
Commun. Math. Phys. 148, 249-281 (1992) Communications h

Mathematical
Physics

© Springer-Verlag 1992

Irrational Free Field Resolutions for W(sl(n))
and Extended Sugawara Construction

M. Niedermaier
II. Institute for Theoretical Physics, University of Hamburg, Luruper Chaussee 149,
W-2000 Hamburg 50, FRG

Received April 26, 1991; in revised form February 28, 1992

Abstract. The existence of Miura-type free field realizations is established for the
extended conformal algebras W(sl(n)) at irrational values of the screening para-
meter. The problem of the "closure" of the algebra is reduced to a finite dimen-
sional quantum group problem. The structure of the Fock space resolution and the
character formula are obtained for the irreducible modules. As graded vector
spaces these modules are shown to be isomorphic to the space of sl(ή) singlets in
sl(n) affine level 1 modules. The isomorphism is given by the φβy free field
realization of sl(n).

1. Introduction

Certain classes of low dimensional field theories are exactly soluble due to the
presence of infinite dimensional Lie algebras in these models. Besides their appear-
ance in 2-dimensional conformal field theories or their 3-dimensional topological
counterparts, also the massive, respectively, non-topological perturbations thereof
are expected to carry remnants of this algebraic structure. W(g) algebras are,
besides the affine Kac Moody algebras g, the second known class of infinite
dimensional Lie algebras descending from simple finite dimensional ones g [1-4].
In general they are intrinsically non-linear in that the commutation relations close
only on the enveloping algebra of the modes of the generating fields. This
accounts for both the variety of applications, as well as certain difficulties in
handling them.

In particular, the construction of realizations in terms of an underlying linear
oscillator or affine algebra is non-trivial. The major obstruction lies in proving that
the algebra of the proposed field generators closes. Associativity is then guaranteed
by the associativity of the underlying oscillator or affine algebra. The existence of
a realization turns out to be closely related to the structure of a characteristic
Hubert space J f (g) associated with it. The space Jf (g) encodes the information
about the operator product expansion of the proposed set of generating fields. If

contains a sufficient number of independent states (w.r.t. some graduation),
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the operator product algebra is forced to close. Once the algebra is known to exist,
the space J^(g) can be identified with the vacuum representation space for generic
central charge. In the first part of the present paper this strategy will be adopted to
prove the existence of a free field realization for all members of the W(sl(n)) series.
The required completeness property of the space ^f(g) will be traced back to
a finite dimensional quantum group problem. This is achieved by employing
a quantum group structure appearing in the multiple integrals of screening oper-
ators used in the Fock space construction of singular vectors [7, 8].

The procedure also leads to Fock space and Verma module resolutions for
a class of "irrational" W(sl(n)) modules. The irreducible modules £f(I(Λ + , A-)) of
that type are labelled by a pair of s/(rc)-weights and an irrational parameter s2

+,
related to the central charge. Their characteristic property is that the embedding
pattern of their singular vectors coincides with that of the underlying simple Lie
algebra. The space J^(g) is recovered as the singlet module if(/(0, 0)) and is
characterized as the intersection of the kernels of the screening operators on the
Fock module. In particular, a basis of W(sl(n)) is obtained in which the structure
constants are polynomial in the central charge. In this basis the decoupling of
nullfields, which may occur for special values of the central charge, as well as
certain pathological features associated with it can be discussed systematically. In
the second part of the paper the irrational W(sl(n)) modules are shown to be related
to the extended Sugawara construction in level k = 1 affine algebras. As graded
vector spaces, the modules J£(I(Λ, 0)) turn out to be isomorphic to the space of
sl(n) singlets in an affine level one module. The isomorphism can be made explicit
by employing an infinite dimensional analogue of the Harish-Chandra theorem.
Essentially it is given by the φβy free field realization of sl(ή). This leads to an
infinite dimensional abelian subalgebra in the space of sl(n) singlets [37].

The paper is organized as follows. In Sect. 2 extended conformal algebras are
defined in relation to their highest weight representations. Sections 3 and 4 are
devoted to the construction of the free field realization and the modules
1P(I(Λ+,A-)) of irrational type. Section 5 discusses the pathological features at
exceptional central charge and Sect. 6 deals with the extended Sugawara construc-
tion.

2. Definition of W{g) Algebras and Highest Weight Representations

For technical reasons it is appropriate to define PF-algebras as special meromor-
phic conformal field theories. Basically a meromorphic CFT (mCFT) or vertex
operator algebra [14,15] is an infinite dimensional Lie algebra which contains the
Virasoro algebra as a distinguished subalgebra and for which all fields have integer
or halfinteger conformal weight. In more detail, a mCFT consists of a (pre-)Hilbert
space J f and an assignment |P> -> P(z), which associates a unique field operator
P(z) to any state |P> in (a dense subspace of) Jf\ The Hubert space ^f is a vacuum
representation space of the Virasoro algebra, i.e. there exists a distinguished state
|L> for which the modes Ln, n e Έ of the associated field L(z) form a copy of the
Virasoro algebra and which define a unique su(l, 1) invariant vacuum by
Ls|ι;> = 0, s = 0, + 1. The dense subspace K is that of finite Lo grade and for an
element |P>, the associated field operator satisfies P(z)|0> = ezL~ι \P} (*) as well as
a number of additional conditions. The additional conditions force the spectrum of
Lo on J f to be integer or halfinteger and in particular guarantee the injectivity of
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the assignment (*). Let J4?Δ = {|P> e Jf: Lo |P> = Δ |P>} denote the subspaces of
fixed L0-grade, where Δ is called the (conformal) weight of |P> or P(z). The
operators P(z) are linear operators which map Jf_ to infinite sums of elements in
Jf_ i.e. P(z):J#^ -> @Δ^Δ. They are completely determined by their matrix ele-
ments {PΔΔ')Δ,Δ'ez + 5 where PΔΔ\ 2tfA -• ̂ fj'. The product P(z)g(w) exists (for
\z\|> |w|) if the series ΣΔ(Pi\PΔΔ.QΔΔk\Pk} is absolutely convergent for all |
P*> e 34?Δi, \Pk} e J^Δk, which is the last condition stipulated. The associativity of
the product is then guaranteed by the absolute convergence. For the product of
two fields P(z), Q(z) of weights ΔP, ΔQ one has the series expansion

= Σ (z-w)k(P-k-ΔpQ-ΔQ)(w), \z\>\w\, (2.1)
k= -ΔP-ΔQ

where (P-k-ΔPQ-ΔQ)M is the field corresponding to the state P-k-ΔpQ-ΔQ\v}Λn
particular, (P, Q)(z):= (P-k-ΔpQ-ΔQ)(z) is a natural definition of the normal or-
dered product of both fields. The usual contour deformation argument then shows
that (2.1) amounts to the specification of the Lie brackets [ P m , Qn~\. The Jacobi
identity is implied by the associativity of the operator product expansion and hence
is guaranteed whenever the product is well defined on Jf. A convenient basis for
the Lie algebra is obtained by decomposing the Hubert space J»f w.r.t. the action of
the 5w(l, 1) subalgebra of the Virasoro algebra generated by {L±ι,L0}. (For
notational simplicity we will from now on drop the distinction between Jf_ and Jf.)
The SM(1, 1) highest weight states satisfy Lx |P> = 0 and such states (or the corres-
ponding fields) are called quasiprimary. The subspace of quasiprimary states in
J«f will be denoted by J f. The sw(l, 1) descendences ZΛ1 |P> of a basis in J ^ make
up a basis of Jf.

W-algebras are special mCFTs. The basic point is that one does not take all
quasiprimary fields as the generators of the algebra but allows the use of normal
ordered products to generate the algebra.

Definition. A W-algebra of rank r is a meromorphic CFT which is generated by the
operations d and Jίfromr quasiprimary fields Wι(z) = L(z\ W2(z\ . . . , Wr(z).
The bilinearform on ©3&Δi, 1 ^ i S r induced by the Shapovalov form is non-
degenerate.

The last condition takes care of certain pathological features which may occur for
special values of the central charge (cf. Sect. 5). Jί{,) is a su(l, 1) covariant normal
ordering prescription. It differs from (,) (induced by (2.1)) by a finite number of
derivative terms. The choice of the normal ordering is in principle irrelevant, but
Jί{, ) is a convenient one [15]. The basis | W1} is unique up to linear transforma-
tions in the sectoj @^Δi, 1 ^ i ^ r. A basis Wι is called a Carton basis if its zero
modes satisfy [WQ, Wj

0~\ = 0, 1 ^ ij ^ r. A drawback of the above definition is
that it does not specify the commutator of arbitrary monomials in the modes W\.
To study the representation theory commutators of the type \_JV(Wh . . . W\)n,
Wj

n\ . . . Wim are needed, which cannot directly be traced back to the operator
product expansion. The evaluation from the [ W{

m, W{~] commutators on the other
hand involves infinite sums of generators, whose convergence at intermediate
stages is not guaranteed. This means that a regularization prescription is required.
Clearly the detailed form of the regularization should be irrelevant and, if possible,
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direct reference to it should be avoided. In the case of the so-called Casimir
algebras we shall therefore adopt the following, slightly stronger definition. To
prepare this set

Cr = {0 S c S r\c = r - 12p2(s2

+ + s+2 - 2), s\ irrational} , (2.2)

where p is the Weyl vector of g and r the rank. Further take Jf(g) to be the
(completion of the) span of the lexicographically ordered states of the form

WLV1 . . . f F _ v » , with

v, ε P a r ( ^ ) := {v = (n,, . . . , nt) e TLι: n3^ nj+ ^ Δ u \ ύ j ύ l l ^ 0}. (2.3)

Definition'. For a complex Lie algebra g a Casimir algebra W{g) is a W-algebrafor
which the weights of the generating fields coincide with the orders of the independent
Casimirs of g. For ce Cr the algebra is of rank r and the L0-graded highest weight
module satisfying Wι

n\v} = 0 iff n > — At is irreducible and coincides with Jf(g).

