Commun. Math. Phys. 148, 209-216 (1992) Communicati ons in

Mathematica
Physics

© Springer-Verlag 1992

Lines in Space-Times

J.-H. Eschenburg' and G. J. Galloway>*

! Institut fiir Mathematik, Universitit Augsburg, UniversititsstraBe 8, W-8900 Augsburg, FRG
2 Department of Mathematics and Computer Sciences, P.O. Box 249085, Coral Gables, FL 33124,
USA

Received August 29, 1991; in revised form March 17, 1992

Abstract. We construct a complete timelike maximal geodesic (“line”) in a timelike
geodesically complete spacetime M containing a compact acausal spacelike hypersur-
face S which lies in the past of some S-ray. An S-ray is a future complete geodesic
starting on .S which maximizes Lorentzian distance from S to any of its points. If
the timelike convergence condition (strong energy condition) holds, a line exists only
if M is static, i.e. it splits geometrically as space x time. So timelike completeness
must fail for a nonstatic spacetime with strong energy condition which contains a
“closed universe” S with the above properties.

1. Introduction

Let M be a timelike geodesically complete time-oriented Lorentzian manifold
containing a compact spacelike acausal hypersurface S. A conjecture stated by R.
Bartnik [B] says: If M satisfies the timelike convergence condition (strong energy
condition), then M splits isometrically as space x time. (In fact, Bartnik assumes S to
be a Cauchy hypersurface.) By the Lorentzian splitting theorem [N], this statement is
true if we can construct a timelike line, i.e. an inextendible maximal timelike geodesic.
However, without the timelike convergence condition, such a line need not exist (cf.
[EG]). It is the aim of the present paper to construct a timelike line if S lies in the
past of some S-ray, i.e. a future inextendible causal curve + starting on S such that
v | [0,¢] is a curve of maximal length between S and ~y(¢) for all ¢ > 0.

The main results are stated and proved in Sect. 5; the ingredients are given in
Sects. 2—4. For standard facts in Lorentzian geometry and for standard notation (such
as I, J*, D, H") we refer to [HE, BE].
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2. Limit Curves

Let (M, g) be a space-time, i.e. a time-oriented Lorentzian manifold. Additionally, we
choose a complete Riemannian metric A on M. All nonspacelike curves are rectifiable
and (with the possible exception of certain limit curves which inherit a limit parameter)
we will always parameterize them by arc length with respect to h. Clearly, a causal
curve vy is (future and past) inextendible if and only if it is parametrized on (—00, 00).

Limit Curve Lemma for Inextendible Nonspacelike Curves. Let -y, : (—00,00) —
M be a sequence of inextendible nonspacelike curves (parametrized by arc length in
h). Suppose that p € M is an accumulation point of the sequence (v,,(0)). Then there
exists an inextendible nonspacelike curve v : (—o0,00) — M such that v(0) = p and
a subsequence (,,) which converges uniformly (with respect to h) to v on compact
subsets of R. vy is called a limit curve of (,,).

Comment. The proof of this lemma is an application of Arzela’s theorem and is
essentially contained in the proof of Proposition 2.18 in [BE]. One advantage of the
parametrization with respect to the background metric h is that one can establish
the upper semicontinuity of the Lorentzian length functional without invoking the
assumption of strong causality:

Proposition. The Lorentzian arc length functional is upper semicontinuous with
respect to the topology of uniform convergence on compact subsets, i.e. if a sequence
Y, : la,b] — M of nonspacelike curves converges uniformly to the nonspacelike curve
v :la,b] — M, then

L(v) > lim sup L(,,).

n—o0

Comment. The idea behind circumventing the strong causality assumption is this:
One can partition [a,b] as a = t; < t; < --- < t, = b so that each subsegment
v | [t;_;,t;] is contained in a normal neighborhood N, of M. (IN;,g), viewed
as a space-time in its own right, is strongly causal. By the uniform convergence,
Yo | [t;_1st;] C N, for all sufficiently large n. Now apply the known upper
semicontinuity of the Lorentzian arc length functional on the strongly causal space-

time (V;, ) to conclude,

L(vy | [t;_y, t;]) > limsup L(y,, | [t;_y,t;]).

n— 00

Now sum over ¢ to get the desired result.

