Lines in Space-Times

J.-H. Eschenburg ${ }^{1}$ and G. J. Galloway ${ }^{2, \star}$
${ }^{1}$ Institut für Mathematik, Universität Augsburg, Universitätsstraße 8, W-8900 Augsburg, FRG
${ }^{2}$ Department of Mathematics and Computer Sciences, P.O. Box 249085, Coral Gables, FL 33124, USA

Received August 29, 1991; in revised form March 17, 1992

Abstract

We construct a complete timelike maximal geodesic ("line") in a timelike geodesically complete spacetime M containing a compact acausal spacelike hypersurface S which lies in the past of some S-ray. An S-ray is a future complete geodesic starting on S which maximizes Lorentzian distance from S to any of its points. If the timelike convergence condition (strong energy condition) holds, a line exists only if M is static, i.e. it splits geometrically as space \times time. So timelike completeness must fail for a nonstatic spacetime with strong energy condition which contains a "closed universe" S with the above properties.

1. Introduction

Let M be a timelike geodesically complete time-oriented Lorentzian manifold containing a compact spacelike acausal hypersurface S. A conjecture stated by R. Bartnik [B] says: If M satisfies the timelike convergence condition (strong energy condition), then M splits isometrically as space \times time. (In fact, Bartnik assumes S to be a Cauchy hypersurface.) By the Lorentzian splitting theorem [N], this statement is true if we can construct a timelike line, i.e. an inextendible maximal timelike geodesic. However, without the timelike convergence condition, such a line need not exist (cf. [EG]). It is the aim of the present paper to construct a timelike line if S lies in the past of some S-ray, i.e. a future inextendible causal curve γ starting on S such that $\gamma \mid[0, t]$ is a curve of maximal length between S and $\gamma(t)$ for all $t>0$.

The main results are stated and proved in Sect. 5; the ingredients are given in Sects. 2-4. For standard facts in Lorentzian geometry and for standard notation (such as $I^{+}, J^{+}, D^{+}, H^{+}$) we refer to [HE, BE].

[^0]
2. Limit Curves

Let (M, g) be a space-time, i.e. a time-oriented Lorentzian manifold. Additionally, we choose a complete Riemannian metric h on M. All nonspacelike curves are rectifiable and (with the possible exception of certain limit curves which inherit a limit parameter) we will always parameterize them by arc length with respect to h. Clearly, a causal curve γ is (future and past) inextendible if and only if it is parametrized on $(-\infty, \infty)$.
Limit Curve Lemma for Inextendible Nonspacelike Curves. Let $\gamma_{n}:(-\infty, \infty) \rightarrow$ M be a sequence of inextendible nonspacelike curves (parametrized by arc length in $h)$. Suppose that $p \in M$ is an accumulation point of the sequence $\left(\gamma_{n}(0)\right)$. Then there exists an inextendible nonspacelike curve $\gamma:(-\infty, \infty) \rightarrow M$ such that $\gamma(0)=p$ and a subsequence (γ_{m}) which converges uniformly (with respect to h) to γ on compact subsets of \mathbb{R}. γ is called a limit curve of $\left(\gamma_{n}\right)$.
Comment. The proof of this lemma is an application of Arzela's theorem and is essentially contained in the proof of Proposition 2.18 in [BE]. One advantage of the parametrization with respect to the background metric h is that one can establish the upper semicontinuity of the Lorentzian length functional without invoking the assumption of strong causality:
Proposition. The Lorentzian arc length functional is upper semicontinuous with respect to the topology of uniform convergence on compact subsets, i.e. if a sequence $\gamma_{n}:[a, b] \rightarrow M$ of nonspacelike curves converges uniformly to the nonspacelike curve $\gamma:[a, b] \rightarrow M$, then

$$
L(\gamma) \geq \limsup _{n \rightarrow \infty} L\left(\gamma_{n}\right)
$$

Comment. The idea behind circumventing the strong causality assumption is this: One can partition [a, b] as $a=t_{0}<t_{1}<\cdots<t_{n}=b$ so that each subsegment $\gamma \mid\left[t_{i-1}, t_{i}\right]$ is contained in a normal neighborhood N_{i} of M. $\left(N_{i}, g\right)$, viewed as a space-time in its own right, is strongly causal. By the uniform convergence, $\gamma_{n} \mid\left[t_{i-1}, t_{i}\right] \subset N_{i}$ for all sufficiently large n. Now apply the known upper semicontinuity of the Lorentzian arc length functional on the strongly causal spacetime $\left(N_{i}, g\right)$ to conclude,

