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Abstract. Two-dimensional chiral fermions and bosons, more generally conformal
blocks of two-dimensional conformal field theories, exhibit Weyl-, Lorentz- and
mixed Lorentz-Weyl anomalies. A novel way of computing these anomalies for
a system of chiral bosons of arbitrary conformal spin; is sketched. It is shown that
the Lorentz- and mixed Lorentz-Weyl anomalies of these theories can be cancelled
by the anomalies of a three-dimensional classical Chern-Simons action for the spin
connection, expressed in terms of the dreibein field. Some tentative applications of
this result to string theory are indicated.

There are two circles of problems in theoretical physics which lead us to reconsider
some aspects of two-dimensional chiral anomalies. The first one concerns the
theory of incompressible, chiral quantum fluids, in particular of two-dimensional
electron fluids in a transverse, external magnetic field encountered in studies of the
quantized Hall effect. The study of the dynamics of Hall fluids near the boundary of
the system naturally leads one to consider (1 + l)-dimensional abelian and non-
abelian gauge anomalies and the associated abelian and non-abelian Chern-
Simons gauge theories in 2 + 1 dimensions which describe bulk properties of
two-dimensional, incompressible, chiral quantum fluids in the large-scale, low-
frequency limit [1, 2].

The second circle of problems concerns the anomalies, in particular the
Lorentz- and Weyl anomalies, of two-dimensional (chiral) conformal field theory
and the problem of constructing new string theories [3-5].

This note has grown out of studying these two circles of problems. It is quite
likely that the following calculations and remarks are known to experts in the field.
Nevertheless, we wish to submit the results of a series of exercises that we have
performed to the attention of the interested reader.

Chiral fermions coupled to an external gravitational field in (2 + 4n) dimen-
sions, n = 0,1, 2, . . . , are known to exhibit Weyl- and Lorentz anomalies [6-8].
At the classical level, the action is invariant under Weyl transformations and
Lorentz transformations of the local Lorentz frames. However, quantization of the
fermions breaks these symmetries. The effective action, defined as the logarithm of
the chiral-, or Weyl determinant, is not invariant under Weyl- and local Lorentz
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transformations. Actually, the breaking of Weyl invariance is common to all such
theories, not just chiral ones.

We now recall some properties of two-dimensional chiral fermions. In two-
dimensional Euclidean space-time, it is fairly straightforward to calculate the Weyl
determinant [8]. It is of the form exp(^ + \J\ The real part, 01, only depnds on
the metric, and, in the conformal gauge (where diffeomorphism invariance is
gauge-fixed), it is given by the Liouville action. The imaginary part, J (the
argument of the Euclidean Weyl determinant), explicitly depends on the spin
connection, ω, chosen on the two-dimensional space-time. In the conformal gauge,
it really depends on two scalar fields, the Weyl- and the Lorentz modes of the
zweibein eJ

a, (the other two modes of e{ being frozen by fixing the conformal gauge).
If the two-dimensional system contains equal numbers of holomorphic and anti-
holomorphic fermions the product of the corresponding Weyl determinants is real,
and the Lorentz-anomalous terms +iJ> cancel each other. However, the Weyl
anomaly remains. It could be cancelled by saturating the conformal anomaly of the
system to become critical and then integrating over all metrics on the two-
dimensional space-time of the system.

Quantized chiral fermions coupled to external gauge fields are well known to
exhibit gauge anomalies reflecting a breakdown of gauge invariance [9]. These
anomalies were shown to be cancelled by those of a three-dimensional Chern-
Simons action with the same gauge group on a three-dimensional space-time
whose boundary is the two-dimensional space-time of the fermionic system [9]. It
is also known that the gauge anomalies of chiral fermions are identical to those of
systems of free, chiral bosons on the same two-dimensional space-time, coupled to
the same external gauge fields [10]. This is understood with the help of two-
dimensional chiral bosonization [11].

It is the purpose of this note to address the parallel problem of cancelling the
Lorentz anomaly of two-dimensional chiral fermions, or of two-dimensional chiral
bosons, by the Lorentz anomaly of an appropriate three-dimensional Chern-
Simons action. This action turns out to be a gravitational Chern-Simons action.
However, unlike the gauge anomaly, the Lorentz anomaly mixes with the
Weyl anomaly, and the cancellation mechanism is somewhat more delicate.
What we show in this note is that the Lorentz- and mixed Lorentz-Weyl
anomaly, but not the pure Weyl anomaly, of two-dimensional chiral fermions or
bosons can be cancelled by a three-dimensional gravitational Chern-Simons
action.

