j\a{pR, Λθ9. . .) are
finite and well-defined, for Λo < 00. Let us point out, finally, that the renormal-
ization conditions (2.30) have been chosen at zero momentum for reasons of
simplicity only; indeed arbitrary nonzero external momenta could have been taken
as well [16].
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For example, the standard BPHZ-type renormalization conditions to
define a Z2-nonsymmetric Φ% theory where gug2 can be interpreted as the
"coupling constants" of the φ3 and φ4 vertices, respectively, amount to set

n(l)R _ n(2)R _ n(3)R _ Λ Π(4)R _ £ Π(5)R __ £ Ohviniwlv rpnnr

ar — ar — ar — u, ar — —orΛif0)i ar — —or,(o,i) vJDviousiy, renor-

malization conditions which define a Z2-symmetric theory could be imposed as

well.
Summarizing we have shown that the be (2.30) serve the following two pur-

poses. First, for Λo < oo they lead to uniquely and well-defined bare parameters
and thus Green functions of the Φ4 theory, and furthermore they guarantee that for
r\ ^ 1

^ ^ o T n ° ' Λ ( O ) = finite and ^-independent , if n + \w\ ^ 4 . (2.31)

2.7. We turn our attention now to the ί = 1 sector. Similarly as before the general
structure of the Φ% Green functions with one insertion of ^ ( x = 0), Jδf̂ 'if,?, is
prescribed by the vertices (2.5), (2.6) and (2.7) and by the covariance c\ϋ. Once the
renormalization conditions (2.30) are imposed the a(

r

j) are known, but as yet the
bare parameters br o,brn {w} are undetermined. Nevertheless we infer from (2.7) and
(2.22) that

Λ = Λ0: d;^\]i° = 0, ifn + | w | ^ Z ) + l . (2.32)

In order to motivate the structure of the be at A = 0, i.e. of the renormalization
conditions on the Green functions with one insertion of BD(x = 0), we have to
digress a bit. We begin by noting that the permutation symmetry

implies that for all A

δΐ&£*m = δί &£&$)> if{w} = {w'}, (2.33)

where we have used w = (w1 ?. . ., wn) => {w} := {w1?. . ., vvn}. Formulae (2.5)-(2.8)

and (2.22) show that J2^ϊ;o° = - &r;o and that for n ^ 1

^rXAn =~ Σ br.nΛwyl(iPlΓ (φΛ)
W"].ymm (2.34)

{w}:n + \w\ ^ D

Obviously

so we may define the nonzero number Jί^ by

d;'L(iPl)Wί ΛiPn)W^symm\Pί=:.=Pn = O = <S{vv}, {W} ' ^{w} (2.35)

With this notation we find for n ^ 1

dp i^°i'; n°(0) = — br. nt {wj oΛf{w} , if n + | w| ^ D . (2.36)

And now (2.33), (2.36) tell us that it is consistent to impose the general renormaliz-
ation conditions, for \r\ ^ 0 ,

A = 0\ a) 5£r^ i O = "~ ^r O

b) δJ'JSfr'i wίO) = ~ ^r« {w}' ^{w} •> if w + |w | ^ Z) a n d n ( ^ 1 .
(2.37)
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As in the sector t = 0 the renormalization constants b*0 and b*n, {w} are supposed
to be finite and Λ0-independent. It is not difficult to check that together with the
a(

r

j)R they determine uniquely the bare parameters £>r;0 and ftr;π,{w} and that these
are finite, for Λo < oo. Again zero external momentum (to fix the renormalization
condition) has been chosen for convenience only. Notice, finally, that we do not
require the renormalization condition (2.37) to exhibit a Euclidean invariant
structure.

The most common renormalization conditions (2.37) are probably those which
lead to Zimmermann's normal products [1, 2]; we postpone their discussion to
Sect. 4.

3. Perturbative Renormalizability

In Sect. 2 we have collected nearly enough information to prove perturbative
renormalizability; the missing piece is the definition

6> m i n := l+max{3, i ) } , (3.1)

which ensures that d^f;tfn°eC([0, Λo~\ x R 4 ( " + i " 1 ) ) > for all w with 0 ^ |w| ^
max {3, D}; in fact continuity holds at least for all w with 0 ^\w\ ^θ — I.2

Choose an arbitrary η, 0 ^ η < oo, but keep η fixed in what follows, η is meant
to indicate the range of the momenta pl9p2, within which the convergence, as
AQ -• oo, of J£??,'tfn(pi, /?2> •) will be proved.