The additional condition guarantees that any regularization prescription em-
ployed to evaluate the missing commutators yields the same answer which is
moreover compatible with the parts directly fixed by the operator product expan-
sion. In Definition' weight spaces refer to the L0-graduation only. For Casimir
algebras with aCar tan basis one can introduce weight states as simultaneous
eigenstates of Wι

0. This leads to a Rr-graduation in terms of Weyl invariant
polynomials. We expect that every Casimir algebra possesses a Cartan basis. For
W{sl(r + 1)) (r ^ 4) this is the content of Proposition 4.2. Let Λ± ε P+ be dominant
integral weights of g and s+ be real parameters s.t. s+s- = — 1. Fix a Weyl
chamber, i.e. a set of simple roots {α l9 . . . , αr} c h* in the dual of the Cartan
subalgebra of g and set

xt = s+(Xi'(Λ+ + p) + s-<xr(Λ- + p), (2.4)

where p is the Weyl vector and '•' is the inner product in h\ sometimes also
denoted by ( , ) . Let Γ(Λ + ,Λ-) = Γ(xi, . . . , xr\ 1 ^ / ̂  r be polynomials of
degree i + 1 that generate the ring of Weyl invariant polynomials in xl9 . . . , xr

(but not necessarily the standard basis obtained from the Casimir operators).
A state |/> = |/(Λ + ,ΛL)>is called a highest weight vector for W(g) if it satisfies

W ί

n \ 0 = δ n , o I i ( Λ + , Λ - ) \ i y , n ^ O . (2.5)

These states can be regarded as highest weight states w.r.t. a triangular decomposi-
tion induced by the — ad L0-grading on the modes of composite fields
W(g) = (W+ ®W0® W-){g). The corresponding highest weight module

Σ . . . W'-Vr\iy (2.6)
vi, . . . , vrePar(l)

is called a Verma module for W(g). Define a shifted action w*Λ = w(Λ + p) — p
of the Weyl group of g on h*, so that (wα ,̂ A + p) = (αί5 w ~~λ * A + p) for w ε W. It
follows that I(A + 9A-) and hence the Verma module is invariant under the
diagonal action of the Weyl group W of g,

,A-l weW, (2.7)

and in particular, does not depend on the choice of the Weyl chamber.
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The Verma module V(I(Λ +, A-)) provides a reducible representation of W(g)
if the central charge is in the interval 0 ^ c ^ r. Irreducible highest weight repres-
entations ^(1) should be obtained by dividing out the maximal singular sub-
module S V{I{Λ+, Λ-)),

J?(J) = V(I)/SV(I) . (2.8)

The characteristic space 2tf (g) can be identified with the singlet module =£?(/(0, 0)).
The irreducible representation spaces <SC(I) are endowed with a unique non-
degenerate hermitian bilinear form, which we normalize by </|/> = 1. With
respect to this bilinear form the decomposition into quasiprimary and derivative
states on S£{ί) may then^be regarded as an orthogonal decomposjtion of S£(ϊ) into
a quasiprimary sector jfr(I) and its orthocomplement S£{ϊ) = &(I)®&(I)1. Let
for |P> in i f (/) denote J^IP) the projection onto the quasiprimary part.

These definitions do not, of course, imply the existence of the objects referred to.
For low rank cases W-algebras can explicitly be constructed by solving the
associativity condition. The complexity of the resulting commutation relations,
however, hinders a direct access to the representation theory. Conversely, a free
field realization provides a powerful tool to study the representation theory, but
leaves the construction of the realization as the nontrivial task. The major obstruc-
tion constructing such a free field realization lies in proving that the proposed set of
field generators closes. Associativity is then guaranteed by the associativity of the
underlying oscillator algebra. A candidate for a free field realization of W(sl(ή)) has
been proposed by Fateev and Lukyanov to take the form of a generalized Miura
transformation [3]. Despite sample calculations [30], considerations of the large
N limit [35] and the argument [12] \ no conclusive proof of the existence of this
realization seems to exist. We shall later argue that the problem of the closure of the
algebra can be reduced to a finite dimensional quantum group problem, thereby
establishing the existence of the free field realization. In preparation some results
are needed on intertwining operators for the quantum groups %q(sl(r + 1)).

3. ^r-Intertwiners

Let °llq{g) denote the standard ^-deformation of the (enveloping algebra) of the
complex simple Lie algebra g, with generators et, fu hi, 1 ̂  i ^ r[10, 11, 23]. Let
%(g) = %(n+)(g)%(h)<g)%(n-) be a triangular decomposition. The q-Verma
module is defined as Mq

Λ = %q(n-)vA, where vΛ is a (highest weight) vector s.t.
<%q(n+)vΛ = 0, hi

tvΛ = (Λ,hi)vΛ (where the identifications <%q(h)^%(h) and
h ^ h* were used in the inner product). Suppose two q-Verma modules Mq

Λ and
M\ to be given. The homomorphisms Mq

Λ -> M\ commuting with the action of
°llq{g) on M\ and M\ are called ^-intertwining operators. To describe the set of
such intertwiners HomUqig)(Mq

ί, M\) some preparations are needed.

1 The reasoning in [12] apparently is insensitive to the value of the central charge, which
diminishes its conclusiveness. The closure of the OPE can be affected by the presence of nullfields
in the sector 2tfΔ, A S 2maXi At — 1; which may happen for rational screening parameter. See [13]
on this point for the case of coset realizations and Sect. 5 for the free field realizations of
Fateev-Lukyanov-type
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Lemma 3.1. For q not a root of unity:

a) Given A, Λe to*, there exists a 1-1 correspondence between elements of°llq(n-)

b) There is a 1 — 1 correspondence between elements ofHom<%q(g)(Mq

Λ, M\) and
singular vectors in M\ of weight A. Moreover', every such intertwiner is injective, i.e.
defines an embedding Mq

Λ c; M\.

We include the proof to illustrate the concepts (see also [22]).

Proof, a) The maps Q e Hom^qin_)(Mq

Λ, M\) are completely determined by their
action on vA\ so suppose that Q(vΛ) = xvχ, for some x e %q(n-). Then

= yQ{vΛ) = yxvχ9 Vye%{n.). (3.1)

Conversely, every x e Φβ(n_) determines a map Q e Homqίq{n_)(M\, M\) by (3.1).
Define now a representation p of °Uq{n-) on Mq

Λ by right multiplication

p ( f t ) ( y v A ) = -yfiVΛ, i = l . . . r , (3.2)

and a "translation operator" Γ^: MΛ-^Mχ by 7 ^ 0 ^ ) = )W;Ϊ. The map
x ^> p(x)T* then gives a 1-1 correspondence between °llq(n-) and

b) Requiring that Q in (3.1) intertwines also with ύlί(n+) amounts to n+ (xt;^) = 0,
which means that xvχ should be a singular vector in M\ of weight A. Injectivity
follows from (3.1). D

To find elements x e f ? ( « _ ) which give rise to an intertwiner Qe
Hom<%qig)(Mq

Λ, M\) one will try first to incorporate the intertwining property with
^ίq{h). This is to say that it suffices to consider elements in %q{n-) of isospin A — A.
Every p(f) in (3.2) should thus be accompanied by a change in the highest weight
A^> A = A + αt . Defining st = p(f) Ti+<x\ every polynomial in these "screening
operators" will give rise to a map intertwining with %q{h) 0 <%q(n-). The subset of
such polynomials that intertwines with the action of all of %q(g) is in principle fixed

by the remaining commutator \_euSj~]= — di} —Ti+0Ci. On a general

monomial in the screening operators the action of et is (on Mq

Λ) given by

lehstl . . . SiJ = - Σ ~ ^ stι . . . 5%. . . . sinTi+«, (3.3)
j:ίj=i q - q

where Z, = (A, at\ a$ = aijij+1 + . . . + aijin and ' A ' denotes omission. One can
check that \_eu {Sj)lj + 1~\ = 0 and M Γ i * Λ , so that

sί' + 1 e H o m t ί ( ί ) ( M ; ί M , M Ϊ ) (3.4)

provides a set of intertwiners. In the context of Lemma 3.1, the intertwiners (3.4)
correspond to the singular vectors / ι + 1 vΛ of weight rf * yl in M Λ , which generate
the maximal singular submodule of Mq

Λ [26]. Other intertwiners are more difficult
to find from (3.3) directly. A systematic description is possible by means of a partial
ordering on the Weyl group W of g. Recall that the Weyl group of 4(r + 1) is
isomorphic to the symmetric group Sr+1. The generators ri9 1 ̂  i ^ r permute the
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ith and i'+ 1 th site and correspond to reflections in the simple roots α f. An
expression w = rh . . . rh for w e ^ is called reduced if it contains the minimal
number of reflections required. In this case I = l(w) is called length oϊw e W. For
wl9 w2 e Wwrite u^ <- w2ifw1 = rαw2 for some α e A+ a n d / ^ ) = /(w2) + l.The
Bruhat ordering on Wis then defined by: w -< w iff there exist w1? . . . , wk e l^s.t.
w <- wx <- . . . <- wk <- w. In the appendix a number of related facts have been
summarized. As in the undeformed case [18, 19] one then has

Proposition 3.2. For Λe P+, q not a root of unity:

1 if w < w

For vv -< w let Q%w denote the intertwiner. This statement is equivalent to certain
rearrangement identities in %q(n-) to which we will return later.

If q is not a root of unity, the Verma module Mq

Λ is reducible if
l(Λ + p, α) - m ] ^ = 0, where ά = 2α/(α, α), qa = q{">a)/2 and [n]β = ^π - ^ " 7
(g — ̂ f"1). In this case there exists a ^-singular vector QιJ®vΛ and an associated
direct intertwiner Qι

a

j = Qw^ with w*Λ - w*Λ = (lj + l)α and /7 = (/I, α7). We
first give an enumeration of the intertwiners Q[J. Let ae Λ+ be a positive root of
height fc, i.e. α = αf + . . . + αt-+fc _! for 1 ^ i ^ r — k + 1. To each inequivalent
way of writing α as a simple root with a string of fundamental reflections applied to
it, there exists an intertwining operator QιJ, where j =j(oc) is the index defined in
(A.2). The associated presentation of the root α is given by

oc = rh. . . r^^oίj, rα = wrjw'1 = rh . . . rik_jjrilz_γ . . . rh. (3.5)

Modulo Weyl-equivalent forms this is explicitly

Thus, the set of direct intertwining operators is enumerated by

β ^ + . . . + α i + k , j = i , . . . , i + fe. (3.6)

In total these are Σaej+ htoc = ^r(r + l)(r + 2) = 2p2 operators.
The existence has been established in [43] by using an Ansatz in terms of single

root space vectors only, corresponding to the form rα = wrjW 1 in (3.5). Explicitly

Qh= y •-. y r s f h
s i = O s t = 0

— ( _yi+ ... +st r I *i +

L . . . St — V / ^ ί \

+ p)(ftj],
([/I + pJίΛ,,) - S l ] , - ' " ί(Λ + p)(hit) - s ( y

hx+ ••• +hs ί ^ S ^ j - ί

h , ^ + ••• + hj+k-s j £ s Z k - l = : t ' ( '

where the subscript q refers to ^-dimensions and g-binomials and Ct are constants.
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2 = α 1 + α 2

Fig. 1. Embedding diagram for irrational τT(s/(3)), #β(S/(3)) and si (3) modules

By suitably combining the intertwiners, the irreducible modules Lq

Λ can now be
described as the only nonvanishing cohomology class in a complex of g-Verma
modules. The result is a resolution form-identical to the undeformed case (BGG-
resolution [18,19]). In particular, the resolution gives an exhaustive description of
the singular submodules of MΛ as well as their mutual embeddings. A systematic
procedure to explicitly work out the embedding pattern of the singular modules is
the following: First express the reflections corresponding to the positive roots in
terms of the fundamental reflections rt and likewise write down reduced expressions
for the Weyl group elements. For given w e W then work out all w e W s.t. w <^w.
Clearly the relation vv <- w in the Weyl group corresponds to direct embeddings of
the modules, i.e. those for which there is no singular module Mq in Mq

Λ s.t.
M% * Λ c; Mq c* M% # Λ. These direct embeddings will also be represented by an
arrow, pointing to the submodule. The diagrams for s/(3) and 5/(4) shown in Figs. 1,
2 have been obtained in this way. For Λ+ not dominant integral, the number of
singular vectors is less than (r + 1)! and the embedding diagrams (forming subdiag-
rams of the dominant integral ones) can be worked out similarly. Observe that for
w1,w2e Ws.t /(w^) = /(w2) + 2 the number of elements w e Ws.t wx <- w <- w2 is
either zero or two. In the latter case the quadruple (w1? w, w, w2) is called a square
and the embedding diagram is composed of such squares. In the BGG resolution to
each arrow one assigns a sign s(ww) = ± 1 s.t. for each square in the complex the
products of signs equals — 1. This can be done consistently throughout the
diagram.

