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Abstract. Using previous results we construct the ̂ -analogues of the left invariant
vector fields of the quantum enveloping algebra corresponding to the complex Lie
algebras of type An- ί9 Bn, Cn, and Dn. These quantum vector fields are functionals
over the complex quantum group si. In the special case A x it is shown that this
Hopf algebra coincides with Uqsl(2, <C).

1. Introduction

We work with the g-deformed function algebras over the complexified groups
associated to An_ l 5 Bn, Cn, and /)„, where q> 0 is a real parameter. I.e. we consider
Hopf algebras which are generated by the matrix functions of the fundamental
representation and its hermitian conjugate such that dividing out the unitarity
condition yields the quantum groups SUq(N), SOq(N,JB.% USpq(N). In [DSWZ] a
dual Hopf algebra has been constructed thus leading to a ^-deformation of the
corresponding universal enveloping algebra. In [SWZ, OSWZ] the g-deformed
universal enveloping algebra of 5/(2, <C) was found as an operator algebra on the
complex spinor quantum plane. This was also constructed in [CW] by analyzing
the differential calculus on the complex quantum groups Slq(n, C).

In the real case it is known that the Hopf algebra of regular functionals is
generated in some sense by the vector fields which appear in the bicovariant
differential calculus on quantum groups [Wor, Jur, Zum, CSWW]. This is proved
in [Bur] using the fact that the matrices L+ij and L~i

i generating the algebra of
regular functionals are upper and lower triangular, respectively.

In the complex case the corresponding matrices L±Tj introduced in [DSWZ]
violate this triangularity. In this paper we prove for the case of Aγ that the *-Hopf
algebra of regular functionals is generated by the vector fields.

In Sect. 2 we define the vector fields, find some relations between them and
construct the Casimir operators of the algebra of regular functionals [7Λ on the
complex quantum group si. In Sect. 3 we concentrate on the case Ax and show
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that the vector fields generate a sub-*-Hopf algebra of [7Λ. The equivalence of
these Hopf algebras is then derived in Sect. 4.

2. Vector Fields on Complexified Quantum Groups

Throughout this paper we are^usingthe notations and conventions of [DSWZ].
St(I) (iJ)J (Tj) {Tj)(iJlN)h N = n for Λn_uN = 2 l

%IJ \ . — (2.2)

for Bn and N = 2n for Cn,Dn. Define then the 2N x 2JV-matrix

"'"Co ?)'/
and the ^-matrix

a0Rq 0 0 0

0 0 atRq 0

0 (x^f1 0 0

0 0 0

with the corresponding £β-matrix [FRT] and with α.eC defined through

(«0)-" = (α1)-" = (α2r = («3r = « (23)

forΛ-i>

(α o ) 2 =(α 1 ) 2 =(« 2 ) 2 = (α3)
2 = l (2.4)

in the cases of Bφ Cn9 Dn and

^ Ό c 3 = aΓ2'<xί = \. (2.5)

We are considering the quantum group

s/: = C< T'JWS'T, (2.8), (2.9)), (2.6)

where the ideal is generated by

iST'—'ΛqKL1 S1 T~ l V1 W^q ST J \Δ'')

| q V H \ . . . ί V < 1 . . . ί n l for^-i.
L J<" (2.8)

-δ)!, (C-ψi>kClSj-δtjl for Bn,Cn,Dn,

det(Γ',)-l = 5—-Lj-q [2'*1"-*"t\-...-t\Bll...ht-l f o r ^ ^ ,

(2.9)
t'ΛC-WtCy-ajl, (C-ψttfj'j-δ'jl for Bn,Cn,Dn,

where ε; , =(- l )"" 1 e i l - i "=(-f l ) i ( < T > , l(σ) is the length (minimal number of
" ί \ n\

transpositions) of the permutation σ = ( . " . j , [ri]q = (q"—q~n)/(q—q~1),
W , ! = [ l ] , [«], [CSWW] and C f j is the usual metric [FRT].
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With the involution

(ϊj)*: = «iPd (2.10)

si becomes a *-Hopf algebra with comultiplication Φ, counit e and antipode K
[DSWZ].