The limit curve lemma was discussed for inextendible causal curves. There is
an obvious version for future (respectively past) inextendible causal curves
Yy, : [0,00) — M.

Let d denote the Lorentzian distance function, i.e.

d(p, q) = sup{L(p); p € C(p,q)} < oo,

where C(p,q) denotes the set of future directed causal curves from p to q. The
Lorentzian distance function is known to be lower semicontinuous. A sequence
Y, ¢ la,,b,] — M of causal curves is called limit maximizing if

L(vn) 2 d(¥n(@n) 1 (b)) — €4,
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for some sequence €,, — 0. Suppose that vy,, converges uniformly to <y : [a, b] — M on
some subinterval [a, b] C ﬂ [a,,,b,]. Since L is upper and d lower semicontinuous,

n
there is a sequence §,, — O such that

L(y,) = 6, < L(y) < d(v(a), (b))
< d(7,(@), 7, () + 6, < L(7,) + €, + 6,5

thus
lim L(7,,) = L(y) = d(y(a), y(b)) = lim d(v,,(a), 7, (b))

and in particular, vy is maximal. (Beem and Ehrlich introduced the notion of limit
maximizing curves in the strongly causal setting; cf. [BE, Chap. 7].)

3. Rays, Co-Rays and Busemann Function

A ray in M is a maximal future inextendible causal geodesic vy : [0, 00) — M. Rays
often arise from limit constructions:

Lemma 1. Ler z,, be a sequence in M with z, — z. Let p, € I'(z,) with finite
d(z,,p,). Let 7, : [0,a,] — M be a limit maximizing sequence of causal curves
with v,,(0) = z,, and vy,(a,) = p,. Let 7, : [0,00) — M be any future inextendible
extension of vy,,. Suppose either

(a) p, — oo, i.e. no subsequence is convergent,

or
(b) d(z,,p,) — 0.

Then any limit curve «y : [0,00) — M of the sequence 7,, is a ray starting at z.

Proof. All we have to show is that a,, — oo. Suppose not. By passing to a sub-
sequence, we may assume a,, — a < 0o. Since v,, are parametrized by arc length for
h, all ,, are contained in a compact subset K C M, e.g. the closed h-ball of radius
2 q around z. This is clearly impossible in Case (a). In Case (b), let T' be a timelike
unit vector field [i.e. g(T,T) = —1] on M and 7 = g(.,T). Consider the Riemannian
metric

hy=g+2T7Q@T=g"+7OT.

Note that for any causal curve segment o,
L(0) = L,(0) < L, (0),

where Lh0 denotes the length with respect to h,. By assumption, L(y,) > d(z,,,p,,) —
€, — 00, hence L (v,) — oo. Since K is compact, there exists A > 0 such that
h>X-hyonTM | K. Therefore a,, = L,(7,) — oo which is a contradiction.

S-Rays. Let vy : [0,00) — M be a ray. Let S C M be a subset containing (0) such
that v maximizes distance to .S, i.e. for any ¢ € [0, 00),
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where d(S, z) = sup{d(q,z); q € S}. Then v is called an S-ray: E.g., any ray 7 is
a {7(0)}-ray. Observe that for any z € I~ (y) N J*(S) and all sufficiently large ¢,

d(S, ) + d(z,y(@)) < d(v(0),v(t)) < oo. (*)

Co-Rays. Let v : [0,00) — M be a future inextendible S-ray and let z €
I=(y) N J*(S). Let z, — z in J*(S) and put p, = ~(r,) for some sequence
r, — o0o. Then 2z, € I (p,) for sufficiently large n, and d(z,,p,) < 00 by (*).
Assume either

@ p,—oo o (b) diz,p,) — oo.