We choose two-dimensional space-time, M 2 , to be Riemannian (or "Euclid-
ean"). For simplicity, M2 is chosen to be the plane or Riemann sphere. We note,
however, that we can also choose M2 to be the plane or a cylinder and to carry
a Lorentzian metric; (where necessary, we shall indicate the appropriate modifica-
tions in the following arguments).

The two-dimensional Dirac-Weyl operator has the form

D = ίσaeJ

a{dj + koj) , (1)

where σ1 and σ2 are the two-dimensional Weyl matrices, e{ is the inverse zweibein
field, and ω7- is the j t h component of the spin connection ω on M 2 . There are two
inequivalent representations of the Weyl matrices, σ1 = 1, σ2 = ± /, corresponding
to holomorphic and anti-holomorphic fermions (or to left- or right 'moving
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fermions if M2 is Lorentzian). The inverse zweibein fields e{(x), e{(x)9 xeM2, fix
the metric (gfj-), with inverse (gij\ on M 2 :

gV(x) = δ^eUx^Hx), (2)

where δab is the Euclidean metric on the cotangent space to M2 at x. [In the
Lorentzian case, δab is replaced by the flat Minkowski metric ηab, and gιj is
Lorentzian.]

Up to renormalization ambiguities described by local polynomials in the
zweibein and inverse zweibein fields and derivatives thereof, the determinant of the
Weyl operator D defined in (1) is given by

where

and

ί
M 2

ΓL/R =

J
M 2

(3)

(4)

(5)

(6)

where gf(x) = d e t ( ^ (x)), (yfg would be replaced by ^/ϊgi, a n d & would be

multiplied by i = > / — 1 if the metr ic gu were Lorentzian), Δg = -F= d i ij d J

is the Laplace-Beltrami operator in the metric (̂ fo ), and R is the scalar curvature
given by

= -ί

rε
ίjdiωj. (7)

The effective action for a system of nL holomorphic and nR anti-holomorphic
fermions is then given by

= (nR + nL)M(e) + i(nR - nL)J(e) . (8)

The imaginary part, J(e\ of the Weyl determinant exhibits a Lorentz anomaly,
since it explicitly depends on the spin connection ω. Equation (8) shows that the
Lorentz anomaly disappears if nR = nL, as expected.

In order to better understand the strucutre of Γ [ e ] , we introduce a parametriz-
ation of the zweibein e) in terms of a Weyl- and a Lorentz mode:

(9)

where e) is the zweibein corresponding to a fixed metric gtj = δabe"ebj on M2,
chosen conveniently depending on the topology of M 2 . For example, if M2 is the



552 A.H. Chamseddine and J. Frόhlich

plane or a cylinder we choose "isothermal" coordinates in which gtj is the flat
Euclidean metric on M 2 . [We note that if the metric on M 2 were chosen to be
Lorentzian the trigonometric functions on the right-hand side of (9) would be
replaced by the corresponding hyperbolic functions.] In terms of the variables in (9)
the metric gtj is given by

Qij = δabefebj = e*gtj (10)

which shows that φ is the "Weyl mode." The dependence of the spin connection
ω on the two fields φ and σ is determined from the expression

(11)

where
a 1 a (Λ O\

COijj = 2ωiεb UA)

Substitution of Eq. (9) into Eq. (11) yields

o)i = ά)i -\- x/gsjdjφ — d[G . (13)

Equations (9) and (13) show that σ is the "Lorentz mode;" (σ/2 is an angle of
rotation of the zweibein). From (7) and (13) we find that

R = e~φ(R + Aβφ). (14)

Combining Eqs. (5), (6) and (8) with (10), (13) and (14) we obtain that

f d2x^j{a(φAάφ + 2φR)

- ίβ(σ(R + Aάφ) - g^diφώj)} , (15)

with a:= nR + nL, β := nR — nL. The term proportional to α on the right-hand side
of (15) is the Liouville action, the first piece of the term proportional to β is the
Lorentz anomaly and the last two terms are the mixed Lorentz-Weyl anomaly.

Next, we wish to show that the same Lorentz-Weyl anomalies also appear in
a theory of massless, chiral bosons. Let χ be a free, massless Bose field on M 2 .
Under local rotations of the zweibein e"9 as described in (9), χ is assumed to
transform essentially like an angle:

^ ^ j (16)

where; is the conformal spin. Co variant derivatives of χ must therefore be defined
by djχ - kcoj.