The nilpotency of the operators in the complex is then equivalent to certain
compatibility relations for the intertwiners, which express the commutativity of the
squares in the embedding diagram (see also Theorems 4.5, 4.6). There are two
principle types of squares in the embedding diagram, which are shown in Fig. 3.a, b,
where in 3.a the positive roots α, β are such that also α + β e A +. Other types of
squares are obtained from them by reflection in the diagonals. The commutativity
of squares of type b does not give rise to an integrability condition for the involved
intertwiners, due to the invariance of the resolution under oίi^ocr+1-i. Squares of
type 3.a give rise to an integrability condition of the form

Qla+βQla = Q l i + l j Q l i > 0L + β e Δ + . (3.8)

These relations can be traced back to the 5/(3) case [43], which has been verified
in [7].
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h Γ1 Γ2 Γ 3 Γ 2 η Γ3 Γ2 Γ3 Γ, Γ2 Γ3 Γ2 li Γ

r 3

 r 2 r3

Fig. 2. Embedding diagram for irrational Ψ(sl(4)), Wq(Sl(4)) andίϊ(4) modules

α+ β

(b)

Fig. 3. Fundamental squares in the embedding diagrams

4. Realizations and Resolutions

4.1. Free Field Realization. Introduce r scalar fields φa(z)

• v 1

φa(z)φb(w) = - δabln(z - w ) + . . .

with modes having free oscillator commutation relations

(4.1)

(4.2)
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For Λ+Λ- e h* let \Λ+, A- > be a vector satisfying

α α ; | Λ + , Λ L > = 0, n > 0 ,

( 2 s o * - p + * p ) \ Λ + 9 Λ - } = x a ( Λ + , Λ - ) \ Λ + 9 Λ - y 9 (4.3)

for some eigenvalue xa(A + 9A-). We choose normalizations s.t.
Λ + aΛ-a = Λ+ A- =(A + ,Λ-) is the bilinear form on ft*. The corresponding
Fock space module is denoted by FΛ+Λ_. In the enveloping algebra of the
oscillator algebra (4.2) introduce r field operators W(z) by means oϊ a symmetrized
Miura transformation

τ\_2sodz + ihr+1-dxφ]L2sodz + i V δ z φ ] . . . [2so<3z + ihrdgφ] =

= - Σ ^x^r', (4.4)
£ = - 1

where α,- ='.hj+1 — hj+2(K+2 = fti) defines hj9 1 ^j ^r + 1, 2s0 = s+ + s- and
normal ordering shall be implicit, τ projects onto the sector invariant under the
automorphism τ: αf-> — αr +i_/, s+ -» —5+ of the Dynkin diagram, which is
implemented by the maximal element of the Weyl group (for simplicity we use the
same symbol for the automorphism and the associated projection operator). This
symmetrization turns out to be crucial in many respects (cf. Sects. 4.5, 6 and [37]).
For the generators one finds, in particular, W~γ = — 1, W° = 0 and

L(z) = W1(z) = -l-dzφ-dzφ- 2ίsop d2

z φ (4.5)

generates a Virasoro algebra of central charge c = r — 48sop2. The fields
W\ 1 ^ i ^ r are of Lo-weight i + 1, but in general neither primary nor quasiprimary
relative to L(z). By adding suitable normal ordered products of W*'1, . . . , W1 to
Wi one can try to promote W{ to a quasiprimary or primary field. Since
τL(z) = L(z) the invariance under τ is clearly a necessary condition for this to be
possible. As there is no possible "counterterm," W2 is always primary. For the
other generators the projection onto quasiprimary or primary fields is nontrivial.
The projection onto quasiprimary fields turns out to be unproblematic and will in
the following often implicitly be assumed to be performed. The projection onto
primary fields may fail for certain values of the central charge and will be discussed
in Sect. 5. The main result to be proved in Sect. 4.3 is now simply

Theorem 4.1. {Existence) The (quasiprimary projection of the) symmetrized Miura
fields Wι(z) generate a W(sl(r + 1)) algebra in the sense defined. The structure
constants are polynomial in the central charge.

The characteristic Hubert space will be a certain subspace f̂00 of Foo, which
implies the bounds 0 ^ c ^ r on the accessible range of the central charge. (In a free
field realization one has 0 ^ <L, L} = c/2 and the upper bound is required for
condition (2.3).) After the commutation relations have been reconstructed, the
range of definition of the algebra can be extended to all values of the central charge,
due to the polynomial form of the structure constants.

The Miura fields W\z) do, however, not form a Cartan basis. A Cartan basis
can be obtained as follows: Let Ω be the generator of the cyclic group %r+1 acting
by Ω: (ocu . . . , αr, - θ) -> (α2, . . . , αr, - θ, α x) on the root system; where θ is the
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highest root. In terms of the fundamental reflections ri91 S i ^ r of the Weyl group,
Ω is given by the Coxeter element Ω = r1r2 . . . rr. The Dynkin automorphism τ is
implemented by the maximal element of the Weyl group. Together Ω and τ gener-
ate a Coxeter subgroup of the Weyl group with relations

Ω r + 1 = l, τ 2 = l, (Ωτ)2 = l . (4.6)

These are the defining relations of the dihedral group Dr+1, i.e. the symmetry group
of a regular polygon (r + 1-gon). Let P [ s 0 , αi'dz</>] be a (normal ordered) func-
tional in so,θίi'φ. By ΩP[s 0 , oci'dzφ'] = P[sθ9 (Ωtti) dzφ~\ and τ P [ 5 0 , <vdz(/>]
= P [ — 50, (ταi) 5 z 0] one has an induced action of the dihedral group. Let

Dr+1 denote the projector onto the dihedral invariant subsector and set

Dr + 1[2sodz + ίhr + 1 -dzφ~\\_2sodz + ihr-dzφ~\ . . . [2sodz + ίh1 dzφ~]

= - £ D'WVsodγ-1 . (4.7)
i = - 1

In particular, D " 1 = — 1, D° = 0, D 1 = — jdzφ dzφ. The fields are not quasi-
primary relative to L(z) in (4.5). Define

) , (4.8)

where Jί denotes the projection onto quasiprimary fields (i.e. L1 \ W1} = 0).

Proposition 4.2. (r ^ 4) Γ/zβ ^β/(is Wι(z\ 1 ^ i: ^ r form a Carton basis of
W(sl(r + 1)). The structure constants are polynomial in the central charge.

We expect this to be correct in general. We will return to this statement in Sect. 3.4
when discussing the projection onto primary fields. See also [37] for the relation to
infinite dimensional abelian subalgebras. The Cartan basis is the canonical basis to
study the representation theory. In particular, one has free field realizations of
highest weight vectors, Verma modules etc. The labels Γ(Λ + , Λ-) are calculated
explicitly as the eigenvalues of the zero modes Wι

0 on |Λ + ,Λ_>. From the
definition (4.8) it can be shown that Γ generate the ring of Weyl invariant
polynomials in the variables xh defined in (2.4). In particular

= -s2+(Λ + 9Λ+ + 2 p ) + p2 -(Λ+ + p,Λ- + p)

+ ^ s 2 _ ( Λ _ , Λ _ + 2 p ) , (4.9)

where α " 1 is the inverse of the Cartan matrix. One has the isomorphisms

, w~ι * Λ- •> F*Λ+ t Λ _ = F - ( Λ + + 2 p ) , -(Λ- +2p)> (4.10)

as modules over the W-algebra (where F*Λ+,Λ- denotes the dual of FΛ+ Λ_ w.r.t. the
standard inner product).
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4.2. Resolutions and Character Formula. F o r λ + iλ- eh* i n t r o d u c e t h e vertex
operator

Vλ+ yλ_ '.FΛ+Λ_ ->FΛ+ +λ+ tΛ_ +λ_

Vλ+,λ_ = εxp(ίs + λ+-φ(z) + is-λ- φ(z)) , (4.11)

where again normal ordering shall be implicit. The "screening operators"
Vΐ = V-au0, V[~ = VOt _α., 1 S ΐ S r correspond to minus the simple roots. For
any state \P) e FΛ+Λ_ consider now the vectorspace MP spanned by all states of
the form

= J Av, . . . dw.dz, ...dz, Vfι{wι) . . . V^i)VΓM) VΓΛ

(4.12)

where the contour is given in Fig. 4.a. The integrand is defined by analytic
continuation from the region 0 < zn < . . . <zx on the real axis, where the
integrand is taken to be real. The presence of a cut along 0, 1 will be seen later.
The motivation for this choice of contours and a discussion of some of its
properties can be found in [7]. The monodromy properties of the integrand
can be exhibited by complete normal ordering. From this one deduces that
the q-Serre relations are valid within the contour integrals [ . . . ] [7], i.e. the
relations

ViViVj-iq + q-^ViVjVi+VjViV^Q if atj = - 1

VtVj-VjV^O if fly = 0 , l ' J

hold in the sense that inserting the r.h.s. into an arbitrary contour integral of MP,
causes it to vanish. Here Vt stands for either Vΐ or VI with q = q+ = eiπs2+ or
q = q_ = eιπs-, respectively. Similarly A shall be shorthand for the respective of the
weights Λ+ or A- . In the same sense the 5+ and s_ sectors decouple within [. . .] as
the operators Vf and Vf have no relative monodromy

VΐVJ-VjVΐ=Q, l^Uj^r. (4.14)

Fig. 4a, b Contour in multi-screening integrals. Deformed contour Fig. a.
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The significance of the operators V* for the W-algebra lies in the operator product
expansions

/ WiJ(w)V'(w)
W\z) Vj(w) = ̂  z J

WiJ(z) Vj(w) = o(l), \z\ > \w\ (4.16)

i=-ί kφjj+l

where, except for the deletion the order in the product is the same as in (4.4). They
imply the following commutator (to be compared with the affine case [7].)