[Note that (b) holds if « has infinite length.] Consider a limit maximizing sequence
4, of causal curves from z, to p,,. By Lemma 1, any limit curve u : [0,00) — M
of the p,, is a ray starting at z. Such a ray is called a co-ray of -y. Note that y is

contained in the closure of I~ (). (In fact, if u(t) € I~ (7), then p | [¢,00) is a
future inextendible null geodesic generator of 81~ (v).)

Busemann Functions. Let vy : [0,00) — M be a timelike S-ray and b : I~ (y) —
[—00, 00) the associated Busemann function, namely b(z) = tlim b,(x), where
—00

by(x) = d(7(0),7(®) — d(z, ().

Recall that b,(x) decreases monotonely with ¢, since for s > ¢ we have

d(z,v(s)) = d(z,y®) + d(y (@), ¥(s)),
d(7(0), v(s)) = d(v(0), ¥(8)) + d(¥(2), Y(s)).

Further, for z € I~ (y) N JT(S), we have
b(x) > d(S,z) > 0,
since (x) shows b,(x) > d(S,x) for any ¢. Recall that d is lower semicontinuous,

hence b, is upper semicontinuous, and since b is the decreasing limit of the b,, it is
also upper semicontinuous.

Lemma 2. Let 7y : [0,00) — M be a timelike S-ray and p : [0,00) — M a co-ray
with u(0) = z € I () N J*(S). Then we have for any s > 0 and any € I~ (u(s))

b(z) < b(2) + d(z, u(s)).

In particular, if y is a null ray, then b(x) < b(z) for any x € I~ ().

Proof. Let p = lim u,, where y,, is a limit maximizing sequence from z,, to (r,,).
Let b, :=b, . Then

b, (z) = d(v(0),y(r,)) — d(z,y(r,)).
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Since p,,(s) — p(s), we have z € I~ (p,,(s)) and

d(@,y(r,)) 2 d@, p,(8)) + d(p,,(8),¥(ry)
which shows

bp (@) < —d(z, 1, (5)) + by, (1, (8)) < by, (1, (9))-

For two real sequences (a,,), (b,) we will write a,, ~ b,, if a,, — b,, is converging to
zero. Since p,, is maximal up to an error €,,, we have

b, (1, (8)) — b, (2,,) = d(2,,,Y(r,,)) — d(p,, (8),¥(T,,))
~ d(z,, t,(8)).
Thus
b, (z) < b, (1, (8) = b,(2,) + d(2,, p,(5))-

Now for any y € I (2) N I~ () we have y € I*(z,) for large n and therefore

Az, y) + d(y, ¥(ry)) < d(z,,7(ry)),
which shows d(y, y(r,,)) < d(z,,(r,)), hence b,(y) > b,,(2,). So we obtain
bp (@) < by, () + d(zp, 1 (9)) + €.
Taking the limit as n — oo, we get the result; note that d(z,,, i,,(s)) — d(z, u(s))

since p,, | [0, s] is limit maximizing, and use the upper semicontinuity of b.

Comment. Lemma 2 replaces the well known fact in Riemannian geometry that the
Busemann function grows with unit speed (with respect to arc length) along co-rays.
This still holds in Lorentzian geometry provided that d is continuous and p timelike
(cf. [E, p.480]).

4. Spacelike Hypersurfaces

Definition. A subset S C M is called a spacelike hypersurface if for each p € S
there is a neighborhood U of p in M such that S N U is acausal and edgeless in U.

Comment. A spacelike hypersurface is necessarily an embedded topological submani-
fold of M with codimension one. A smooth hypersurface with timelike normal vector
is a spacelike hypersurface in the sense of our definition.

Lemma 3. Let S C M be an acausal spacelike hypersurface. Then
IS =J 9\ S.