It is convenient to choose a complex structure on M2 compatible with its
metric. We then introduce the differential operators d = d+ and <3_ = d. In local
complex coordinates z, z, on M 2 , d+ = d/dz and <3_ = d/dz. If the spin connection
ω vanishes the field χ is chiral if

0, o r 3 _ χ = 0 . (17)

However, the constraints (17) are not invariant under local rotations of the
zweibein e). A form of (17) invariant under local rotations of e) is given1 by

d±χ-kω±=0, (18)



Two-Dimensional Chiral Fermions and Bosons 553

where, in the coordinates z and z, ω = ω + dz + ω-dz. If we intend to construct
a theory ιof chiral bosons we must require that one of the constraints (18) be
invariant under Weyl rescaling. In (z, z)-coordinates, ω± \->φω+ = ω± ±id±φ,by
Eq. (13). Hence (18) is invariant under Weyl rescaling if

χ^φχ = χ±ίkφ. (19)

An action functional for the field χ is defined by

Sj(χ9ω)= --]- f d + χd-χdz A dz
4 7 1 M2

ik
+ T" J {co-S+χ-ω+d-χ}dz A dz

Z π M2

ik2

+ — ί ω- ω+ dz A dz , (20)
4 π M 2

with; = 2/c+ 1/2.
This definition of an action makes sense if M2 is the punctured Riemann sphere

and hence admits global coordinates. For more complicated topologies of
M2, S(χ9 ω) must be defined as a sum of terms corresponding to different coordi-
nate patches; see e.g. [11]. Imposing the chiral constraint

δ-χ-kω-=0 (21)

with the transformation law

X^φX = χ-ikφ (22)

under Weyl rescaling, we find from (20) that

Sj(X> ω) = ~ -7- ί d + χd-.χdz A dz

ik ik2

+ — J co-d+χdz A dz — —— J ω_ω+ dz A dz . (23)
2 π

 M2

 4 π
 M2

The term

-1— j ω + (d-χ-kω-)dz A dz (24)

is omitted from (23), since, by Eq. (21), it vanishes. Since φa>- = ω_ — id-φ and
thanks to Eqs. (22), (13) and (16), the constraint (21) is invariant under local
rotations of the zweibein and Weyl rescaling, and hence (24) cannot contribute to
the Lorentz- and Weyl anomalies.

We now determine how S7 (χ, ω) transforms under local rotations of the
zweibein and Weyl rescaling. We set

χ = χ-kσ-ikφ, (25)

and
ω± = ώ+ — d+σ ± ίd+φ . (26)
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Substituting expressions (25) and (26) into Eq. (23) for the action functional, we
find, after a somewhat lengthy, but straightforward calculation, that

2 π
 M2

k2 k2

+ —- J (d-φώ+ -f d+φώ-)dz A dz — — Jd + σd-φdz A dz

ίk2

— —-f {ώ-d + σ — ώ+δ-σ}dz A dz . (27)
4π

Using that

1 i -
δ+3_ = - - ^ , δ + ώ_-d_ώ+=-tf, and

dz A dz= - 2ij~gdx A dy , (28)

we find that the anomaly terms on the right-hand side of Eq. (27) are identical to
those of the action — 48fc2ΓL[e]. This is, of course, not an accident. Let us consider
the formal functional integral

C — t Is y(J — yζ IxLU — J oΛ/q J^ , \Δ*S)

with j = 2k + \. By using quadratic completion to rewrite S/(χ, ω) and translating
the integration- (χ-)variables we find that

^[β] = gΓi,2[e]eχp _ ι f ( ω + ω _ + a + ω _ [ ( 5 + 5 _ ) ~ 1 5 + ω _ ] ) ί i z Λ dz , (30)

L 4 π
 M2 J

where

Of course, the right-hand sides of (29) and (31) are ill-defined, as written. However,
expΓ 1 / 2 [>] can be defined rigorously by interpreting this functional as the parti-
tion function of a chiral boson system with conformal spin) = 1/2, i.e., k = 0, which
is known to be equivalent to a free Weyl fermion, [11]. Thus

Λ / 2 [ e ] = Γ L [ e ] , (32)

where F L [ e ] has been defined in Eqs. (4), (5), (6). It might, a priori, seem puzzling
that the functional integral on the right-hand side of (31) depends on the zweibein
ef. On a formal level, this dependence is, however, explained in terms of the
dependence of S)gχ on g, and the dependence on ω comes from the circumstance
that the system is chiral.