Theorem 3 (Boundedness). For the general renormalization conditions (2.30) and
(2.37), for any fixed η, 0 ^ η < oo, and for all z with 0 ^ z ^ θ — 1 we find that the
Φ% Green functions obey the bounds

const , 0 ^ A S Λί

Λ \ (3.2)

j/l4-"-z Plogί—j, Λ^Λ^Λo,

and that the Φ% Green functions with one insertion of BD(0) are bounded as

!

c o n s t , 0 ^ A ^ Aγ

(A
AD~"-Z P l ί

(A\ (>

AD~"-Z -Plogί— J, Λ^Λ^Ao.

Here "const" stands for some finite number which depends neither on A nor on Ao, but
which in general will depend on η, Aί,r,t,nf z,. . . Flog(/l/yl 1 ) is some polynomial
in logiA/Ai) with coefficients which again depend neither on A nor on Ao but which
may depend on η, Al9r9t9. . . .

Proof (I) t = 0. The proof of (3.2) can, in principle, be found in ref. [16]; for the
sake of completeness, however, we will reproduce it here. Equation (3.2) will be
proved by induction, the induction scheme being the one which has been invented
in ref. [15].

2 For the purpose of analyzing the t = 0 sector only, the definition θmin := 4 would have been
sufficient.
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The induction hypothesis is that (3.2) holds for {(r, n, z):((|r | < a) A («eN)) v
((|r | = a) A (n > b)\ 0 -^ z ^ θ — 1}. The induction step consists in proving (3.2)
for {(r,n,z):(|r| = a) A (n = b\ 0 ^ z ^ θ - 1}.

Obviously the induction hypothesis is fulfilled for a = 1, & = 4 (because
^(0,'oχo n = 0 and because of (2.19)), so we may start the induction procedure at
(α, b) = (1,4). Moreover, once we have arrived at and dealt with (a, b) = (α, 1)
the induction hypothesis becomes automatically obeyed by (a\ b')\=
(a + 1, 2(α + 1) + 2), again because of (2.19). We conclude that with this induction
scheme we reach all nontrivial (α, b).

Let us carry out the induction step for the pair (a, b); i.e. we wish to check (3.2)
for {(r,n,z):((|r| = a) A (n = b)\ 0 ^ z ^ θ - 1}.

Choose and fix r with \r\ = a. We first show (3.2) for those z with b + z ^ 5. If
b = 1 then z ^ 4; but since δpi?£bfi Ξ 0 (3.2) obviously holds. So assume that
b^2; and note that for b ^ 2 {z: 0 ^ z ^ 0 - l } n { z : f r + z ^ 5 } = ) {3}, because
of (3.1). Use (2.29) to write

ί ϊdΛ'\\dΛ,d
zJ?ΐo Λ

b

0\\(2Λ',η) (3.4)
A

If A G [Ax, Λ o ] the r.h.s. of (3.4) is now estimated by replacing the integrand by the
corresponding r.h.s. of (2.28); now employ the induction hypothesis on (2.28) to
arrive at 3

Y (3.5)

On the other hand, if Λeψ.A^ we split, in (3.4), J^° = \p + \i°\ t h e second
integral has already been estimated in (3.5), and the first is easily estimated by using
(2.27) and the induction hypothesis; this gives (3.2).

Now we are going to verify (3.2) for those z with b + z ^ 4. The method is
induction in z. Induction hypothesis: (3.2) holds for all z with z' < z ^ θ — 1. This
hypothesis is certainly true for z' = 0, if b = 1, and for z' with b -f z' = 4, if b ^ 2 (as
we have just shown before). Let us prove now (3.2) for z = z' thereby completing
one induction step.

Obviously, for any w with \w\ = z' we have

I
3 Each time the symbol P log appears it stands in general for a new polynomial in log.
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and therefore, using (2.31),

A

|d;j^bf£(O)| ύ const + j dA'\\dΛ.d
z'&faΛ

b°\\{2Λ>,η) . (3.6)
0

The r.h.s. of (3.6) is estimated by replacing again the integrand by the r.h.s. of (2.27)
or (2.28) which in turn are estimated using the induction hypothesis (of the (α, b)-
induction procedure). We thus obtain

, , Λ^Λ^Λo.