x{Vh...Vik... VinJ\P}, (4.17)

where

ctJ(z) = W>!{\) Vj(lW>+> ^ y - , (4.18)

ak = aikik+ι + . . . + aikin, ^ = Σ auι* >
ι*k

h = {A,at), (§ai δzφ)\Py=(li + N)\Py, (4.19)

and ' " ' denotes omission. Equation (4.16) implies that the product in (4.18) is well
defined and independent of the order. Comparing (4.17) with (3.3) one sees that
W^z) acts by commutation on [ F f l . . . VinJ\P},\P} e FOiΛ or FΛ,0 in a similar
way as et does onfiί . . .fin'vΛ. Although the actions do not coincide, the r.h.s. of
(4.17) vanishes whenever the r.h.s. of (3.3) does. To check this, it suffices to observe
that in both cases the strings of type fh . . .£ . . . fin with some fixed fk removed
have to cancel separately for each k, so that it is irrelevant whether their overall
factor changes with k or does not. The relations (4.13), (4.17) therefore suggest the
following result:

Proposition 4.3. For fixed Λ-eP+ there exists a 1-1 correspondence between
elements in H o m ^ ^ M ^ , M\\ q not a root of unity and Hom^ (^)(F^+ Λ_ ,F\+Λ_\
ceCr. In terms of the elements in °Uq(n-) associated to the <%q(g) intertwiners
through Lemma 3.1.a) it reads

It is clear that every <%q(g) intertwiner will give rise to a W(g) intertwiner. For
example one can check from (4.17) that

Ψk = Q,r^=Wΐ)l^γ\Λ K*Λ^Λ-^F\^Λ-. (4.20)

provides a basic set of intertwiners. The point in Proposition 4.3 is the claimed 1-1
correspondence, which unfortunately requires a lot more work. Ultimately it is this
1-1 correspondence which guarantees the completeness property (2.3) in the
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definition of the W-algebra, and hence the existence of the free field realization. It is
therefore necessary to prove this result without presupposing the closure of the
W-algebra. This forces one to an indirect line of reasoning, which will be detailed in
Sects. 4.3-4.5. Given this result Proposition 4.3 implies

Proposition 4.4. For given Λ+ one has

1 if w-<w

For w<w let Qw$ denote the intertwiner. Set

UWW — ] Λ +1

[KJ otherwise ,

with the sign pattern s(ww) = ± 1 as in the BGG resolution and consider dw$ as theg p ()
matrix elements ofd(k): F<f>+ Λ_ -* F{^\\, l(w) = k9 l(w) = k + 1, with

F'Ϊ\Λ_= © FwmΛ+tΛ_. (4.22)
{w:l(w) = k}

The integrability conditions (3.8) are then equivalent to d(k)d(k+1) = 0. One obtains
a Fock space resolution form-identical to that of the finite dimensional case (e.g.
[27]).

Theorem 4.5. Let J£{I) be an irreducible W(sl(r + 1)) module with highest weight
state |/> = \I(Λ + 9Λ-)}9 Λ±eP+ and ceCr. There exists a complex of Fock
modules

u-nrmalf
[0 otherwise .

In particular,

f))ι'~+1T-FΛ + Λ-->FΛ+,ri,ΛJ, (4.23)
1 = 1

provides the required Fock space model of the irreducible module =£?(/). Here
ί.* = (A+, α), t = \Δ +1 and τ again projects onto the sector invariant under the
Dynkin automorphism. This is necessary, for example, to avoid an overcounting of
solutions. The equivalence of both characterizations of J^Λ+Λ- follows from the
invariance under the diagonal action of the Weyl group. As a consistency check we
note that, in particular, the highest weight state \A + 9A-} of FΛ+Λ_ solves Eqs.
(4.23). This is to say that the corresponding type of multiple screening integrals
have to vanish

l V i ι . . . V i n { V i f } A + A _ \ Λ + 9 Λ - y = 0 i f f fc/* > / / * = . (4.24)
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Let [ . . .' ] z , i denote the screening integral with the contour deformed to that
shown in Fig. 4.b and consider only one of the screening sectors. Then

lVh . . . Vin(V^VΛ,0(z)J =g(q) f ] {Φ ~ q~U + 2J)ΪVh . . . Vin(Vi)kiVΛt0{z)-\zΛ ,
j=o

(4.25)

where g(q) is a nonzero polynomial coming from the deformation of the contours
Viί . . . Vin. This is the multi-contour analogue of a transformation that appears
also in the Hankel form of the Γ function [8]. Notice that (4.24) can be interpreted
as turning the space M\Λ+Λ_ > into an irreducible %q(sl(r + l))-module. Lemma
4.8.c) in Sect. 4.4 guarantees that the Fock space resolution can be "lifted" to
a Verma module resolution.

Theorem 4.6. Let J£(I) be an irreducible W(g) module of highest weight I(Λ+, A-),
CE Cr. There exists a resolution of <£(1) in terms of Verma modules, i.e. a complex
(V(l\ d) (with dik) defined in terms of the canonical embeddings)

d(0) d(l) d(t)

o<— vψu—... <— vf 4-o

(0 otherwise

with Vψ = 0 V(I(w*Λ + 9Λ-)) and t = \A+\.

The character for the irreducible modules Sέ7(I) now follows from the so-called
algebraic Lefschetz theorem. If the character of the Verma modules is known, one
would expect that the character of the irreducible modules can be obtained by
suitably cross-subtracting the dimensions of the singular submodules. Generally,
the algebraic Lefschetz theorem states that also in infinite, one- or two-sided
resolutions

TYLΛ Θ = £ ( - )kTrrnΘik), (4.26)
k

where the sum is over all constituents f 5} of the resolution and Θ(k) satisfies
<J<*)0<*+1) = φ(k+l)d(k)9 0(0) |L^ = φm T o a p p l y t h i s t Q t h e c a s e a t h a n d ? w i t h φ(k)
induced by the L0-graduation, an expression for the degree of the singular sub-
modules is needed. From (4.9) one has

9 Λ - ) - I 1 ( Λ + 9 Λ - ) = (Λ+ - w * Λ + , Λ _ + p ) (4.27)

and by (A.2) this equals

- +p,α)

p, aik)(Λ- + p, rh . . . r^^aj (4.28)
k=l
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with w = rh . . . rh a reduced expression. Equation (4.28) has a simple interpreta-
tion in terms of the embedding diagrams, in that the l.h.s. depends only on the set
A +~1 not on the different ways to write it as α e A%r* for some w e W, w'1 <^w~x

and α e A +. By induction on / this means that any path of direct embeddings in the
diagram - each step contributing a term to the sum in (4.28) - leads to the same
answer, the degree of V(I(w*Λ + 9Λ-)).

The (specialized) character of a Verma module of weight I(Λ + ,Λ-) is
ch^(I)(τ) = (φ(τ))~re2πiτIHΛ+Λ-\ where φ(τ) is the Euler function
Π«°°=i(l - ί")" 1 for t = e2πiτ. Using Eq. (4.28) for the degree and the algebraic
Lefschetz theorem, the character of the irreducible modules is found as

2πiτIι(Λ+Λ-)

xexpj 2πίτ £ (Λ+ + p, am)(Λ- + p,α)) . (4.29)

In the special case where A- —0 OT Λ+ =0 this is conveniently rewritten in
product form: Recall that for μe P+ the specialization of type μ of the formal
exponential Fμ: C [e{ - α j , . . . , e( - α r)] -> C[> 2 π / τ ] is defined by Fμ(e( - λ)) =

e2πh(λ,μ) ̂ g ] Qne may thus, for fixed Λ+ in (4.29) think of Λ. + p as defining the
specialization of the formal Weyl character. The denominator identity then implies
product formulas for the principally specialized characters with A _ = 0:

2niτlHΛ,0)

c h J f U . o ί τ ) = (.( Π (1 - e2*w>) (4.30)
\Ψ\τ)) <χeA +

all this being for central charge c = r — 48SQP 2 with irrational screening parameter

4
4.3. Existence of the Free Field Realization. This section is devoted to the proof of
the results given before. In particular, a proof of the existence of the free field
realization (Theorem 4.1) will be given, in the course of which the other desiderata
will follow. We shall adopt the following

Strategy. The problem consists in showing that the operator product algebra of
the proposed generating fields closes. This will be done by showing that the
characteristic space J^(g) = ^foo has the completeness property (2.3), i.e. that there
are no other singular vectors than those implied by the relations Wi-^v} = 0,
n > 0. The study of singular vectors is in principle a representation theoretical task.
Without the algebra known to close, one cannot talk about representation theory.
However, any candidate for a singular vector has to be an eigenstate of Lo and to
be annihilated by the positive modes Wι

n, n > 0. In a Fock space realization one
can find these candidates without knowing the commutation relations. By studying
the structure of such "would be" singular vectors in #?00 (or generally in modules
^Λ+Λ-> Λ+ eP+) the question of the absence of additional singular vectors
can be reduced to a finite dimensional quantum group problem. The solution
of the latter is provided by the explicit construction of the intertwiners

Φ g ( ^( qp
ww e Hom Φ g ( ^(M~ % y l , Mq

w*Λ) satisfying the integrability conditions (3.8).
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Introduce the vector space Vπ(I(Λ+, Λ-)) generated by the modes of the fields
W(z) in F'Λ+Λ_

Vπ(I(Λ + ,Λ.))= Σ CWlvι...W
r-Vr\Λ + ,Λ->* (4.31)

vi vrePar(l)

but strictly to be regarded as carrying only a (non-invariant) action of the oscillator
algebra. The labels Γ(A + , Λ_) = Γ( - (Λ+ + p), - (Λ_ + p)) are as before de-
fined as the eigenvalues of the zero modes W% on | A +, A _ > *, with / 1 given by (4.9).
The relations Fw^Λ+fΛ_ ^ FΛ+tW-i ^A_, F*Λ+ ,Λ_ ^ F-iΛ++2p), -u-+iP)

 n o w

hold in the sense that both sides lead to the same vector space Vπ(I(A + , A-)).

4.4. π-Singular Vectors. In the present context, define a π-singular vector of
FΛ+Λ- as an eigenstate of L o , annihilated by the positive modes W{

n9 n>0,
1 ^ i' <* r (with π mnemotechnical for the Fock space projection). It is not part of
the definition that these states are expressible in terms of Wι-n9 n > 0 modes. The
(positive) difference of the weight to / 1 (A +, A _) is called degree and the vector
space generated by it via (4.31) a π-singular subspace. The following proposition
gives the well-known Fock space construction of π-singular vectors [2],

Proposition 4.7. For α e A + 9 A± e P,m± positive integers, there exists a π-singular
vector s in F%+Λ_ at degree m+ni- whenever xa = s+m+ + 5 _ m _ . The Weyl
invariants Γ(xi, . . . , xr), Xι = xai separate different singular vectors (i.e. I(x) Φ I(x)
implies s(x) + s(x)).2

In principle, the π-singular vectors of a given Fock module and their descendence
pattern can be obtained from an iterated application of Proposition 4.7 and
analysis of the multiplicities of the Kac determinant. Due to the somewhat indirect
criterion in the condition of 4.7, this is feasible only in simple cases. For
5+ irrational, the iteration can be solved in terms of the Weyl group of sl(r + 1) and
provides a rudimentary form of Proposition 4.4.