$$
L\left(\gamma \mid\left[t_{i-1}, t_{i}\right]\right) \geq \limsup _{n \rightarrow \infty} L\left(\gamma_{n} \mid\left[t_{i-1}, t_{i}\right]\right)
$$

Now sum over i to get the desired result.
The limit curve lemma was discussed for inextendible causal curves. There is an obvious version for future (respectively past) inextendible causal curves $\gamma_{n}:[0, \infty) \rightarrow M$.

Let d denote the Lorentzian distance function, i.e.

$$
d(p, q)=\sup \{L(\mu) ; \mu \in C(p, q)\} \leq \infty
$$

where $C(p, q)$ denotes the set of future directed causal curves from p to q. The Lorentzian distance function is known to be lower semicontinuous. A sequence $\gamma_{n}:\left[a_{n}, b_{n}\right] \rightarrow M$ of causal curves is called limit maximizing if

$$
L\left(\gamma_{n}\right) \geq d\left(\gamma_{n}\left(a_{n}\right), \gamma_{n}\left(b_{n}\right)\right)-\varepsilon_{n}
$$

for some sequence $\varepsilon_{n} \rightarrow 0$. Suppose that γ_{n} converges uniformly to $\gamma:[a, b] \rightarrow M$ on some subinterval $[a, b] \subset \bigcap_{n}\left[a_{n}, b_{n}\right]$. Since L is upper and d lower semicontinuous, there is a sequence $\delta_{n} \rightarrow 0$ such that

$$
\begin{aligned}
L\left(\gamma_{n}\right)-\delta_{n} & \leq L(\gamma) \leq d(\gamma(a), \gamma(b)) \\
& \leq d\left(\gamma_{n}(a), \gamma_{n}(b)\right)+\delta_{n} \leq L\left(\gamma_{n}\right)+\varepsilon_{n}+\delta_{n}
\end{aligned}
$$

thus

$$
\lim L\left(\gamma_{n}\right)=L(\gamma)=d(\gamma(a), \gamma(b))=\lim d\left(\gamma_{n}(a), \gamma_{n}(b)\right)
$$

and in particular, γ is maximal. (Beem and Ehrlich introduced the notion of limit maximizing curves in the strongly causal setting; cf. [BE, Chap. 7].)

3. Rays, Co-Rays and Busemann Function

A ray in M is a maximal future inextendible causal geodesic $\gamma:[0, \infty) \rightarrow M$. Rays often arise from limit constructions:
Lemma 1. Let z_{n} be a sequence in M with $z_{n} \rightarrow z$. Let $p_{n} \in I^{+}\left(z_{n}\right)$ with finite $d\left(z_{n}, p_{n}\right)$. Let $\gamma_{n}:\left[0, a_{n}\right] \rightarrow M$ be a limit maximizing sequence of causal curves with $\gamma_{n}(0)=z_{n}$ and $\gamma_{n}\left(a_{n}\right)=p_{n}$. Let $\bar{\gamma}_{n}:[0, \infty) \rightarrow M$ be any future inextendible extension of γ_{n}. Suppose either
(a) $p_{n} \rightarrow \infty$, i.e. no subsequence is convergent,
or
(b) $d\left(z_{n}, p_{n}\right) \rightarrow \infty$.