For b = 1 (3.7) implies (3.2); and for b ^ 2 Taylor's formula

b-l 4 1

+ Σ Σ Pf.μJ dλdk^dk^r o-Jiku. -Λb-i) , (3.8)
i = l μ = l 0

where kj\= λ pj9 1 ^ 7 ^ b — 1, together with (3.7) (to bound the first term on the
r.h.s. of (3.8)) and with the induction hypothesis in z (to estimate the integrand in
(3.8)) finally gives (3.2) for (r, b, z'\

(II) t = 1. The inequalities (3.3) will be verified by induction. Because all the
details of the inductive proof are very similar to those encountered in the t = 0
sector we will be quite brief.

Induction hypothesis: (3.3) holds for {(r, n, z) :(( | r | < a) A ( « e N 0 ) ) v (( | r | = a)
A{Π> b)\ 0 ^ z ^ 0 - 1}. Induction step: Prove (3.3) for {(r, n, z): (\r\ = a) A

(n = b\ 0 ^ z ^ 0 - 1}. It is easy to check that ifr

Aifn° = 0, if n > 2\r\ + D; thus the
induction hypothesis is true for (a, b) = (0, D\ and once we have treated
(α, b) = (a, 0) the inductive process may be continued with (a\b')\=
{a + 1, 2(α + 1) + D).

We now sketch the induction step at (α, b). Consider first those z with
b + z ^ D + 1. The case b = 0, z ^ D + 1 is trivial; so assume b ^ 1. Note that
because of (3.1) we have { z : O ^ z ^ 0 — l,b + z ^ D + l}=> {D}. Using the
be (2.32) we get in analogy to (3.4)

Λ0

A

(2.27), (2.28), (3.2) and the induction hypothesis now yield (3.3).
So let us turn to those z with b + z ^ D. Induction hypothesis: (3.3) has been

checked for all z with z' < z ^ 0 — 1. Induction step: Prove (3.3) for z = z'. The
induction hypothesis clearly holds for z' = 0, if fe = 0, and for z' with b + z' = D, if
fo ̂  1. Now remember (2.37) to conclude that for all w with |w| = z'

A

\Sp &?,\?ίl(0)\ S const + J <L4' || dA>dz'&*$ \\{2A\n) - (3.10)
0

Use (2.27), (2.28), (3.2), the (α, b)-induction hypothesis as well as Taylor's formula
and the z-induction hypothesis to verify (3.3). •
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Theorem 4 (Convergence). Under the same conditions as in Theorem 3 we have for
ί = 0,l

(3.11)

Proof We employ the induction procedure described in the proof of Theorem 3.

If b + z ^ 4(1 - t) + D 1 + 1: Replace n ι-> b in (2.23); integrate (2.23) now

from A, 0 ^ A < Ao, up to Ao and apply 3™, \w\ = z; use (2.29) or (2.32); upon

acting with dΛo on the resulting equation one obtains

Λ08p^r;t-b = dp (r.h.s. of (2.23))U = AQ

+ $dA'dΛod; (r.h.s. of (2.23))U = /1' (3.12)

the first term on the r.h.s. of (3.12) can be estimated by the bounds (3.2), (3.3); the
integrand in the second term is estimated using (3.2), (3.3) as well as the induction
hypothesis.

If b + z ^ 4 ( 1 - t) + D-t: A p p l y d™9 a t p γ = = p b + t-1 = 0, \w\ = z \ o n
(2.23) and integrate the result from 0 up to A9 0 ^ A < Ao; remember that the be
(2.30), (2.37) are Λ0-independent; now apply dAo to obtain

dAod;&£$(0) = ί dΛ'dAod; (r.h.s. of (223))\Λ>]Pl =... = 0 (3.13)
o

as before the r.h.s. of (3.13) is bounded with the help of (3.2), (3.3) and of the
induction hypothesis; use Taylor's formula and the induction in z to arrive at
(3.11). •

Corollary. Under the conditions specified in Theorem 3 perturbative renormalizabil-
ity holds for t = 0 ,1; i.e. for \pt\ ^ η, 1 ^ i ^ n + t — 1, the limit

lim ^tfniPu- ",Pn + t-i) (3.14)
ylo-> co

exists and is C ( θ - 1 ) (in the momenta pu . . . 9pn+t-i)