Proposition 4.4'. For s2

+ irrational, the π-singular subspaces ofF*Λ+Λ_, A± eP +

(provided by Prop. 4.7) are grouped into disjoint sets Vπ(I(w*A+9A-)) labelled by
elements of the Weyl group W. Their descendence pattern is induced by the Bruhat
ordering on W, i.e. Vπ(I(w*A + , A-)) c F1^Λ+ >Λ_ is a (set of) singular vector

*Λ+iΛ_ ifΐ w<w.

Proof. For s+ irrational one can parametrize xa(A + 9 A-) = s+(A+ + p, α ) +
s-(A- + p, α) and has xa(A + 9 A-) = xa(A + 9A-) iff yl+ = A±(*). S u p p o s e the
Proposition 4.7 implies the existence of a π-singular vector in FΛ+Λ_ for some
ace A + 9 A ± e P . I t s d e g r e e i s ( A + + p , oc)(A- + p , α ) = (A+ — r a * A + , A - + p ) s o
that by (4.27) the Fock space labels are given by (rα * A +, A _) or (A +, r ~ * * A _).
By iteration it follows, in particular, that the labels A+ of all π-singular vectors
obtained in this way are integral weights. Every integral weight is Weyl equivalent
to one and only one dominant integral weight. Thus, every such π-singular vector
otF*Λ+Λ_9A± e P+ is labeled by some element of the Weyl group. Further, inside
a fixed Weyl chamber, the map Xi->P is invertible (e.g. [16]). Together with (*)
this means that different Weyl group elements correspond to different singular

The converse is not correct in general
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vectors (but still one element might lable a number of them). To^ obtain the
descendence pattern of these π-singular vectors, fix A- e P + and set A + = w * Λ +
for some weW, Λ+eP+. The condition (α, Λ + + / ? ) > 0 is equivalent to
w - 1 α > 0 (or α e AX~lr% see Appendix) and by (A.I) one has /(rαw) > /(w). Equa-
tion (A.2) implies, in particular, that the degree (Λ+ — w*Λ + ,Λ- + p) is strict
monotonically increasing with /(w). If/(rαw) = l(w) + 1, the relation rαw <- w there-
fore corresponds to a direct descendence of vector spaces; i.e. those for which there
is no π-singular vector space Vπ a F* s.t. F%ittΛ+tΛ_ a F* c F*w*Λ+ίΛ_ as proper
submodules. Thus, Vπ(I(w*Λ + ,Λ-)) a F*W^Λ+Λ_ is a (set of) π-singular vector
space(s) of F$*Λ+jΛ_, whenever w<w. For the converse let Vπ(I(ra*Λ + 9Λ-))
be a (set of) singular subspace(s) of F%^Λ+tΛ_ and take l(raw) = l(w) + k. By
(A.4) there exists a sequence βk, . . . /β1e A+ s.t. rαw = rβk . . . rβιw9

l(rβi . . . rβlw) = /(w) + i, 1 ̂  i ^ fc. This means r α w<w. D

To proceed with the general discussion, a number of points should be empha-
sized. First, the above Proposition 4.4' does not exclude that there are several
π-singular vectors labeled by the same Weyl group element, nor does it guarantee
that all π-singular vectors can be found in this way. Second, the π-singular vectors
and the corresponding vector spaces have been introduced as pure Fock space
concepts and are in general not known to be elements of Vπ(I(Λ + , A-.)). In
particular vv<-w does not imply so far that Vπ(I(w*A + 9A-)) is a subspace of
Vπ(I(w *A + 9A-)\ Suppose further momentarily that the W(sl(r + 1)) algebra and
its free field realization (4.4) are known to exist. Let π: V -> Vn be the linear map
defined by the free field realization (if irrelevant, we will sometimes drop the labels
I(Λ + ,Λ-)). In general π will be a projection: A π-singular vector either has
a pre-image in the Verma module (which is then annihilated by W(

n, n > 0) or it
does not, in which case the mapping π must be singular. For s2

+ irrational, such
situations can partially be excluded. As indicated above, the mapping from the
Weyl invariant polynomials PiXi, . . . , xr) to the pairs (Λ +, A-) e h* x h* is 1-1
inside a fixed Weyl chamber. For given A _ e P +, the weights A + e h* can therefore
be used to label the π-singular vectors.

Lemma 4.8. For fixed A- eP+, s\ irrational:
a) π-singular vectors exist only for A+ eW*A + , the Weyl orbit of A+ in h*.
b) The π-singular vectors labeled byri*A + ,A+ e P+ are unique and are elements of
Vπ(I(A +, A_)). In particular Vπ(I(ri*A + 9Λ-)), 1 ̂  i S r are subspaces of

c) If the W(sl(r + 1)) algebra and its free field realization (4.4) are known to exist, the
singular vector labeled by rt^A + 9 A+ e P+ in V is unique and is mapped onto the
corresponding π-singular vector in Vπ.

This follows from the determinant of the bilinear form on Vπ(I(A +, A-)) and its
multiplicities. Using the basis (4.31) the determinant for Vπ is evaluated from the
oscillator algebra (i.e. without pre-supposing the closure of the ^-algebra) [4, 31].
The result is, up to a non-zero factor, given by

det^ N(I(A+, A-)) = Π Π [*«- s+m+ - s-m-yAN-m+m-), (4.32)
aeA+ {m + m- ^ N}

where xα = s+ (α, A+ + p) + s_ (α, A- + p) and Pr(N) is the number of partitions
of Λf into parts of r colours. Notice that the r.h.s. is invariant under thέ diagonal
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action of tlie Weyl group in xa(Λ +, A-). The determinant therefore depends only
on the invariants I(Λ + , Λ-\ as anticipated by the notation.
Proof of Lemma 4.8. a) Vanishing of dety ( i V ) is a necessary condition for the
existence of at least one vector at grade N, which is either π-singular or π-co-singular.
As in the proof of Proposition 4.4' one concludes that for s + irrational, the Fock
space labels of the π-(co-)singular vector(s) are given by (rα * A +, A _) or (A +, r~1 *
A _). The Fock module generated by (each of) it may again contain π-(co-)singular
vectors. Upon iteration, one sees that for fixed A- e P+, the Fock space labels of
π-(co-)singular vectors are constrained to the Weyl orbit W*A+ of Λ+ eh*.
b) Generally the number of π-(co-)singular vectors that appear at grade N can
not exceed the order to which d e t ^ ( i V ) vanishes. Further, the π-singular vectors
associated with grades for which the determinant vanishes for the first time (in
order of increasing N) are known to be π-singular (not π-co-singular) and to
be elements of Vπ [31]. Clearly the Weyl reflections corresponding to the simple
roots yield the singular vectors of lowest possible grade. Take therefore
N = m+m- = (A+ + p,α^.)(yl_ + p, α .̂), 1 ^j ^ k to be the grade at which the
determinant vanishes for the first time with multiplicity 1 ^ k ^ r. The Fock space
construction provides k π-singular vectors at that degree, which are thus known
to be unique and to be elements of Vπ. To extend this to the remaining
π-(co-)singular vectors labeled by rt*A + , iφ{iί9 ... ,ik}9 it suffices to show that
the Fock space construction of the η * A + π-singular vectors does not depend on
the relative size of the Dynkin labels. For fixed i one can choose a basis in r-

dimensional Euclidean space s.t. af = sjlei and rt*A+ — A+ = γ=(li + 2)ei9 if

eh 1 ^ i: ̂  r denotes an orthonormal basis. Thus only the ith Dynkin label enters
the Fock space construction of the π-singular vector rf * A + .
c) This follows from b) and the fact that the Fock space operator defining the
π-singular vectors labelled by rt * A + is injective (cf. Eq. (4.24)). D

Since by (A. 3) each Weyl group element w lies in the image of at least one
fundamental reflection w.r.t. the Bruhat ordering, at least one of the π-singular
vectors labeled by w e Wis from a) known to be an element of Vπ. Part b) implies
that if there are π-singular vectors in addition to that described by Proposition
4.4', they have to appear at the same grades as the ones covered by the Fock
space construction. If, in fact, there is a 1-1 correspondence between π-singular
vectors and elements of the Weyl group, a nontrivial consistency condition
arises: The mappings given by composition of the canonical embeddings
ιWw' Vn(I(w * A +, A_)) -• Vπ{I(w * A +, A _)) have to define commutative diagrams
for each of the fundamental squares introduced before. Conversely if all of these
compatibility conditions can independently be shown to hold, the mentioned 1-1
correspondence follows: By (A. 3) uniqueness of the highest weight state \A + ,A-}*
implies that if all the squares with Weyl group elements of length 2 at the top are
given to be commutative, the singular vectors corresponding to length 2 elements
have to be unique and to be elements of Vπ. Induction in the length gives the
uniqueness of all π-singular vectors and by a) no other π-singular vectors exist. The
diagram summarising the descendence pattern of the π-singular vectors in
FW*Λ+,Λ-,WG Wturns into an embedding diagram for the π-singular subspaces
Vπ(I(w * A +, A _)). Finally, if the W(sl(r +1)) algebra and the free field realization
are known to exist, the canonical projection π\V-*Vπ is non-singular at all grades,
which implies Theorem 4.6.
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For brevity we shall refer to the condition that all squares of the descendence/
embedding diagram form commutative diagrams w.r.t. composition of the canoni-
cal embeddings, as the "integrability condition" for the embedding diagram. They
will later be seen to form a sufficient condition for the existence of a W-algebra and
for Vπ to be a W(sl(r + 1)) module.

4.5. π-Intertwίnίng Operators. In the present context define a π-intertwining oper-
ator for Vπ(I(Λ + 9A-)) as a map

Q*w'F$*Λ+tΛ_^>FltΛ+iA_9 w<w (4.33)

s.t. the image Q%w \w*A + 9A-}* is (one of) the π-singular vector(s) labelled by w in
Proposition 4.4'. If the free field realization were already known to exist, these
operators would become proper intertwiners of the W(sl(r + 1)) algebra. Notice
that because of (Vf )* = K* the π intertwiners remain unchanged when taking the
dual, although we shall adopt the convention Qtw = Qww f° r w :< w The definition
guarantees in particular that a set of direct π-intertwiners exists for each positive
root ae Δ+ acting on Fl,ittA+jA_ s.t. α e zl+~ l r α,

Qιr:FΐaWtΛ+A_^F WφΛ+A_. (4.34)

Here J/(α) is the (for given w e W) unique Dynkin index paired to the positive root
α in (4.28), (A.2). Again we will drop the + labels whenever possible. Qιj will be
realized as a polynomial in multi-screening integrals of the form (4.12). The
integrability conditions for the π-intertwiners coincide with that of the g-inter-
twiners (3.8). In particular, the commutativity of squares of type b does not give rise
to an integrability condition for the involved intertwiners. This is because if the free
field realization of the W-algebra exists at all in the required form, the states in
Vπ(I(Λ + 9Λ-)) and its singular submodules are τ invariant. Thus, the oscillator
algebra may be supplemented by s0 and only the τ invariant sector needs to be
considered.