The dual space si* of the Hopf algebra si is an algebra with the convolution
product. One can introduce an antimultiplicative involution t 4 t " on si*: For
fesi* one sets

Vαej/: f\a):=f{κ-\a*)). (2.11)

In the following we are working mostly with the multiplicative involution "~":

J:=fUκ~ι. (2.12)

We define functionals L± /

t /esi* through their action on the generators of si:

τ ±1 (TK \._fr
L A1 ϋ — Wq LJ

and their comultiplication
Va,besi: L±I

J(ab) = L±I

κ(a)L±κ

J(b). (2.14)

The algebra UΛ of regular functionals on si is the unital algebra generated by
{L±7

7} [DSWZ]. It is shown in [DSWZ] that Um is a *-Hoρf algebra with
comultiplication Δ, counit ε and antipode S.

Now we introduce the matrices

(2.15)

r* o
o rv

with the matrix entries Y1j and Y~1I

Je UΛ.
It follows from the commutation relations of L±I

J derived in the preceding
paper [DSWZ] that

0tjX ® Y)$q{l ® Y) = (1 ® Y)@q(l (g> Y)Λq. (2.16)

For convenience we set for any matrix M, M1JEΌΛ the hermitian involution "*"
with M* 7 j : = (M J

/ )
t . Using the involution properties of the L±ι

3 (see (3.13) of
[DSWZ]) one obtains

Y*J

I=Y-U

I. (2.17)

The Y'j have the comultiplication

A (y7,) = OIK

LJ (x) 7L^, (2.18)

where
(2.19)

A priori the algebra generated by the Y*j is not a *-Hopf subalgebra of XJm.
However, in Sect. 3 we prove the * - Hopf algebra structure in the special case A x. In
Sect. 4 we even show that the Y1

3 generate UΛ.
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Similarly, as in [CSWW, Jur, Zum] for the real case we define

ί<'- y » (2 20)

where λ = (q — q"1). These elements are the analogues to the linear functionals in
[Wor] which correspond to a ^-generalization of the left invariant vector fields of
the complex Lie group. Now (2.16), (2.17), and (2.20) give

^(i®x)4(i®xMi®x)^(i^^
and (2 2 1 )

(2.22)

In the next step we investigate the Casimir operators for l/Λ. We restrict to the
y4n_rtype. For Bn, Cπ, and Dn the results are quite similar. We observe the
following: / ± , * j t T i« A±1VΛ yb L±e

L j)? I — Kq vbKq Icy aL j >

T ±Ί „* __ Όki p - 1 va Λ,b j ±c
L -jyι=κ

qvbRq ι-cy aL 7,
J±i φ _ D - l f e i βvδ λb τ ±c '
T ±ϊ AΪc — n±lk~i n+lva ΛB T ±CL iy~l — Kq vbKq Icy aL }•

From (2.23) we derive the Casimir operators in the same way as in [FRT]. We
obtain the

Proposition 1. The elements
c,: = Tr(β/),

(2.24)

with i k=l n —1 and Q = dmg(qn-\qn-\...,q-{n-1))

are the Casimir operators in U@.

3. The F-Hopf Algebra in Uqsl(2,<£)

In Sects. 3 and 4 we restrict the above developed formalism to Aγ. In the following
we are using the definitions

y-

and analogously for the matrices y~x

9 P'1, x, and i .
For y and p we obtain a determinant condition

=i> ( 3 2 )

Pj2-q2P-P+ = l,

which is easily derived from the definition of the Y7j in terms of the L±I

J. Inserting
(2.20) in (3.2) yields

— λxίx2 + q2λx+x - = 0 ,
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The commutation relations (2.21) for the X1