One major ingredient in the proofs of Theorem 3 and 4 has been the estimated
form of the differential flow equation (2.23), estimated for all Λe[0, Λ 0 ] . The
unpleasant regulator θ has been necessary in order to obtain useful bounds also as
A -• 0.4 Of course one expects that θ carries no physical significance, but a proof of
this would be welcome. Due to the well known technical reasons we cannot admit,
with our method, that θ < θmin. So for the moment the best we can do is to
compare the Green functions which are obtained with the help of θ and θ'9
θ, 0' ^ 0min, namely jSf^π°(p θ) and Se^(p\ 0'), where p = (pl9. . ., pn+t-i\

4 In a somewhat different approach [16] it is sufficient to estimate (2.23) for /^[/Lj, Λo~\\ this
technical advantage is, unfortunately, traded for inconveniences in connection with the evaluation
of the information contained in the be at A = 0. We believe that the method in the present paper is
aesthetically more appealing.
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Theorem 5. For θ ^ 0m i n and t = 0,1 we have

\\dθ^;t?°n\\(o,η) ^ const e-^/« . (3.15)

The proof is given in the Appendix. (3.15) confirms our expectations and shows,
moreover, that the renormalized Green functions (3.14) are C0 0.

4. Zimmermann Identities, Lowenstein Rule

4.1. Let {fr

Λi.Λn°(Pu , VnY \r\ ̂  0, n ^ 0, Λe[0, ΛolPielR\ 1 S i^ n) be a set
of functions which obey the differential flow equation (2.23), i.e. the/r^ί;^

0 satisfy the
linear differential equation

d4q dΛR(Λ,q)

m2+ Σ (» +
r' + r" = r

+ Σ n'n
r' + r" = r L V, "•" W

n' + w" = /ί + 2
rc' ^ 2, n" ^ 1

•/ΛfS-(-β,P»',...,PB)l (4-1)
_|symm

Here the JSf̂ bfn are the familiar Φ4. Green functions, regularized with the help of
some 0 ^ 4 (it is irrelevant which 0, see Theorem 5) and obeying the renormaliz-
ation conditions (2.30).

Lemma 6. fr

Λi-Λ

n° Ξ O , Vr, n, iff the following four conditions are fulfilled:

a) 3d ^ 1 such that fAi-A

n° e C(d) ([0, Λ o ] x R 4 "), Vr, w;
b) d^fΛf.;Ao = 0, Vr, Ϊ/(0 ^ |w| g d) Λ (n + |w| ^ d + 1);
c) dpfr?\?n(fy = OJ Vr, i/w + |w| ^ d;
d) /or eαc/ϊ z ^ 0 ί/zere βxisίs n(z), 0 ^ n(z) < oo, 5MC/I thatfr

ΛiήΊ° = 0 ίf(\r\ = z) A
(n > n(z)).

Proof " = > " : trivial. "<=": Due to d) it is possible to apply the usual induction
scheme. The induction hypothesis implies that for \r\ = a, n = b the r.h.s. of (4.1)
vanishes. So/r^i;^° is independent of A Use b) and c) and Taylor's formula to show
that therefore fA{.A

b° = 0. •

This simple lemma will play one of the key roles in the derivation of the
Zimmermann identities.

Let {Bij):0^j ^ N} be a finite set of polynomials of the type (2.7), BU) having
dimension DU) ^ 1. Put 0m i n > J V:= 1 + max{3, D(0\ . . ., D(N)}. Obviously
0min,jv ^ #imn = 1 + max{3, D 0 ) } , Vj. Thus it is legitimate to choose some
0 , 0 ^ 0min,iv? and to define J^bfn to be those Φ% Green functions which are
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regularized with θ and which obey arbitrary but fixed renormalization conditions
(2.30) thereby fixing uniquely the bare Φ% interaction lΛ°, (2.6). Furthermore, for
0 Sj ύ N the ^^\fn{i) are defined as the Green functions which are regularized
with the same θ and which contain one insertion of BU)(x = 0) into our fixed
Φ% theory; for each j the JSf '̂if,?^ are supposed to obey some renormalization
conditions (2.37). So in particular limylo_>oo i?ί?'ί^7) exists, Vj.

Let cu\ 0 g j ^ N9 be fps in g with coefficients c\.j) which do not depend on
Λ9n,pu. . ., pn, but which may depend on Λθ9 R,. . . We define #^'ifj? by

*rtui(Pi,...,Pn):= Σ ^ - ^ ^ ( p ! , . . .,/>„) . (4.2)

It is evident that J ^ i ^ e C ^ ^ E O , Λ o ] x R 4 n ) . Now apply dΛ on &*\% use the
above assumptions on c,j) and employ (2.23) with t = 1. In this way one easily
checks the

Lemma 7. {#^'ifw°} sαίis/ies (4.1).