Consequently, any S-ray is timelike.

Proof. Clearly, IT(S) C JY(S)\ S. So let p € J*(S)\ S and let i be any causal
past directed curve from p to S. Let ¢ € S be the past end point of u. There exists a
neighborhood U of ¢ and a coordinate chart x = (z, ..., ) : U — I%"! such that
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0/8z, is timelike, and 7' (S N U) is a graph over I¢. Let ¢’ € uNU, ¢’ # g, and
replace the segment of 4 between ¢’ and g by the x,-parameter line through ¢’ which
also meets S. Thus ¢’ € I(S), hence p € I'*(S). This shows that I*(S) = J*(S)\S.
If 7 is an S-ray, it cannot stay in S since S is locally acausal. So ~y(t) € I'*(S) for
some ¢t > 0 which implies that d(-y(0),y(¢)) > 0. Hence = is timelike.

Lemma 4. Let S C M be a compact acausal spacelike hypersurface. Then there
exists a timelike S-ray in D*(S). If HY(S) # 0, we find such a ray in I~ (p) N D*(S)
for any p € H*(S).

Proof. If H*(S) # 0, this is true by the “Main Lemma” in [G2]. So it remains
to consider the (easier) case where H*(S) = (). Let p € S and i : [0,00) — M
be a future inextendible timelike geodesic with u(0) = p. Since H*(S) = 0, we
have u((0,00)) C D*(S). Let r, — oo and p,, = p(r,). Then p, — oo since
P,, — P € D*(S) (for some subsequence (p,,) of (p,,)) would be a violation of strong
causality. By compactness of S, there are maximal curves +,, from S to p,, € D*(S).
Let z, = v,(0) € S. We may assume that z, — z € S. By Lemma 1, the v,
accumulate to an S-ray . By Lemma 3, «y is timelike.

Lemma 5. Assume M is future timelike geodesically complete. Let S be a compact
acausal spacelike hypersurface in M. Then each S-ray «y is contained in D*(S) and
any co-ray 3 of vy is timelike.

Proof. If v is not contained in D*(S), it will leave D*(S) at some point o0 = y(t) €
H*(S). By Lemma 4, there exists a timelike S-ray of infinite length (by completeness)
in I=(0) N D*(S). Therefore, d(S,0) = oo which contradicts the fact that v is an
S-ray.

Now let 8 be a co-ray of v with 3(0) = g € J*(S). Since S is acausal, we have
B@) € JH(S)\ S = I'"(S) (cf. Lemma 3) for any ¢ > 0. Choose a sequence t,, — oo
and put p,, = 3(t,,). We will show that

d(S,p,) — . (%)

By perturbing the sequence (p,) slightly to the past and using the lower semi-
continuity of d, one can easily construct a sequence (g,,) C I~ (y) N J1(S) with
g, € I~ (p,) for all n, such that d(S, g,) — oco. This implies that 8 cannot be null:
Otherwise, for the Busemann function § of v we would get b(g,,) < b(g) < oo (cf.
Lemma 2), but on the other hand, b(g,,) > d(S, g,,) — oo (cf. Sect. 3), a contradiction.
In order to show (), we may assume d(S, p,,) < oo foralln. Leto,, : [0,a,] = M
be a limit maximizing sequence of curves from S to p,,, i.e. L(c,) > d(S,p,) — €,
with ¢, — 0. Let 0,,(0) = 2, € S. By compactness, we may assume 2, — z € S.

Case 1. p, — oo. Then by Lemma 1, a,, — oo, and o0,, accumulate to an S-ray

o :[0,00) — M. By Lemma 3, o is timelike and has infinite length (by completeness).
So we have for any a > 0 and for large enough 7,

d(S,p,) > L(o,, | [0,a,]) > L(c,, | [0,a]) — L(o | [0,a])
(cf. Sect. 2). Since L(o | [0,a]) — oo as a — oo, we get (k).