A first consequence of the integrability relations (3.8) is that the π-intertwining
operators obtained from the ύMq(n+) operators are unique, well defined and
non-vanishing: The discussion following Lemma 4.8 together with the relations
(3.8) implies that the set of π-singular vectors labeled b y w e Win Proposition 4.4'
contains one element only. The unique π-singular vector labeled by w e W can be
expressed in a variety of different, but mutually consistent ways as products of
direct intertwiners acting on |w*/l + , Λ_ >*. In particular one can choose

β W f l | w * Λ + ,yl-> = ρ5ί i L . . .β ! ί i |w ^ + , / l - > , (4.35)

where w <- rik <- . . . <- rtι <- 1. This is because by (A.3) each w e W lies in the
image of at least one path in the embedding diagram consisting of fundamental
reflections alone. A contour deformation of the type leading to Eq. (4.24) shows
that these states are nonvanishing. For the operators Qι

r\ the intertwining property
is known from (4.20). Alternatively, one can in this case deform the contour in
Fig. 4 to that used in [21], where the intertwining property is manifest. Thus,
Qw, i is a well defined, nonvanishing π-intertwiner for all w e W. By considering
squares in the embedding diagram which contain a single π-intertwiner Qιi with
htoc = k and others of height smaller than k, one obtains by induction on k that all
<2α are well defined and non-vanishing. By Lemma 4.8.b) the π-singulkr vectors
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they generate are unique, are elements of Vπ(I(Λ + ,Λ-)) and by a) no others exist.
This also implies that there is in fact a 1-1 correspondence between singular vectors
in Mq

ί + and π-intertwiners. In summary one arrives at:

Proposition 4.4". For fixed A- e P+,q not a root of unity. There exists a bijective
map from the set of singular vectors in Mq

Λ of weight w * A to π-intertwining operators
raw <- w

QdM' ^rxw*Λ+ , Λ ~ ~~> Fw*Λ+ , Λ -

given by

/ i l . . . Λ . ^ + - > [ κ ί ... v ΐ j A + Λ _ .
Here {ve Mq

Λ\himv = ((Λ — λ, hi)v} is the subspace of Mq

Λ of weight λ. Moreover
introduce the (Zx + 1, . . . , lr + 1) graduation on Mq

Λ, i.e. set deg f = Zf + 1,
1 ^ i: ̂  r. In this graduation, the degree of a π-singular vector of weight w * A in
Mq

Λ coincides with the degree of the singular vector β w , i |w*Λ + , A- )* in
Vπ(I(A + ,A-)). For the simple roots Eq. (4.20) provides the explicit form of the
π-intertwiners. As a last step in exploiting the integrability conditions (3.8) for the
π-intertwiners we arrive at the following criterion:

Proposition 4.9. For fixed A- e P + , the integrability conditions (3.8) for the oper-
ators Qιl on the tf/q(n-) module Mq

Λ+, A+eP + are a sufficient condition for the
existence of the free field realization (4.4) of the W{sl(r + 1)) algebra with
^ Λ + Λ - forming an irreducible W{sl{r + 1)) module.

Proof. The π-singular vectors QWf1\w*Λ + ,Λ-}* to we Ware already known to
be unique, well defined and non-vanishing and no other π-singular vectors exist.
Further they are elements of Vπ(Λ + 9Λ-) which generate π-singular vector spaces
of Vπ(I(A +, A _)) with the embedding diagram induced by the Bruhat ordering. All
states in the quotient VJSVπ are thus known to be expressible in terms of
lexicographically ordered creation modes of the Miura fields (4.4). The ordering
may be taken as in (2.1). Now consider the singlet case, i.e. A+ = 0. Generally,

Π U Λ + (1 - e2πί(''α)) = YlUi ( Π ^ V ί l - e2πirk))> w h e r e Δi ~ * a r e t h e exponents
of g. The character formula (4.30) thus shows that J^(sl(r + 1)) ^ J^oo as graded
linear spaces, so that condition (2.3) in the definition of Sect. 2 is satisfied. This can
be used to reconstruct the operator product algebra of normal ordered products of
W\z) and their derivatives. In particular all fields which appear in the operator
product algebra can be expressed in terms of normal ordered products of the fields
Wι(z) and their derivatives. Picking a regularization prescription to regularize
infinite sums, the commutator of normal ordered regularized sums of Wn modes
closes on regularized sums of such modes. On any state of a highest weight
representation only a finite number of terms contribute and the regulator can be
removed. The PF-algebra is thus known to close on the closure of the universal
enveloping algebra of the modes W\ w.r.t. the topology induced by taking matrix
elements in J f Oo After projecting the generators onto quasiprimary fields (see also
Sect. 5) the postulates for a W(#)-algebra given in Sect. 2 are satisfied. For general
A±eP+, this ^-algebra has a well defined action on the vector space
^Λ+Λ- = VJSVπ' The "would be" representation theory of this subsection be-
comes the proper representation theory and the space 2tf?

A+ Λ_ exists as irreducible
W(sl(r + 1)) module. D

In principle one would expect the integrability conditions (3.8) also to be
a necessary condition for the existence of the free field realization. However,
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without the conditions (3.8) to be given, it seems to be difficult to show that the
intertwiners are well defined and non-vanishing, so that the question for (3.8) can
not be asked properly.

5. Pathologies at Exceptional Central Charge

In this section we discuss two pathological features of Casimir algebras which may
occur for special values of the central charge. The first is that the rank of a Casimir
algebra is actually a discontinuous function of the central charge. For a finite number
of points the rank will be smaller than that of the underlying finite dimensional Lie
algebra. The second pathology is that the number of independent primary fields may
be smaller than the rank for another finite set of exceptional points.

The structure constants of a Casimir algebra are functions in the central charge
and depend on the choice of basis fields. In the basis of Miura fields one infers that
the structure constants are polynomial in the c. This is a consequence of the
definition of normal ordering (induced by (2.1)) and the τ-invariance. In particular,
this allows to extend the range of definition of the commutation relations from Cr

to all values of c and also renders the projection onto quasiprimary fields unproble-
matic. By Proposition 4.2 the same holds for the Cartan basis (4.8), which is the
preferred basis to study the representation theory. In contrast, the structure
constants in a basis of primary fields will be complicated roots of rational fun-
ctions. Call a basis regular if the structure constants are polynomial in c. Besides
the practical advantages, such bases can be used to calculate the rank of a Casimir
algebra. Recall from Sect. 2 that the rank of a Casimir algebra is the minimal
number of quasiprimary fields required to generate the mCFT. For c e Cr one has
the expected rank, i.e. rank W{g) = r = rankg. For a finite set of c values the rank
of the algebra may actually be smaller than r. At these values one or more of the
generating fields becomes composite, i.e. some linear combination of generators
decouples from all conformal blocks. Consider the commutators \_Pl

m, P j] of the
quasiprimary fields of weight A. The coefficients of the c-number term form
a matrix DΔ which yields a metric on the corresponding vector space. The vanishing
of the determinant of this metric gives a criterion for the decoupling.

Lemma 5.1. For a Casimir algebra in a regular basis the rank is given byr — s, where
s is the number of\ ^ i :g r for which detDj. vanishes.

As a non-trivial example consider the sl(4) case and set L = W1, W = W2

f

V = W3. The Cartan basis is given by L = L, W = W, V = V + \λ + ^^d2L,
8 200

where A = Jί (L, L) = (L, L) — ̂  d2 L. From the explicit form of the commutation
relations in this basis [9] one finds

dβtD2 = -c ,

detD3 = ^c(c + 7),

d e t θ 4 = j^c(c + 2)(c + We + 114). (5.1)
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This means that the algebra is of rank 3 except for c = 0, — 2, — 7, — 114/7, where
it is of rank 0, 2, 1, 2, respectively. Notice that these points lie in the W(sl(4))-
minimal spectrum.

A second source of exceptional c-values is the projection onto primary fields.
The use of primary fields gives a realization-independent way to determine the
structure constants of W-algebras of low rank by explicitly solving the associativity
condition. This allows also the investigation of W-algebras for which the weights of
the generating fields do not coincide with the exponents of some Lie algebra. The
principle can be summarized as follows (cf. [33, 34] and references therein): Starting
with the Virasoro algebra, one adds a number of fields W} primary relative to it
with weight Ai9 normalized as (Wk, W*} = c/k. Further one uses the sw(l, 1)
covariant normal ordering Jί. This allows one to write down an sw(l, 1) covariant
Ansatz for the commutator of any two fields Wk, with only a few structure
constants undetermined. Imposing the Jacobi identity (on a computer) gives a set of
algebraic equations for the structure constants. These equations turn out to have
either none, a finite number, or a 1-parameter family of solutions (with the
parameter corresponding to the central charge). In this way, the resulting algebraic
structure (if any) is uniquely determined by the weights of the generating primary
fields and the postulated covariance properties.

For the sl(r + 1) series, the method has been applied to s/(3) and s/(4) [33, 34]
and confirms that the Jacobi identity generically has a 1-parameter family of
solutions. The structure constants are roots of rational functions of the central
charge. For a certain finite set of exceptional values of c, the structure constants are
ill defined due to the presence of poles. These poles indirectly signal two different
types of defects. For some of the singular c-values the algebra turns out to be not of
maximal rank as described before. For another set of c-values the number of
independent primary fields is smaller than the rank and hence smaller as the
number taken as input for the calculation.