Note that &£'$ fulfills condition d) of Lemma 6 (because each &?t\fsij) does
so); therefore, if we manage to adjust the coefficients c(

r

j) such that also the
conditions a)-c) are obeyed, the linear combination ^^\fn is identically zero. It
might be interesting to investigate the ensuing conditions on BU) and cij) in full
generality; however, for the purpose of establishing the generalized Zimmermann
identities it is sufficient to consider, in what follows, only the special case
D(0) ^ D(l) = D(2) = . . . = D(N) W e g e t

Do := D ( 0 ) , Dx := D ( 1 ) = D ( 2 ) = • = D™ , (4.3)

and assume that N depends on Dt in such a way that

We define the square matrix Jί, with matrix elements Ji\^{^9 by

^(n!{w})'= dp ̂ =tunΦ) J 1 Sj S N, 1 ^ n, n + |w| ^ Di . (4.5)

Theorem 8 (Generalized Zimmermann identities). Assume that the renormalization
conditions (2.37) on ^r,\ ,n \ ^ ^j ^ N9 have been chosen such that

a) JS?Γ%toω = 0 , O ^ ^ i V , | r | ^ 0 ; (4.6)

b) Jί = regular . (4.7)

Then there exist uniquely determined (complex) numbers cj.j\ 1 ^j^N,so that

The c(

r

j) have finite limits as Λo -• oo.

Proof. We have to verify that a)-c) of Lemma 6 hold for

aτrΛ,Λ0,_ Cv?Λ,Λo{0)_ v^ (j). a Λ, Λ0(j)
^ r, 1; n ^ r, 1; n ^L »*' Γ"> 1; «

r' + r" = r
1 £JύN

if the 4 J ) are chosen appropriately.
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Putting d:= D1 we see that part a), and because of (2.32) and Do ^ d also part
b), of Lemma 6 hold true, for any choice of c(

r

j). So we are left with checking
condition c).

We proceed by induction in \r\. Induction hypothesis: There is a unique choice
of {c(

r

j):0 ^ \r\<z,ί^j^N} such that c) is fulfilled for all (r, n, w) with \r\ < z;
moreover lim^^oo c[j) exists, for 0 ^ | r | < z and l^j^N. Induction step:
Choose an r with \r\ = z. Equation (4.6) guarantees that 5 ^ ^ ί ? i = 0 = 0, for all
w and c(

r

j), so let us consider n ^ 1. Now, c) is valid (for n ^ 1) iff for all w with
n + \w\ ^D1

Vp <^>, 1; n 1UJ ~ La Cr' ϋP ^r'\ 1; n I Ψ

- Y c{P dw<?°*ΛAJ)(Q)-\- V rU) /Aj\ ̂
— 2_j cr' vp~£r\\;n l u / ' Z J Cr *M{ni{w})'

r' + r" = r I ̂ j ^N
|r"|>0

1 ^J^N

The induction hypothesis controls the first sum (in the second line) on the r.h.s.
of (4.9), and (4.7) enables us to invert Ji and thus to complete the induction
step. •

4.2. As a first application of Theorem 8 we are going to derive our version of the
standard Zimmermann identities [1, 2], but in order to do that we first have to
introduce our version of Zimmermann's normal products (cf. also the discussion in
the introductory section).

For D ^ ή + |w'| let BD^n^{w'j) be the unique polynomial such that the con-
nected amputated Green functions with one insertion of BD^n'^W'^(x = 0),
^ifn(5/),(«',{W'})(0); Pi, . . ., pn\ obey the renormalization conditions (2.37) with

& £ < > : = 0 , V r ,

b*n,{w}'= <>n,nf'<){w}, {w'}*^,(0,0) (4.10)

We introduce the abbreviation Mn>{w}(x):= d™ιφ(x). . . d^nφ(x). Now our
Zimmermann normal product of dimension (or subtraction degree) D of the
monomial Mn?{w'}(x), N£[M n ' {^(x)] , D ̂  n' + |w'|, is defined by requiring that
the connected amputated Green functions with one insertion of Nc