3 read explicitly

[xί,x_']-λq~ίx2x_ = -q~ιx_,

x2x+-q2x+x2=-qx+,

x+x+-q~2x+x+=0,

x+x--q2x-x+=λq(x2(x2-x1)-(x2-x1)x1),

[x+,^2] = -λqx+(x2-x1),

[x_,x2] = 0,

[x2,x1] = -

[x 2 ) x + ] = 0,

There are more relations among the Y'j but in the limit q-*\ the commutation
relations (3.4) yield the Lie algebra s/(2, <C). This can be seen easily with the help of
(2.22) and (3.3).
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Y1j and Y~Uj are linearly related. It holds

i2y+>

fy-,

(3.5)

This fact guarantees that the algebra generated by the Y*s closes under the action
of the " f "-involution. Like in the comultiplication [recall (2.18)] the antipode of
the Y*j involves the OIJ

KL. One first observes that the algebra generated by the
0IJKL is a sub-*-Hopf algebra of UΛ and contains the algebra generated by the
Y7j. In the next step the OIJ

KL are expressed in terms of the F /

J , thus showing that
the Y-algebra itself is a *-Hopf algebra.

The following results are proven by inserting the explicit expansion of the
above elements in terms of the h±ι

3 and using their properties. From the definition
of the OIJ

KL it follows directly that all the OIJ

KL can be written as linear
combinations of the lόelements O2l

ϊl9 Ol2

ϊl9g^\2> O 5 2

ϊ 2,and Oij

kl(ίSk) which
can be rewritten as functions of the 7 /

J and Y1j only:

O22

22=y2,

(3.6)
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There is an additional dependence between the Y*j and Y'y.

Ti=y2+<i2(yi-Ti),

Ti=$i + q~2(y2-T2)>

All the OIJ

KL can now be written in terms of YI

J, y^., yZ,y^,J[,Jl, and j)_.
y2 and j x are invertible in Um and

where we have used results from [DSWZ] with q3(y_y_) = L ί

2L
 2i = A. Thus

one sees with the help of (3.2) that the 7-algebra is generated by the six elements
y+, y-, y29 j>i, j>+, i>- and the inverses of y2 and j>1#

Now we are able to express all Y!

s in terms of YI

J and the inverses of y2 and yx :
For γ2 and }>! we obtain by a simple calculation

^ t f i Γ H l + β V ^ ) (3.9)

and

Λ = ( j 2 ) " 1 ( l + ̂ - 3 ^ ) . (3.10)

With the help of (3.9) and (3.10) the relations

and
[jn ? y_]=0 (3.12)

obtained from the commutation relations of the L±1

5 lead to

yΛΓ-^q-^iT'yΛhr1 (3.13)

with the definition

^-l-^Γ^+WiΓV- (3.14)

The element j ; ^ is invertible since
4 * - y z ) y A = i . (3.15)

j ^ 1 can be expanded as a power series in (y2)~~1y+(yίy
1y- which converges

(compare the discussion in [DSWZ] for the element A). Thus

Γ-^qΛyAΓHyiΓ'yΛhΓ1- (3.16)

Using y^ we can rewrite (3.9) and (3.10)

3^ = (i>1)-1(^)-1 (3 Π)
and
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In the next step ( ί / 1 ^ 2 is calculated.

(L + 1

1 ) 2 = L + 1

1 L - 2

2 ( L - 2

2 ) - 1 L + 1

1 = ( y 2 ) " 1 ( P 1 ) - 1 ( y i l ) - 1 , (3.19)

and thus we obtain

J7 = ̂ 2 ( L + 1

1 ) 2 > ' _ = ^ O 2 ) - 1 ( i > i ) - 1 O J " 1 J - (3.20)

Expanding (ylyΊ) in L±!j and using their commutation relations one arrives at

T+=(y29-+y-h-($1Γ
ι(yAΓiy-)($iΓ1 (3.21)

In a similar manner we obtain

: 1 1 1 1 (3.22)

and therefore, the 0-algebra can be expressed by the YI

J only.
We have now shown that the 7-algebra * is a sub-*-Hopf algebra in Uqsl(2, <C).