Then any limit curve $\gamma:[0, \infty) \rightarrow M$ of the sequence $\bar{\gamma}_{n}$ is a ray starting at z.
Proof. All we have to show is that $a_{n} \rightarrow \infty$. Suppose not. By passing to a subsequence, we may assume $a_{n} \rightarrow a<\infty$. Since γ_{n} are parametrized by arc length for h, all γ_{n} are contained in a compact subset $K \subset M$, e.g. the closed h-ball of radius $2 a$ around z. This is clearly impossible in Case (a). In Case (b), let T be a timelike unit vector field [i.e. $g(T, T)=-1$] on M and $\tau=g(., T)$. Consider the Riemannian metric

$$
h_{0}=g+2 \tau \otimes \tau=g^{\perp}+\tau \otimes \tau .
$$

Note that for any causal curve segment σ,

$$
L(\sigma)=L_{g}(\sigma) \leq L_{h_{0}}(\sigma)
$$

where $L_{h_{0}}$ denotes the length with respect to h_{0}. By assumption, $L\left(\gamma_{n}\right) \geq d\left(z_{n}, p_{n}\right)-$ $\varepsilon_{n} \rightarrow \infty$, hence $L_{h_{0}}\left(\gamma_{n}\right) \rightarrow \infty$. Since K is compact, there exists $\lambda>0$ such that $h \geq \lambda \cdot h_{0}$ on $T M \mid K$. Therefore $a_{n}=L_{h}\left(\gamma_{n}\right) \rightarrow \infty$ which is a contradiction.
S-Rays. Let $\gamma:[0, \infty) \rightarrow M$ be a ray. Let $S \subset M$ be a subset containing $\gamma(0)$ such that γ maximizes distance to S, i.e. for any $t \in[0, \infty)$,

$$
L(\gamma \mid[0, t])=d(S, \gamma(t))
$$

where $d(S, x)=\sup \{d(q, x) ; q \in S\}$. Then γ is called an S-ray: E.g., any ray γ is a $\{\gamma(0)\}$-ray. Observe that for any $x \in I^{-}(\gamma) \cap J^{+}(S)$ and all sufficiently large t,

$$
\begin{equation*}
d(S, x)+d(x, \gamma(t)) \leq d(\gamma(0), \gamma(t))<\infty \tag{*}
\end{equation*}
$$

Co-Rays. Let $\gamma:[0, \infty) \rightarrow M$ be a future inextendible S-ray and let $z \in$ $I^{-}(\gamma) \cap J^{+}(S)$. Let $z_{n} \rightarrow z$ in $J^{+}(S)$ and put $p_{n}=\gamma\left(r_{n}\right)$ for some sequence $r_{n} \rightarrow \infty$. Then $z_{n} \in I^{-}\left(p_{n}\right)$ for sufficiently large n, and $d\left(z_{n}, p_{n}\right)<\infty$ by $(*)$. Assume either
(a) $p_{n} \rightarrow \infty \quad$ or \quad (b) $d\left(z_{n}, p_{n}\right) \rightarrow \infty$.
[Note that (b) holds if γ has infinite length.] Consider a limit maximizing sequence μ_{n} of causal curves from z_{n} to p_{n}. By Lemma 1, any limit curve $\mu:[0, \infty) \rightarrow M$ of the μ_{n} is a ray starting at z. Such a ray is called a co-ray of γ. Note that μ is contained in the closure of $I^{-}(\gamma)$. (In fact, if $\mu(t) \in \partial I^{-}(\gamma)$, then $\mu \mid[t, \infty)$ is a future inextendible null geodesic generator of $\partial I^{-}(\gamma)$.)

Busemann Functions. Let $\gamma:[0, \infty) \rightarrow M$ be a timelike S-ray and $b: I^{-}(\gamma) \rightarrow$ $[-\infty, \infty)$ the associated Busemann function, namely $b(x)=\lim _{t \rightarrow \infty} b_{t}(x)$, where

$$
b_{t}(x)=d(\gamma(0), \gamma(t))-d(x, \gamma(t))
$$

Recall that $b_{t}(x)$ decreases monotonely with t, since for $s>t$ we have

$$
\begin{aligned}
d(x, \gamma(s)) & \geq d(x, \gamma(t))+d(\gamma(t), \gamma(s)) \\
d(\gamma(0), \gamma(s)) & =d(\gamma(0), \gamma(t))+d(\gamma(t), \gamma(s))
\end{aligned}
$$

Further, for $x \in I^{-}(\gamma) \cap J^{+}(S)$, we have

$$
b(x) \geq d(S, x) \geq 0
$$

since (*) shows $b_{t}(x) \geq d(S, x)$ for any t. Recall that d is lower semicontinuous, hence b_{t} is upper semicontinuous, and since b is the decreasing limit of the b_{t}, it is also upper semicontinuous.