D[Mn> (w}(x)],
^\?X(Nc

DlMn>, { M / }(x)]; / ? ! , . . . , pn\ obey

^ ' d ° ( N έ [ M ^ , κ } ( x ) ] ; . . . ) := &£ui(BDt{n',[wφ);. . .) . (4.11)

The Zimmermann normal products A^έ[Mn'{w}(x)] are generalizations (to inter-
acting theories) of Wick's normal product, :Mn> [W'}(X):CΛ0, because due to (4.10),
(4.11) we find that

4 ,0) ° , i (^έCM^ K } ] ) = - $d4xχ(x) Mn,{wΊ(x) . (4.12)

Returning to the discussion of how to apply Theorem 8 we require now that
D o < Dγ (cf. (4.3)); we choose a pair (n\ {w }) with n' ^ 1 and n' + |w'| ^ Do and
set

B(0):= BDθt(n't{w>}),

1 Sj ύ N} := {BDίΛnΛw]yΛ ^n,n + \w\ ̂  D,} . (4.13)
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With this definition and (4.10) we easily see that the conditions (4.6) and (4.7) are
fulfilled. Therefore there exist the linear relations (4.8) among the Zimmermann
normal products iV£0[ ' ' W ] a n d N})ι [ (x)], a priori at x = 0 but after transla-
tion obviously at any x. Because of the very simple renormalization conditions
(4.10) it is not difficult to calculate, from (4.9), also the coefficients c(

r

j\ 1 ^j ^ N.
We summarize our findings in the following proposition.

Proposition 9. The Zimmermann normal products JV£ obey the Zimmermann identi-
ties

c{; ' { w j ) J?ϊ:tn(Nc

DiIMn", {w"}(x)];. •) , (4.14)

where 1 ^ n' + |w'| ^ D o < # i

r' + r" = r
n", {w"}: n" ^ 1, n" + \

]; 0) . (4.15)

The explicit formula (4.15), together with (4.10) and (2.37), shows that for n" +
W\ύD0

4 " " ' { / 1 ) = ^(0,0) V , « " V U w ' } ( 4 1 6 )

In (4.14) we now take Λo -• oo, /I ^ 0 , multiply by ^ r, sum over r, identify the
perturbation series of the full Green functions with one insertion with the com-
posite operators themselves and use (4.16) to arrive at

+ Σ Ne

Dί [Mn% K } ( x ) ] c<n" ^ , (4.17)
n",{w"}

Do < n" + |w"| ^ />!

which corresponds to the conventional form of the standard Zimmermann identi-
ties [1, 2].

43. As a second application of Theorem 8 we will discuss some aspects of the
standard Zimmermann normal products AΓ [̂ •].

For D ^ n' + | w'| let Bv

D^n^ {w}) be the unique polynomial such that the proper
Green functions with one insertion of 2*i),(n',{W'})(0) respect the renormalization
conditions (2.37), (4.10) which before have been imposed on the connected ampu-
tated Green functions. We now define

Restrict the allowed renormalization conditions (2.30) by the requirement
a(

r

1)R = 0, Vr; this corresponds precisely to Zimmermann's prescription concerning
the tadpoles [2]. Standard considerations relying on (3.2), and on (3.11) for t = 0,
and on the renormalization conditions on the proper functions with one insertion
show that the relevant and marginal parts (2.37) o{&*}l£°n{Nl[_Mn>9 {w}(0)];. . .) are
indeed finite and only weakly /lo-dependent. Now Theorems 3 and (a slight variant
of) 4 can be applied to prove that l im y l o ^ 0 0 ^uU^Dί^n1, {w'}(0)]; •) exists.
Moreover one readily verifies that

Λ α 1; n{N&[Mn., {W'}(X)]; . . .) = ^ X i; nWhWn', {*'}(*)]; 1
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for all n ^ 0, and that (using the above restriction on (2.30))

^ ° Ί ; θ ( ^ [ M n > ' ) M ] ) = °> f o r a 1 1 IΊ ^ ° So> i n t h e φt theory with the BPHZ
condition a(

r

1)R = 0, Vr, we can use Theorem 8 to show that for example:

1. There are coefficients cj? ' ̂ w ^\ which in general are different from those in (4.15),
such that the Zimmermann identities (4.14) hold also for the A^[ •] (proof:
simply put Do < D± and replace B... i—• Bp... in (4.13)). Making use of the normaliz-
ation conditions on the iVJΪ[ •] one can compute these coefficients; one recovers
the result [1,2] that $ '^w " i s given by the analog for the proper Green functions
of the r.h.s. of (4.15). In this way one finds the standard Zimmermann identities
(4.17) for the Ng\_- •]•
2. Nj)[- •] is a linear combination of the Λ/"£[ •] (proof: put D = Do = D± and
B(0) := B^in', {w}) m (4.13)); and vice versa. In this sense these two types of normal
products are equivalent.