In this approach we mainly used the algebraic properties of l/Λ.
A second approach uses the convolutive action of the Y'j as differential

operators on s/. This is presented in the following. From [DSWZ] one obtains the
fundamental commutation relations between the generators of si and the
y-algebra

For convenience we introduce a new index notation:

Having introduced the operators OΠ

Ω through

) = OΩ

Π®YΠ (3.24)

[compare (2.18)] one tries to express them in terms of the YΩ. In the first step we
restrict only to the action on the subalgebras of s4 generated by either (f,) or (f *-)
because there L~lj=0 for i<j and i>j, respectively, and therefore A vanishes on
both of these sectors [DSWZ]. In order to construct the OΠ

Ω from its restricted
operators it is sufficient to find a decomposition of the operators OΠ

Ω into

Oπ

Ω=δ\0R

Ω (3.25)

such that

Vα 6 <(ί V)>, βe <(ΓJj)>: 0π^β) = OΠ

Ω{ΦΦ),

i.e. into factors which act nontrivially only on one of these subalgebras. To make
the following more transparent we restrict the action of Y*s to monomials of the
form (ί1

 ι)\t\)1 and (Γ1 Jn$1

2f. For (ί1 / ( ί 1 ^ we use the abbreviation (k, I) and for

1 I.e. the algebra generated by the YI

J and by the convergent power series in YI

J introduced above
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(ί SΠf 1 ! ) " we use (m,n). From (3.23) we obtain

y+(k,ΐ)=(k,t)y++λqι-kίk-]q(k-ί,l+l)y2,

y2(hl) = qι-k(k,t)y2,

y^rn,n)=(m,n)y1

y2(m,n)=(m,n)y2-λq"-m+2lm]q(m-l,n+l)y-,

j) + (m,n)=(m,n)j) + -V" m + 2 M < I (m-l,n

It is now possible to express the above introduced convolutive action by eight
operators A, B, C, D, K, L, M, N, where A, B, K, L only operate on the ((ί'^-sector
and C, D, M, N only operate on <Γ'j)>. They are defined on ordered monomials as
follows [set (k, I, kf, ΐ, m, n, m', ri):=(ί* ̂ (ί'2)'(t2

 ι)
k\t2

2nΐί ^ t ^ y t f 2 i Γ ' t f V ' ] :

A(k,l,k',r,m,n,m',ri)=qι+ι'-ίtl'lq(k,l,k' + ίJ-l,m,n,m',ri)

B(k, I, k', ΐ, m, n, rri, ή) = q^'-'-'lk'^k, l,k'-l,l' + l, m, n, m', ri)

K(k, I, k', I', m, n, rri, ri)={k + k'){k, I, k', I', m, n, rri, ri),

L(k, I, k', I', m, n, rri, ri) = (l+l')(k, I, k', I', m, n, rri, ri),

+ q2n'+"-m'-iln\(k,l,k',Γ,m + l,n-l,m',ri),

,l,k',l',m,n,m',ri) = qn+n'-ίtri\{k,l,k',l',m,n,m' + \,ri -1)
2n'+"-m'-i

+ qm+m' -ιlrri]q(k, I, k'J,m-l,n + \,rri, ri),
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M(k, I, fc', Z', m, n, m', n') = (m + m')(fc, /, fer, /', m, n, ra', ή),

N(k9 /, fc', ΐ, m, n, m', rί) = (n + n')(fc> /, if, /', m, n, m\ ή),

where [n]β={qn-q~n)/{q - q"x) as defined in Sect. 2. In (3.28) only the action of the
operators on monomials is presented.