Consider again the 5/(4) case for illustration. Let Wk denote the projections of
the Cartan field generators onto primary fields, normalized s.t. (Wk,Wky =
c/(k + 1). In the above s/(4) example one finds

W =

/ 300(5c + 22) / - 7 c + 1 1 4

" V(7 Π4)( 7)( 2)V 40(5c + 22)

We have verified explicitly that the transformation Wk^Wk leads to the commuta-
tion relations given in [7], For the c values { — 2, —ψ, — 7, — ̂ } the basis
transformation is singular which introduces a corresponding set of singularities in
the structure constants. Three of these singular points can (a posteriori) be removed
by relaxing the normalization condition, but at c = — 22/5 the projection onto
primary fields fails. Notice that this point does not lie in the ^(s/(4))-minimal
spectrum. Algebraically the pole at c = - ψ arises from

[Lm, A,] = (3m - n)Λm+n + He + ψjm(m2 - l)Lm+n . (5.3)
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From dQtDΔ Φ 0 for A = 2, 3,4 one also verifies that Λ(z) is not a null field at this
point and thus does not decouple from representation spaces or correlation
functions. Quite generally, in the commutator of Ln with some normal ordered
composite field, the coefficients of the fields on the right-hand side will be poly-
nomials in the central charge. At the zeros of these polynomials, the linear system,
defined by the elimination of unwanted higher pole terms in the operator product
expansion, degenerates and the projection onto primary fields no longer exists. The
contribution of the subleading terms in the primary projections of the Cartan
generators leads to a central term which is a rational function of c. The final
normalization to (Wk, Wk} = c/k introduces the remaining poles found in [33, 34]
as well as the square roots in the structure constants. It is often useful not to insist
on this normalization, in which case one is left with a set of singular points
C* arising from the projection onto quasiprimary fields.

In terms of the characteristic space ^f(sl(r + 1)) = Jf00 in the definition of
Sect. 2 one is faced with the following situation: Even for the part of the c-spectrum
where the algebra is of maximal rank, the attempt of a decomposition of Jf00 into
irreducible Virasoro modules might fail for certain values of the central charge.
The known proofs that a basis of primary fields can always be chosen in conformal
field theory explicitly assume unitarity [32]. Conversely, this seems to imply that
at the exceptional points only non-unitary representations of the W-algebra can
exist.

Beyond that we can only offer the following tentative partial result: The set
C* of exceptional points of the W(sl(r + 1)) algebra arising from the projection
onto primary fields satisfies

C* cz < c = 1 — 24s0

21s2

+ = - , p, q coprime, min(p, q) ^ r > . (5.4)

I 4 J
The following argument tries to model the exceptional situation c e C* within

the framework of the free field realization. Let a W(sl(r + 1)) algebra be given, in
the sense of the definition in Sect. 2, with generic central charge. Let
j»f00 = j^f(sl(r +1)) denote the Fock space construction of its characteristic
space and J^oo = ©m+m.^m+m-- The sum is over some set of s/(2)-weights
μ± = m+I^JΪeP, with i/y/l the fundamental weight of si(2). Each of these
irreducible representations can be obtained as the unique non-vanishing cohomol-
ogy class in a complex of Fock spaces of a single boson φ (see [21] and references
therein). The complex is defined in terms of intertwining operators of the form
l{V)m+1], with V= e~is+^φ. The free field realization of the Virasoro algebra is
L(z) = — ̂ dφdφ — ίΛj2sod

2φ with c = 1 — 24s0

2. Any fixed of these representa-
tions can be regarded as a subspace of a single boson sector in Jf00: Let
φ = (φl9 . . . 9φr) denote the Euclidean vector of bose fields from which ffl is
constructed. One can choose a basis in root space for which αf φ = •s/2φi, so that
the W(sl(r + 1)) screening operator Vt may be used to define a complex for the
Virasoro algebra. The Fock vacuum for the boson φt may contain modes of all
other φjj + i. The Fock space resolution of j ^ 0 0 may (a posteriori) be defined in
terms of intertwiners [(Fj)mι + 1 J, 1 ̂  i'^ r, 0 ̂  m{ ^ nt only. Here nf denotes the
maximal "power" of Vt required. Clearly, m a x ^ + 1) is the maximal difference in
the levels of two singular modules labelled by w,ra*w s.t. rα * w <- w. By (A.5) one
has max^ftί + 1) = r.
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Now consider the limit, where c approaches one of the exceptional points in C*.
By assumption, the different irreducible Virasoro representations in
®m+m- ^m+,m- c a n then no longer be matched to reconstruct J^oo (because the
"Clebsch Gordon" coefficients appearing in the decomposition develop zeros/
poles). But this means that at least for one 1 ̂  i ̂  r and 0 ̂  m{ £Ξ nt the singular
vector [(Vt Γ i + + 1 ] I rt * μ+, μ_ >*, m* = (μ+, at) is either ill defined or vanishes.
From (4.24) or by direct evaluation of the integral against a basis of symmetric
polynomials [21] one finds: For s+ > 0 the state is always well defined and
vanishes iff s2

+ = p/q, q ̂  mf

+ + 1. Here the screening operators of the s+ sector
were used, but the same has to hold on the s_ sector, as also the invariance under
the diagonal action of the Weyl group iΓ

w H ί μ +, μ_ = Fμ+tW-ι#μ_ must not fail in
the complex, to allow the reconstruction of JfOo. In summary, one concludes that
a necessary condition for the failure of the attempt to reconstruct Jf00 from its
irreducible Virasoro components is that s2

+ = p/q, min(p, q) ^ max^n, + 1) = r.
The relevant parametrization of the central charge is that of (one of) the single
boson Fock sρace(s) where the reconstruction fails. As the vacuum for φt is itself
a nontrivial Fock state, the usual positivity bound does not apply.

6. Extended Sugawara Construction

The irrational Miura-type realization of W(sl(r + 1)) is closely related to affine
Kac-Moody algebras at level k = 1. These are particularly relevant for applica-
tions, for example to KdV-type hierarchies.

Let g denote a simply laced affine Lie algebra and L\ the irreducible module of
affine weight λ = (A, k\ λ e P+. Any such module can be decomposed w.r.t. the
horizontal subalgebra. For level k = 1 modules it reads [28]

L\= © LHλ\Λ)®LΛ. (6.1)
ΛeP+

Here, λ = (A, 1) is an integrable weight of g, Q is the root lattice of g and LΛ the
irreducible ^-module to A eP+.^Lι(λ\A) are subspaces of g singlets. Let
L\_x] = v~2Yιa(xaxa)(z\ v2 = k + h be the usual Sugawara operator with xa(z)
a linear basis of the current algebra. For the (homogeneously specialized) character

as [28]

e 2

chLHMΛ) = Tr z,, ( Λ M )e
2 π ί l ( L° )= . . ., f ] 0 ~ *>™ + " ' a ) ) . (6.2)

This can be used to show that L1 (λ\Λ) is an irreducible W{g) module with centralcharge c =
kdimg

= r. The field generators are given by
k=l

(6.3)

with the d-symbols chosen symmetric and traceless and N is a normalization factor
to be specified later. These fields are primary w.r.t. C 2 = L[x] (cf. [4]) and close
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under operator product expansion. For the proof one has to show that the states of
the form (2.1) built from the modes of C^z) are independent. This can be done in
the level 1 vertex operator realization of g ([32]; the argument is reproduced in
[13]).

Now observe that (6.2) coincides with the character of the irrational
W(sl(r + 1)) modules (4.30), i.e.

\ , 0)) = chLX(X\A)

^2 , A)) , (6.4)

where ΛeP+ n ( β + λ) and ££ (I(Λ+, Λ-)) is the irrational W(sl{r + 1)) module
of central charge c = r — 48sop2. This means that ^(λlΛ) and JS?(/(yl, 0)) are
isomorphic as graded vector spaces. In fact, the isomorphism can be made explicit
and is essentially given by the free field realization of g in terms of r free bose fields
and \Δ+\ bosonic βy pairs. This can be regarded as an infinite dimensional
analogue of the Harish-Chandra isomorphism.

Let g in the following be sl(r + 1) and g = n-@h@n+ a triangular decomposi-
tion. Let E±α be Cartan step operators and Hh 1 ^ i g r be any basis of the Cartan
subalgebra. The Poincare-Birkhoff-Witt (PBW) theorem states that a basis of the
universal enveloping algebra <%(g) of g is then given by the lexicographically
ordered monomials Eiλαι . . . EιiαsH^ . . . H{r Ek

α\ . . . £**, with the step operators
written in an arbitrary but fixed order of the positive roots αi > . . . > αs. One
has the following simple facts (see e.g. [29]).

a)
b) For elements C in the center &(g) of g, the projection onto the second factor in

a) lies mύίl(g)n+.

Let γ: °lί{g) -+%(h) denote the projection onto the first factor in a) s.t. C — y(C) lies
in W{g)n+ for C e 2£(g\ Set σ (H) = H - (p, H) for Heh.

Theorem 6.1. (Harish-Chandra). The map σ°y\ύiί(g)-^όlί{h) is an algebra isomor-
phism of H£ (g) onto the algebra of Weyl invariant polynomials in % (h).

A proof can be found in any textbook, for example [29]. In particular, the theorem
allows to calculate the eigenvalues of the Casimir operators from the Weyl
invariant polynomials by a simple shift σ " 1 in the Cartan subalgebra generators.
For comparison with the infinite dimensional case, consider 5/(3) as a nontrivial
example. In terms of the Chevalley generators the Casimir operators read3

C2 = δabx
axb

— ~\)A + h1h2 + h\~\ + -\_f\e\ +fie2 +he2> + (£<-*/)] (6.5.a)

= - hγh2 - h2h3 - ΛiA3 + hγ-h2 +feγ +f2e2 +f3e3, (6.5.b)

3 We do not agree with the expression for C3 given in Eq. (4.4) of [36]
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C 3 = \dabcx
axbx<

= 1[2Λ? + 3ΛfΛ| - 3Λ?Λ2 - 2λ|]

A2)e2

+fifi)eί +f2e3Λ +Ae3f2 + M/1/2 +/2/1) + (*<->/)] (6.6.a)

+ / 1 M 1 + f2h2e2 + / 3 M 3 +/ 3^i^2 +/i/2^3 + /i*i + / 2 ^ . (6.6.b)

Here e3 = [eue2~], h = \_fi^f\~\ and our d-symbols are normalized s.t.
[A> hl+ = iδab + 2dahctc, if ία, α = 1, . . . , 8 are the Gell-Mann matrices. The
second form of C2, C 3 is obtained respectively by rewriting all monomials in the
PBW basis. For convenience we also switched to the usual overcomplete basis hi9

1 ^ i: ̂  r + 1 in the Cartan subalgebra. The relation to the Chevalley basis is
^ = hί+1 — hi + 2(hr+2 = hi). Besides ^ ^ = 0 one has for this choice
\_eu h{\ = 0 = [fa, h{]. The first term in brackets is respectively the Weyl invariant
polynomial and one can verify from the PBW forms (6.5.b), (6.6.b) that the
eigenvalues of C2, C 3 on some highest weight vector are in fact obtained by the shift
σ" 1 from them. Generally we normalize the Casimir operator Ck s.t. the leading
term in <%(h) is given by minus the symmetric polynomial of power k in ht.