4.4. One of the virtues of the normal products ΛΓiJ'c[ •] is that they commute
with derivatives and that A^o'c[Mn?{w'}(x)] behaves just as Mn>^w>}(x) if it is
subjected to 0(4) transformations. The formula which expresses the former prop-
erty for ND is known as Lowenstein's rule [4]; the latter property for NQ is certainly
well-known as well but we were not able to find a corresponding formula in the
literature. In the remainder of this section we will give a proof of these two
properties for JV£, the main technical tool being Lemma 6.

Using (2.22) and (4.11) it can be shown without difficulty that

^t^ni^DΪMn', {w'}(*)]; Pi? > Pn)

];Pw">Pn), n^l

As usual the Green function &£\f!ί(dμNι)[Mn't {W'j(x)]; pl9. . ., p») with one inser-
tion of the operator dμN

c

D[- •] = 3X//N^[ •] at x is defined as

^ ^ f ^ K } ] ; pl9...9pn).

Putting x = 0 we thus find that

0 , n = 0 .

Next, we extend the definition of iV£[' •] from monomials to polynomials by
linearity, i.e.

NC

D\ Σ cn>ΛwΊ Mn>Λw>}(x) := X cn'Λw'yNc

DlMn>Λw'}{x)~] . (4.19)

Thus for D ^ ri + wΊ the r.h.s. of

K } ( 0 ) ] ; . . .) (4.20)
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is well-defined. It is straightforward to check that J^'if,? satisfies (4.1); moreover,
putting d:= D + 1 and using e.g. (4.12) it is not difficult to verify that ^fy fulfills
also a)-d) of Lemma 6. Therefore we have proved

Proposition 10. (Lowensteίrΐs rule). If D ^ ri + \w'\ then

μ M π W ^ } ( x ) ] . (4.21)

4.5. Now let AGO{4) and /?}:= Apj9 for l^j^ή. There are coefficients
7 7 = TU

W(A) so that

3 ; =

w,κr^) (4.22)
7=1 /

where w = (w l 9 . . ., wn>), u = (u l 9 . . ., ιv), wπ = (uπ ( 1 ),. . ., uπ ( B Ί), and where K{u) is
(the inverse of) some combinatorial factor. We define a symmetrized version of
T$ by

Σ T» <>{u},{*} Γ

= j~i Σ fa Π ^ J wfj; (4-23)
obviously the r.h.s. of (4.23) depends on w, w; only through {w}, {wr} thus justifying

ίw}

the notation on the l.h.s. It is also evident that β^ = 0 if \w\ Φ \wf\. We assume
that D ^nf + \wf\ and put

^ i f n ° ( P i . . . . ^ » ) : = Σ ^ { w r ^ f n o ( ^ έ [ M ^ K } ( 0 ) ] ; p n

t p l 5 . . ., 4pπ) . (4.24)

Using the fact that the Φ% Green functions if^bfπ a s well as δΛR(A, ) are invariant
under 0(4) it is an easy task to check that J^'ifn again obeys the differential flow
equation (4.1). With d:= D and (4.23) also the conditions a)-d) of Lemma 6 are
fulfilled, hence &££* ΞE 0. If we set A = 0, r = 0 in (4.24) and make use of (4.12) we

ίw"l

see that the β{w>} are precisely the coefficients which describe 0(4) transformations
of Mn't{w}. As a result we have found

Proposition 11. Let β^ be defined as in (4.23). Then the 0(4) covariance of the

normal product Nf)[_Mn>i{w>}(x)'] is displayed by

Σ ΐ} n ' , K } ( 0 ) ] ; p l 9 . . . , p n ) 9 (4.25)
{w"}

which holds for all

; Apl9. . ., Apn)

Let us remark that the same simple methods could of course also be used to prove
the analogous results for the standard Zimmermann normal products N^, e.g., but
the explicit computations would become somewhat more involved.
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Appendix

Here we outline the essential steps leading to the proof of Theorem 5. Define the fps

GΛ, Λo b y

GΛ,Λ0._ _

where for all θ with θ ̂  θmιn (actually, at this point, we can admit any θ > 0)

GΛOt Λo . = LΛ0, Λo _ μ . dθLΛ0, Λo (A2)

and where μ is a formal variable; LΛ°iΛ° is given in (2.5). Expand

GΛ, Λo = Q(0)Λ, Λo + μ . G{\)Λ, Λo + O ( μ 2 ) (A.3)

and notice that due to (A.I), (A.2)

Acting with dθ on (2.9) we obtain after a simple calculation

dθL
Λ'Λ" = (dθA(Λ,Λ0))LΛ'Λ"\Md.dep.