Lemma 2. Let $\gamma:[0, \infty) \rightarrow M$ be a timelike S-ray and $\mu:[0, \infty) \rightarrow M$ a co-ray with $\mu(0)=z \in I^{-}(\gamma) \cap J^{+}(S)$. Then we have for any $s>0$ and any $x \in I^{-}(\mu(s))$

$$
b(x) \leq b(z)+d(z, \mu(s))
$$

In particular, if μ is a null ray, then $b(x) \leq b(z)$ for any $x \in I^{-}(\mu)$.
Proof. Let $\mu=\lim \mu_{n}$ where μ_{n} is a limit maximizing sequence from z_{n} to $\gamma\left(r_{n}\right)$. Let $b_{n}:=b_{r_{n}}$. Then

$$
b_{n}(x)=d\left(\gamma(0), \gamma\left(r_{n}\right)\right)-d\left(x, \gamma\left(r_{n}\right)\right)
$$

Since $\mu_{n}(s) \rightarrow \mu(s)$, we have $x \in I^{-}\left(\mu_{n}(s)\right)$ and

$$
d\left(x, \gamma\left(r_{n}\right)\right) \geq d\left(x, \mu_{n}(s)\right)+d\left(\mu_{n}(s), \gamma\left(r_{n}\right)\right)
$$

which shows

$$
b_{n}(x) \leq-d\left(x, \mu_{n}(s)\right)+b_{n}\left(\mu_{n}(s)\right) \leq b_{n}\left(\mu_{n}(s)\right)
$$

For two real sequences $\left(a_{n}\right),\left(b_{n}\right)$ we will write $a_{n} \approx b_{n}$ if $a_{n}-b_{n}$ is converging to zero. Since μ_{n} is maximal up to an error ε_{n}, we have

$$
\begin{aligned}
b_{n}\left(\mu_{n}(s)\right)-b_{n}\left(z_{n}\right) & =d\left(z_{n}, \gamma\left(r_{n}\right)\right)-d\left(\mu_{n}(s), \gamma\left(r_{n}\right)\right) \\
& \approx d\left(z_{n}, \mu_{n}(s)\right)
\end{aligned}
$$

Thus

$$
b_{n}(x) \leq b_{n}\left(\mu_{n}(s)\right) \approx b_{n}\left(z_{n}\right)+d\left(z_{n}, \mu_{n}(s)\right)
$$

Now for any $y \in I^{+}(z) \cap I^{-}(\gamma)$ we have $y \in I^{+}\left(z_{n}\right)$ for large n and therefore

$$
d\left(z_{n}, y\right)+d\left(y, \gamma\left(r_{n}\right)\right) \leq d\left(z_{n}, \gamma\left(r_{n}\right)\right)
$$

which shows $d\left(y, \gamma\left(r_{n}\right)\right) \leq d\left(z_{n}, \gamma\left(r_{n}\right)\right)$, hence $b_{n}(y) \geq b_{n}\left(z_{n}\right)$. So we obtain

$$
b_{n}(x) \leq b_{n}(y)+d\left(z_{n}, \mu_{n}(s)\right)+\varepsilon_{n} .
$$

Taking the limit as $n \rightarrow \infty$, we get the result; note that $d\left(z_{n}, \mu_{n}(s)\right) \rightarrow d(z, \mu(s))$ since $\mu_{n} \mid[0, s]$ is limit maximizing, and use the upper semicontinuity of b.

Comment. Lemma 2 replaces the well known fact in Riemannian geometry that the Busemann function grows with unit speed (with respect to arc length) along co-rays. This still holds in Lorentzian geometry provided that d is continuous and μ timelike (cf. [E, p. 480]).

4. Spacelike Hypersurfaces

Definition. A subset $S \subset M$ is called a spacelike hypersurface if for each $p \in S$ there is a neighborhood U of p in M such that $S \cap U$ is acausal and edgeless in U.