Case 2. p, — p € M. The coray 3 is contained in D*(S), thus p € D*(S). Since
strong causality is violated at p, it cannot lie in D*(.5), hence p € H*(S). Applying
Lemma 4 again gives an S-ray u C I~ (p) N D*(S) of infinite length. In particular,
we have p € It (u(t)) for any ¢t > 0 and therefore p,, € I (u(t)) for large n. Hence
d(s, p,,) — oo.
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5. The Main Theorem

Recall that a line is a (future and past) inextendible geodesic «y such that any compact
segment 7 | [a, b] is maximal, i.e. L(y | [a,b]) = d(y(a), ¥(b)).

Theorem A. Let M be a spacetime which is timelike geodesically complete and
contains a compact acausal spacelike hypersurface S. Suppose that there exists an
S-ray 7 such that S C I~ (). Then M contains a timelike line.

Proof. Let 8 :[0,00) — M be a past directed S-ray in D~(S) which exists by the
time dual of Lemma 4. Since 5(0) € S C I~ (y), we have [(s) € I~ (y(t)) for all s
and sufficiently large ¢. Pick monotone sequences t,,,s,, — oo and set q, = Y(t,)
and p,, = 0(s,,). Let p,, : [a,,b,] — M be a limit maximizing causal curves from
P, 10 g,. Since p, € D(S) and ¢, € J*(S), the curve y, must intersect S, say
at z,, and we choose the parameter so that z, = u,(0). By compactness, we may
assume that z, — z € S. Let p be a limit curve of complete extensions of the p,,’s
(cf. Sect. 2). We have to show that b, — o0, a,, — —oo (then p is a line) and that
v is timelike.

Note that u* = | [0,00) is a co-ray of v, and in particular, b, — oo (cf. proof
of Lemma 1). Thus u* is a timelike ray (cf. Lemma 5), and moreover, there exists
0 < é < liminf|a,| such that x | [—6, 00) is maximizing, hence also a timelike ray.

In order to see that p~ : [0,00) — M, u~(t) = u(—t) is a (past directed) co-ray
of 3 we have to show that z € I*(3). But since u,, | [—6,0] — p | [—6,0] which
is a timelike geodesic, we have p,(s) € I~ (z) for sufficiently large n and suitable
s € [-6,0], hence z € I*(B(s,)) C IT(B). Hence p~ is a co-ray of (3, and in
particular, a,, — —oo. Thus 4 is a line, and since p* is timelike, 4 must be timelike.

Remark. The proof shows that the assumption of timelike geodesic completeness can
be replaced by the assumptions that J1(S) is future timelike geodesically complete
and J~(S5) is strongly causal.

As a consequence of Theorem A and the Lorentzian splitting theorem [N], we get
immediately the following rigidity result:

Theorem B. Let M be a spacetime which contains a compact acausal spacelike
hypersurface S, and which satisfies the timelike convergence condition, i.e. Ric (v,v) >
0 for all timelike vectors v € TM. If M is timelike geodesically complete and
there exists an S-ray v such that S C 1= (vy) then M splits, i.e. M is isometric to
(R x V, —dt* @ h), where (V, h) is a compact Riemannian manifold.

Remark. There are numerous corollaries one can point out. The S-ray condition is
implied by any of the following assumptions:

(a) For every future inextendible timelike geodesic y in J*(S), S is contained in
I=().

(b) For every future inextendible timelike geodesic v in J*(S), I7(y) = M.

(c) There exists t > 0 such that S C I~ (z) for any x € IT(S) with d(S,z) > t.

Conditions (a) and (b) both weaken the “no observer horizon” condition of Theorem
1.1 in [G1] (which, in addition, requires S to be Cauchy). Conditions (b) and (c)
actually imply that S is a future Cauchy surface, i.e. J*(S) = D*(S) or equivalently
H*(S)=0.
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