- ^<δφL
Λ'\{dβC%>)δφL

Λ>Λ<>) |field-dep. .

-G(ί)Λ-Λ«. (A.5)

Expanding (A.5) as a fps in glf g2 and λ and putting A = 0 we arrive at

d^tΛPu- • , p n + t - 1 ) = (r.h.s. of (2.23))\δΛR{A.^_dβR{ΛoΛΛ = o

-&r,t;n (j?i, . . . , pΛ + t - i ) , (A.6)

for ί = 0,1 and at least for all θ with θ ̂  θmin.
Let us bound the first term on the r.h.s. of (A.6). We begin by recalling that

«£??,'ίfn is given by a finite sum of contributions stemming from connected ampu-
tated Feynman diagrams, i.e.

^ttniPi ,...,P«+,-i)= Σ (combinatorial factor) j i ^
finite

where Π P Γ L e x t e n d s over all lines resp. vertices of the Feynman diagram under
consideration, {qί9. . ., qL} a [Ql9 Q2,. . .}, and the momenta Q which obey Qe
{Qi,Qi,- }\{qu- ? ^ L } are linear combinations of qί9. . .,qL,pί9. . . , / 7 M + i - ! .
Thus, for 0 ^ \w\ S θ - 1 and | ^ | ^ 2Λ0 we find

Iδ j S f ^ ί p , , . . . , ^ , - ! ) ^ Σ c o n s t - J l i l i
finite 0

x max Π
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S Σ const-(Λor
L l\ ||d^^'dl\\(2Λ0,0)

finite v

) <*••>

for t = 0, 1, where we have used (3.2) and (3.3). Let us remark that an alternative

way (which, moreover, would be more in the spirit of this paper) to derive the

bound (A.8) would consist of a repetition of the proof of Theorem 3 such that

I) dz£e£$ H^, 2Λ0) ^ P f — ) can be established. Anyway, the inequality (A.8) pro-
\Λ1J

vides the estimates we sought for the jSf's appearing in the first term on the r.h.s. of

(A.6). Using the fact that for all w and Λo ^ Λ0^min > 0,

V e ~{Λo/m)θ ^ const e " {Λ°/m)2
\d?dθR(Λθ9 p)\ ^ const Λθ

0~
|w| log ( — V e ~{Λo/m)θ ^ const e " {Λ°/m)2 (A.9)

\m J
(because θmin > 2) together with (A.8) we obtain for O ^ | w | ^ 0 — 1 and

|Pi| ^ 2 Λ 0 , 1 Siύn + t - 1:

I ^( f i rs t term on r.h.s. of (A.6))| ^ const e ~ Λo/m . (A. 10)

So we are left with verifying that the same bounds hold for the second term on the

r.h.s. of (A.6).

Because the renormalization conditions for the J^s are ^-independent we have

δ β 3 ? J ^ ^ ( 0 ) = 0 , ifn + | w | ^ 4 ( l - f ) + 0 ί; (A.ll)

hence, combining (A.6), (A. 10) and (A.ll) we see that

\d^i]\%Λo(0)\ ^ c o n s W - ^ / m , if n + \w\ ̂  4 (1 - t) + D t . (A. 12)

Referring to (A.2), (A.3) we note that G{1)Λ°>A° = - δθL
Λ°>\ thus

S f ί ' ^ Ξ O , ifn + | w | ^ 4 ( l - ί ) + β ί + l . (A. 13)

Acting with dΛ on (A.I) we can derive a linear differential flow equation for &r]\?n Λ°>
t = 0,1. Using the be (A. 12), (A.13), the bounds (3.2), (3.3) and techniques which are
similar to those employed in the proof of Theorem 3 we can show that (among
others)

-e~Λo/m. (A. 14)

(A.6) with (A. 10) and (A. 14) yields Theorem 5. •
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