Comment. A spacelike hypersurface is necessarily an embedded topological submanifold of M with codimension one. A smooth hypersurface with timelike normal vector is a spacelike hypersurface in the sense of our definition.

Lemma 3. Let $S \subset M$ be an acausal spacelike hypersurface. Then

$$
I^{+}(S)=J^{+}(S) \backslash S
$$

Consequently, any S-ray is timelike.
Proof. Clearly, $I^{+}(S) \subset J^{+}(S) \backslash S$. So let $p \in J^{+}(S) \backslash S$ and let μ be any causal past directed curve from p to S. Let $q \in S$ be the past end point of μ. There exists a neighborhood U of q and a coordinate chart $x=\left(x_{0}, \ldots, x_{d}\right): U \rightarrow I^{d+1}$ such that
$\partial / \partial x_{0}$ is timelike, and $x^{-1}(S \cap U)$ is a graph over I^{d}. Let $q^{\prime} \in \mu \cap U, q^{\prime} \neq q$, and replace the segment of μ between q^{\prime} and q by the x_{0}-parameter line through q^{\prime} which also meets S. Thus $q^{\prime} \in I^{+}(S)$, hence $p \in I^{+}(S)$. This shows that $I^{+}(S)=J^{+}(S) \backslash S$. If γ is an S-ray, it cannot stay in S since S is locally acausal. So $\gamma(t) \in I^{+}(S)$ for some $t>0$ which implies that $d(\gamma(0), \gamma(t))>0$. Hence γ is timelike.
Lemma 4. Let $S \subset M$ be a compact acausal spacelike hypersurface. Then there exists a timelike S-ray in $D^{+}(S)$. If $H^{+}(S) \neq 0$, we find such a ray in $I^{-}(p) \cap D^{+}(S)$ for any $p \in H^{+}(S)$.
Proof. If $H^{+}(S) \neq \emptyset$, this is true by the "Main Lemma" in [G2]. So it remains to consider the (easier) case where $H^{+}(S)=\emptyset$. Let $p \in S$ and $\mu:[0, \infty) \rightarrow M$ be a future inextendible timelike geodesic with $\mu(0)=p$. Since $H^{+}(S)=\emptyset$, we have $\overline{\mu((0, \infty))} \subset D^{+}(S)$. Let $r_{n} \rightarrow \infty$ and $p_{n}=\mu\left(r_{n}\right)$. Then $p_{n} \rightarrow \infty$ since $p_{m} \rightarrow p \in D^{+}(S)$ (for some subsequence $\left(p_{m}\right)$ of $\left(p_{n}\right)$) would be a violation of strong causality. By compactness of S, there are maximal curves γ_{n} from S to $p_{n} \in D^{+}(S)$. Let $z_{n}=\gamma_{n}(0) \in S$. We may assume that $z_{n} \rightarrow z \in S$. By Lemma 1 , the γ_{n} accumulate to an S-ray γ. By Lemma 3, γ is timelike.
Lemma 5. Assume M is future timelike geodesically complete. Let S be a compact acausal spacelike hypersurface in M. Then each S-ray γ is contained in $D^{+}(S)$ and any co-ray β of γ is timelike.
Proof. If γ is not contained in $D^{+}(S)$, it will leave $D^{+}(S)$ at some point $o=\gamma(t) \in$ $H^{+}(S)$. By Lemma 4, there exists a timelike S-ray of infinite length (by completeness) in $I^{-}(o) \cap D^{+}(S)$. Therefore, $d(S, o)=\infty$ which contradicts the fact that γ is an S-ray.

Now let β be a co-ray of γ with $\beta(0)=q \in J^{+}(S)$. Since S is acausal, we have $\beta(t) \in J^{+}(S) \backslash S=I^{+}(S)$ (cf. Lemma 3) for any $t>0$. Choose a sequence $t_{n} \rightarrow \infty$ and put $p_{n}=\beta\left(t_{n}\right)$. We will show that

$$
\begin{equation*}
d\left(S, p_{n}\right) \rightarrow \infty \tag{*}
\end{equation*}
$$

By perturbing the sequence $\left(p_{n}\right)$ slightly to the past and using the lower semicontinuity of d, one can easily construct a sequence $\left(q_{n}\right) \subset I^{-}(\gamma) \cap J^{+}(S)$ with $q_{n} \in I^{-}\left(p_{n}\right)$ for all n, such that $d\left(S, q_{n}\right) \rightarrow \infty$. This implies that β cannot be null: Otherwise, for the Busemann function β of γ we would get $b\left(q_{n}\right) \leq b(q)<\infty$ (cf. Lemma 2), but on the other hand, $b\left(q_{n}\right) \geq d\left(S, q_{n}\right) \rightarrow \infty$ (cf. Sect. 3), a contradiction.