Let now fi(z\ ftf(z), et(z) be Chevalley field generators of sl(r + 1) at some level
k and define overcomplete Cartan subalgebra fields by

(6.7)

Let g = ή+ 0 h 0 ή- be a triangular decomposition of sl(r + 1). The above form of
the PBW basis is also valid on the enveloping algebra of normal ordered products
of the affine field generators. We adopt a right nesting convention for repeated
normal ordered products, i.e. ABCD shall be shorthand for (Λ(B(CD))) etc. Con-
sider now the generalized Sugawara fields (6.3). They are not Casimir operators of
the affine algebra. In fact, for k φ — h an affine algebra does not admit Casimir
operators other than the quadratic [38]. (Instead theta functions separate the Weyl
group orbits [39].) For k = — h, an infinite set of Casimir operators exists and is
given by the modes of generalized Sugawara-type fields [40]. For level k = 1 one
has the following weaker analogue. Let ^denote the projection onto the Cartan
subalgebra piece in the PBW basis of sl(r + 1). Remarkably, as in the finite
dimensional case, this Cartan subalgebra piece can be given in closed form.

Theorem 6.2. The analogues of statements a), b) hold for °U{g) at level k = 1 with
&(g) replaced by the g singlets Lx^lA). The Cartan subalgebra piece

yCk(z) =: Wklh^\ of the Sugawara fields Ck(z) = —- kd a χ.. . f l k(x f l l . . . xak)(z) is given

by

[ 1 Ί Γ l ~ Ί r + 1 ~ (\ \

-δz + h r + 1 I . . . I - 3 , + fti 1= - Σ W k m ( z ) ( - d 2 )

v~k

. (6.8)
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Remark, h^z) does not obey the same commutation relations as hi'dzφ in (4.4).

Nevertheless (6.8) is form-identical to a Miura transformation with 2s0 = -
v

Proof. The first part is shown as in the finite dimensional case. For the second part,
note that, with the above normalization, the leading term of γ Ck (z) will be given by
minus the (normal ordered) symmetric polynomial of gower k in /zt (z). Rewriting
unordered monomials in the PBW form, additional %(h) terms are generated with
a derivative for each power less than k. The result follows by comparison of the zero
mode pieces. The eigenvalue of the zero mode of y Ck(z) coincides (up to a factor)
with that of yCk. In the basis ht the shift factors fcf — σ~1hi+1 come in pairs

ρ h i + 1 = -p h i + l9 i = l , 3 , . . . , r , r o d d ; ρ h i + 1 = - p ' h i + ί , i = 1 , 3 , . . . ,
r — 1, r even. In the differential operator (6.8) this sign pattern arises from the

τ symmetrization τ( -dzh, I = hi + l9 with the r even/odd subcases as above.

\v 1 v\ 1
The absolute values of p ht account for symmetry factors and, for example, by

using the formulae of [35] one can check that they come out correctly. D

As an example, consider again W(sl(3)). Calculation gives

11
C2 = - ήxft2 - h2h3 - M 3 - -dz(hι - h2)

C3= - M2A3 - ^(SΛhih - h2)) + M,Λ2 - M A ) + ^ z

2 h 3

+ f1h1e1 +f2h2e2 +/3M3 +/s^i^2 +fif2e3

\ ~ dz(f2e2) + dzf3e3 -f3dze3~\ , (6.9)

as it should.
Although the (modes of the) fields hι(z) in (6.8) and ihi *dzφm (4.4) do not obey

the same commutation relations, both can be set in correspondence by means of
a free field realization of Ϋl(r + 1). This realization employs r free bose fields φa and
\Δ+ I bosonic βy pairs [41, 5]. One associates to each positive root α e Δ+ a first
order bosonic βy pair

β«{z)= ΣKz-"-1, y"(z)= Σ y ϋ Γ " ,
neZ neZ

satisfying \_yβ

n, β*n~] = yβaδn+m>0. This realization has been used in [5, 6, 7] to derive
Fock space resolutions for irreducible sl(r + 1) modules. There also the explicit
expressions for thejealizations πei9 πhi9 π^ of the Chevalley fields generators can be
found. The fields ht take the form

πht(z) = hi dzφ + - Σ (Ai, *)Ff . (6.10)
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From Theorem 6.2 one therefore expects the ^-independent part of πCk to be just

given by the Miura fields Wk = Wk[φ~\ in (4.4), with 2s0 = - . This is not entirely
v

trivial, because also the ύM(g)ή+ part in Ck(z) will develop βy independent terms.
The character identity (6.4), however, tells that these have to drop out, whenever
2s0 = 1/v amounts to an irrational screening parameter s2

+ . For level k = 1 this is
the case if and only if r + 2 φ (m + 2)(m + 3), m ̂  0 (where equality would give
s\ = (m + 2)/(m + 3)). Together one arrives at

Corollary 6.3. Let r + 2 Φ (m + 2)(m + 3). The map

o (6.11)

defines an isomorphism between graded vector spaces.

The structure of the singular vectors in both modules, of course, will be entirely
different. The identity (6.3), however, implies that the infinitely many singular
submodules of L1(λ\Λ) are contained in the finitely many singular submodules
whose images under π are already present for c generic. In terms of the commuta-
tion relations this implies that the point c = r is a generic point for the structure
constants, i.e. that none of the composite fields on the r.h.s. of [ Wm, W{~] will drop
out, compared to the case c e Cr. For example, this can be used to lift the
existence of infinite dimensional abelian subalgebras from 5£ (7(0,0)) to Z,1 (A|0)
[37].

By regularity in sθ9 the fact that πCk\βy = 0 = Wk\_φ~\ can be extended to all
values of s i (although, of course, for s2

+ rational, the isomorphy 6.3 will in general
cease to hold). Once again, consider s/(3) for illustration. With βai = β\ y"1 = y\
i = 1, 2, 3, α3 = oc1 + α 2 , one finds

πC2= -\dφ-dφ--d2φ- Y βkdyk,

π C 3 = W'iφ-] + Ciix + -C 3 [/? 7 ] , (6.12)
v

where JV3 [φ] is the τ-invariant Miura generator and

C3

mix= - Σ ih

dy1y2 + β3dγ3 - βιdyx)

'dγ1 + dβ2dy2 - dβ3dγY - 2βιβ2dy3)

d2y3 + β3d2y3 + β3d2y1γ2) . (6.13)
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One can check that πC 2 , π C 3 are s/(3) singlets and that π C 3 is primary w.r.t. the
bosonized Sugawara field πC 2 .

7. Conclusion

The existence of Miura-type free field realizations of W(sl(ή)) has been established.
The problem of the closure of the algebra has been reduced to a finite dimensional
quantum group problem, for q not a root of unity, which is solved by direct
construction of the intertwiners. The extension at least to Casimir algebras W(g)
based on simply laced g is unproblematic. For q a root of unity additional
intertwining operators are present. The representation theory of the PF-algebra
would then presumably be characterized by a suitable analogue of the affine Weyl
group. The structure of the irreducible representations for irrational values of the
screening parameter has been foundj o be form-identical to that of the underlying
simple Lie algebra; paralleling the sl(ή) modules for irrational level k. As graded
vector spaces these irrational W(sl(n)) modules are isomorphic to the space oϊsl(ή)
singlets in integrable sl(ή) modules at level fc = 1. The isomorphim is given by the
φβγ free field realizations of sl(ή). One might expect the pure βγ pieces Ck [/fy] of
the images πCk to form again a realization of W{sl{ή)). A calculation (using (6.13),
(6.14) and the closure of the C2, C 3 algebra) shows, however, that this is not the case
for W(sl(3)). The βγ Fock space is closely related to the singular Tl(n) modules at
fc = — /z, so that the fields Ck [βy] may have significance there [5, 42]. Theorem 6.2
should extend to all Casimir algebras. This would provide a very systematic way to
define free field realizations as the images of the set of Sugawara operators under
π in (6.12). These realizations would automatically possess the correct symmetries
of the Dynkin diagram. Further, no fermions would be needed for non-simply laced
algebras, reflecting the corresponding property of the φβγ free field realization
[22]. In extension to the sl(n) situation the intrinsic significance of these bases
should lie in the fact that they are members of the equivalence class of bases in
which the structure constants are polynomial in c. The existence of a Cartan basis
then provides a route to infinite dimensional abelian subalgebras.

Appendix

Here we summarize some facts related to the Bruhat ordering on the Weyl group of
a simple Lie algebra. Let α/5 1 ^ i ^ r be a system of simple roots and r, the
associated fundamental reflections that generate W. For w e W set

Aw

+ = {oceA + \w(oc)<O} = A+nw~ίA-

with A ± being the positive/negative roots. The following facts can, for example, be
found in [18, 28, 29]

A.I. For ote A + , ra the reflection in α, we W: l{raw) > l(w) iff w~ι(ot) > 0, i.e.
oceAw

+~lr«.

Further, the length of a Weyl group element equals the order of A + [29, Prop.
3.18]. This implies [28, Lemma 3.1 l.b]

^ + = Win riιaiι-i> ' > rh r i 2 α i i } >
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where w = rti . . . rh is a reduced expression. In particular, A+ = z(+°, if w0 is the

element of maximal length in W. One sees that for αezl + , the sequence

α, r f lα, . . . r f l . . . , r^a contains a unique simple root. Denoting it by α J ( α ), one has

A.2. A - W"U = XaeJr ! (^ aj(a))a> λ G ^ *

[Use the identity 2 — wηλ = λ — wλ + w(Λ, — ηA) and induction on /(w).]
Directly from the definitions follows,

A.3. Each 1 + w e W lies in the image of at least fundamental reflection w.r.t. the

relation ' <- ', i.e. w = ηvv for some i e {1, . . . , r}, vv e W, l(w) = /(vv) + 1.

[Otherwise Z(rfw) > /(w) for all i so that by (A.I), w(α;) > 0 for all i, which forces

w to be 1.] By induction it follows that for each vv e W, there exist fundamental

reflections r f l, . . . η, s.t. vv = ru . . . rii <- . . . <- r ί 2r f l <- rfl <- 1, where

w = riz . . . r t l then is a reduced expression.

A.4. If α e zl +, Z(rα vv) = l(w) + /c, there exists a sequence βl9 . . . βke Δ+ s.t.

r.w = r^k . . . rβί vv <- rβk_ι . . . r^vv <- rβ2rβίw+- rβιw^w .

[This can be extracted from the proof of Theorem 2 in [18].]

A.5. max(wp — rαwp, p) = r, where the maximum is to be taken over all vv e W9

oce A + , s.t. rαw<- vv.

[Let OLE Δ+ be a positive root for which (wp — rawρ, p) takes its maximal value.

As any two positive root systems are related by a unique Weyl group element, one

may -w.l.o.g. take α = αf to be a simple root. Then (wp — rtwp,j)) = (wpΛ o )̂.

Let π be the permutation corresponding to vv, in the basis hl9 . . . , hr+1.

Then, p = Σri = 2(r + 2-ί)hi and wp = X ί ί i ( r + 2 - π(ϊ))^, so that with

(/iy, αΛ) = δjik — <S/-i,k one finds max (wp, αf) = (r + 1) — 1 = r.]
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