Using these definitions we rewrite the YΩ as

=λBq-2K+L+1=λq-2K+L-2y+=λBq =λq 2B,

(3.29)

The restrictions of 0π

Ω on the separate sectors [see (3.27) where the coefficients
correspond to the action of these restricted operators] can be expressed in terms of
either A, B, K, L or C, D, M, N9 respectively. We have thus found the
decomposition of OΠ

Ω into OΠ

Ω and OΠ

Ω [compare (3.25) and (3.26)]. After
reexpressing A9 B, C, D, K, L, M, N in YΩ by inverting (3.29) we arrive at

/(yiV1 y+tiiV1 q2y-(y2y
i 3Ί-(

o

(O\) =

(O\) =

o
1

o

y~

y+

y-

q2y-( \ - i

-q2y-

0

0

"Vc (yj>i)-χ -

0

0

yB

PΛy2Γ
ι

-q^Ji-iyJi)'1 yc yώ>Ji)~

(δ\)=φ\)=(δ\)=(δ\)=o,

o
1

(3.30)

1

o

o N

o
o

(yJiΓ1,
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where y'A is given by (3.14) and

yc=<Γ2J>+ύ'2Γ1(>'J>iΓ1

The OΠ

Ω constructed with the help of (3.25) and (3.30) coincide with the results
from the algebraic approach.

Having found the OΠ

Ω in terms of the YΣ it is now possible to construct the
antipode S(YΣ) as function of the Yπ. There are two possibilities to derive that. The
first derivation starts from the Hopf relation

mo(id®S)oA=ηoε, (3.32)

where m is the multiplication and η is the unit map of the algebra and uses
invertible elements of the algebra to solve (3.32) for the S(YΠ). For the second
derivation one expands S(YΠ) into products L~I

JL
+K

L and uses the commutation
relations of L ± J

3 [DSWZ] to express the L~I

JL
+K

L in terms of the OΠ

Ω.
Both derivations yield

s(y+)= -p+ -9i

S{y2)=UyAhy2r\

Wi)=y JίyΛpiyiT1*

S{y.)=-y.-y2yE{yAy1y2)~\

with

(3.34)

4. Uqsl(2,<£) in the F-Hopf Algebra

In this section we demonstrate the equivalence of the 7-algebra and U#. For that
purpose we consider (3.19),

We define the functional ]/(L+ 1

t)
2 as follows:

" (4 l)

)2(ab): = l/(L+ \)2(a)]/(L+ \)2(b),
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where the root is taken such that ]/(L+ x J 2 (T'j) = L+ \(TI

J). Then we have the
following

Proposition 2. j/^L"1"1!)2 defined above as a function of the YΣj is a well defined
algebra homomorphism on stf and equals L + 1

2 .

From the definition of Y1

3 one obtains

L+2

2L~\=y2,

L+2

2L-1

2=-q-ιP+, (4.2)

L, 2 L , ί — ~Qy-'>

Γ + 2 r - 2 _ A

^ 2 ^ 2 y i

Applying L+1

1 to (4.2) from the left yields all functionals generating Um as
functions of the Y1j thus proving the equivalence of Um and the 7-algebra. In
particular, we found again the ^-deformed Lorentz algebra.

Throughout the paper we considered the algebra generated by the Yι

3 as a
subset of UΛ. Certainly, there are more relations in the 7-algebra than (2.16),
(2.17), (3.2), (3.5) - we used such additional relations in the case of Λ1 in order to
show the equivalence to UΛ. We did not investigate whether the 7-algebra can be
abstracted from UΛ such that <C< r Jj>/((2.16), (2.17), (3.2), (3.5)) becomes a *-Hopf
algebra if the comultiplication for the generators YfI

3 is given through (2.18) with
the OIJ

KL as functions of the Y/Mj. Then the above presented 7-algebra is a *-Hopf
algebra representation of the Y'-algebra. It is interesting whether one can find a
general scheme to obtain the results of Sects. 3 and 4 to show the Hopf structure of
the 7-algebra introduced in Sect. 2 and its equivalence to UΛ in general for the
cases An-U Bn, Cn, and Dn.
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