In order to show (*), we may assume $d\left(S, p_{n}\right)<\infty$ for all n. Let $\sigma_{n}:\left[0, a_{n}\right] \rightarrow M$ be a limit maximizing sequence of curves from S to p_{n}, i.e. $L\left(\sigma_{n}\right) \geq d\left(S, p_{n}\right)-\varepsilon_{n}$ with $\varepsilon_{n} \rightarrow 0$. Let $\sigma_{n}(0)=z_{n} \in S$. By compactness, we may assume $z_{n} \rightarrow z \in S$.
Case 1. $p_{n} \rightarrow \infty$. Then by Lemma $1, a_{n} \rightarrow \infty$, and σ_{n} accumulate to an S-ray $\sigma:[0, \infty) \rightarrow M$. By Lemma 3, σ is timelike and has infinite length (by completeness). So we have for any $a>0$ and for large enough n,

$$
d\left(S, p_{n}\right) \geq L\left(\sigma_{n} \mid\left[0, a_{n}\right]\right) \geq L\left(\sigma_{n} \mid[0, a]\right) \rightarrow L(\sigma \mid[0, a])
$$

(cf. Sect. 2). Since $L(\sigma \mid[0, a]) \rightarrow \infty$ as $a \rightarrow \infty$, we get (*).
Case 2. $p_{n} \rightarrow p \in M$. The coray β is contained in $\overline{D^{+}(S)}$, thus $p \in \overline{D^{+}(S)}$. Since strong causality is violated at p, it cannot lie in $D^{+}(S)$, hence $p \in H^{+}(S)$. Applying Lemma 4 again gives an S-ray $\mu \subset I^{-}(p) \cap D^{+}(S)$ of infinite length. In particular, we have $p \in I^{+}(\mu(t))$ for any $t>0$ and therefore $p_{n} \in I^{+}(\mu(t))$ for large n. Hence $d\left(S, p_{n}\right) \rightarrow \infty$.

5. The Main Theorem

Recall that a line is a (future and past) inextendible geodesic γ such that any compact segment $\gamma \mid[a, b]$ is maximal, i.e. $L(\gamma \mid[a, b])=d(\gamma(a), \gamma(b))$.

Theorem A. Let M be a spacetime which is timelike geodesically complete and contains a compact acausal spacelike hypersurface S. Suppose that there exists an S-ray γ such that $S \subset I^{-}(\gamma)$. Then M contains a timelike line.

Proof. Let $\beta:[0, \infty) \rightarrow M$ be a past directed S-ray in $D^{-}(S)$ which exists by the time dual of Lemma 4. Since $\beta(0) \in S \subset I^{-}(\gamma)$, we have $\beta(s) \in I^{-}(\gamma(t))$ for all s and sufficiently large t. Pick monotone sequences $t_{n}, s_{n} \rightarrow \infty$ and set $q_{n}=\gamma\left(t_{n}\right)$ and $p_{n}=\beta\left(s_{n}\right)$. Let $\mu_{n}:\left[a_{n}, b_{n}\right] \rightarrow M$ be a limit maximizing causal curves from p_{n} to q_{n}. Since $p_{n} \in D^{-}(S)$ and $q_{n} \in J^{+}(S)$, the curve μ_{n} must intersect S, say at z_{n}, and we choose the parameter so that $z_{n}=\mu_{n}(0)$. By compactness, we may assume that $z_{n} \rightarrow z \in S$. Let μ be a limit curve of complete extensions of the μ_{n} 's (cf. Sect. 2). We have to show that $b_{n} \rightarrow \infty, a_{n} \rightarrow-\infty$ (then μ is a line) and that μ is timelike.

Note that $\mu^{+}=\mu \mid[0, \infty)$ is a co-ray of γ, and in particular, $b_{n} \rightarrow \infty$ (cf. proof of Lemma 1). Thus μ^{+}is a timelike ray (cf. Lemma 5), and moreover, there exists $0<\delta<\liminf \left|a_{n}\right|$ such that $\mu \mid[-\delta, \infty)$ is maximizing, hence also a timelike ray.

In order to see that $\mu^{-}:[0, \infty) \rightarrow M, \mu^{-}(t)=\mu(-t)$ is a (past directed) co-ray of β we have to show that $z \in I^{+}(\beta)$. But since $\mu_{n}|[-\delta, 0] \rightarrow \mu|[-\delta, 0]$ which is a timelike geodesic, we have $\mu_{n}(s) \in I^{-}(z)$ for sufficiently large n and suitable $s \in[-\delta, 0]$, hence $z \in I^{+}\left(\beta\left(s_{n}\right)\right) \subset I^{+}(\beta)$. Hence μ^{-}is a co-ray of β, and in particular, $a_{n} \rightarrow-\infty$. Thus μ is a line, and since μ^{+}is timelike, μ must be timelike.

Remark. The proof shows that the assumption of timelike geodesic completeness can be replaced by the assumptions that $J^{+}(S)$ is future timelike geodesically complete and $J^{-}(S)$ is strongly causal.

As a consequence of Theorem A and the Lorentzian splitting theorem [N], we get immediately the following rigidity result:

Theorem B. Let M be a spacetime which contains a compact acausal spacelike hypersurface S, and which satisfies the timelike convergence condition, i.e. $\operatorname{Ric}(v, v) \geq$ 0 for all timelike vectors $v \in T M$. If M is timelike geodesically complete and there exists an S-ray γ such that $S \subset I^{-}(\gamma)$ then M splits, i.e. M is isometric to $\left(\mathbb{R} \times V,-d t^{2} \oplus h\right)$, where (V, h) is a compact Riemannian manifold.

Remark. There are numerous corollaries one can point out. The S-ray condition is implied by any of the following assumptions:
(a) For every future inextendible timelike geodesic γ in $J^{+}(S), S$ is contained in $I^{-}(\gamma)$.
(b) For every future inextendible timelike geodesic γ in $J^{+}(S), I^{-}(\gamma)=M$.
(c) There exists $t>0$ such that $S \subset I^{-}(x)$ for any $x \in I^{+}(S)$ with $d(S, x) \geq t$.

Conditions (a) and (b) both weaken the "no observer horizon" condition of Theorem 1.1 in [G1] (which, in addition, requires S to be Cauchy). Conditions (b) and (c) actually imply that S is a future Cauchy surface, i.e. $J^{+}(S)=D^{+}(S)$ or equivalently $H^{+}(S)=\emptyset$.

References

[B] Bartnik, R.: Remarks on cosmological spacetimes and constant mean curvature surfaces. Commun. Math. Phys. 117, 615-624 (1988)
[BE] Beem, J.K., Ehrlich, P.E.: Global Lorentzian geometry, Pure Appl. Math. New York: Dekker 1981
[EG] Ehrlich, P.E., Galloway, G.J.: Timelike lines. Class. Quantum Grav. 7, 297-307 (1990)
[E] Eschenburg, J.-H.: The splitting theorem for space-times with strong energy conditions. J. Differ. Geom. 27, 477-491 (1988)
[G1] Galloway, G.J.: Splitting theorems for spatially closed space-times. Commun. Math. Phys. 96, 423-429 (1984)
[G2] Galloway, G.J.: Curvature, causality and completeness in space-times with causally complete spacelike slices. Math. Proc. Camb. Phil. Soc. 99, 367-375 (1986)
[HE] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge: Cambridge University Press 1973
[N] Newman, R.P.A.C.: A proof of the splitting conjecture of S.-T. Yau. J. Differ. Geom. 31, 163-184 (1990)

Communicated by S.-T. Yau

[^0]: ^ Partially supported by NSF grant no. DMS-9006678