By Eq. (30), our interpretation (32) of Γ 1 / 2 [ e ] provides a precise definition of
Γy[e], for arbitrary values of j .

Using Eqs. (4), (5), (6) and (28), we find that

^~ ί (co + ω- + δ+ω-Kd+d-Γ^+ω-^dz A dz



Two-Dimensional Chiral Fermions and Bosons 555

and hence from (30)

Γjlel = - (48k2 - l)ΓL[e] = CjΓL[e^ , (33)

where

cj = - 2(6j2 - 6/ + 1) (34)

is the Virasoro central charge of the system.
Since these results hold for arbitrary values of j , we conclude that the effective

action derived from a conformal block of a conformal field theory with Virasoro
central charge c must be given by

Γ c [e] = cΓL[e] . (35)

Of course, an analogous analysis applies to theories where the roles of " + " and
" - " and "Z," and "JR" are interchanged.

Having found the expression for the Lorentz-Weyl anomaly of general chiral
conformal systems (including chiral fermions and bosons) we next address the
problem of cancelling the Lorentz- and the mixed Lorentz-Weyl anomalies of these
systems by those of a three-dimensional "topological" action. The solution to this
problem will represent the main result of this note.

In analogy with the cancellation of the two-dimensional chiral gauge anomaly
by that of a three-dimensional topological Chern-Simons gauge theory with the
same gauge group, we propose to construct a suitable three-dimensional gravi-
tational Chern-Simons action cancelling the two-dimensional Lorentz- and mixed
Lorentz-Weyl anomaly. We consider a surface M2 which is the boundary of
a three-dimensional Riemannian (or Lorentzian) manifold M 3 . The action we are
looking for is defined on M 3 and must be invariant under local rotations of the
dreibein and three-dimensional Weyl rescaling, except for a winding-number term
and boundary terms localized on M2 = <3M3.

There are two possible gravitational Chern-Simons actions. The first one is
based on the gauge group ISO(3) (or ISO(2, 1)) and is identical, up to a boundary
term, to the first order formalism for the Einstein-Hilbert action. This action is,
however, known not to be Weyl-invariant, as one easily checks. The second action
is the Chern-Simons action for the spin connection based on the gauge group
SU(2) (or SL(2, R)). We shall show that this action is invariant under local
rotations of the dreibein and Weyl-invariant, except for boundary terms.

Let

ω = \ωAByAB (36)

denote the three-dimensional spin connection, with yAB = j[yA, yB\ {y ,̂ yβ} = 2δAB,
(or {yA, yB} = 2ηAB if M 3 is Lorentzian), A, B = 0, 1, 2. The dreibein one-form is
denoted by

e = eAyA . (37)

By Cartan's first structure equation, the zero-torsion constraint is expressed by the
equation

deΛ + ωA

Be
B - 0 . (38)
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The action we are looking for is given by1

/ = J|>, αU] = -^ J \tτ(ωdω + ? ω 3 ) + λA(deA + ωV*)}, (39)

where Λ,̂  is a one-form Lagrange-multiplier, and we have dropped the symbol " Λ "
for the wedge product in our notation. The role of λA is to impose the zero-torsion
constraint (38) through its equation of motion. Actions analogous to I\_e, ω, λ~\
have been considered before in all odd dimensions [12, 13].

We can solve Eq. (38) for ω. The result is

ωμBc(e) = j ej{ΩABC - ΩBCA + ΩCAB), (40)

where

ΩABC = eμ

AeB(dμec - dve
c

μ) . (41)

Substituting (40) into (39) we can eliminate ω and find

Y (42)
This action is referred to as the "spin-connection Chern-Simons action."2 It is
related to the following "Levi-Civita-connection Chern-Simons action"

(43)

but / and /' are not identical. The reason why we choose / rather than Γ is that
/ displays a Lorentz anomaly at the boundary, but diffeomorphism invariance is
preserved. Instead, /' is obviously invariant under local rotations of the dreibein,
since it only depends on the metric gμv, but it breaks diffeomorphism invariance at
the boundary. It could be used to cancel the diffeomorphism anomaly of chiral
theories on M 2

The relation between / and Γ is given by

/[e] = /U.v]+τf- ί (e-1de)A

B(e-1de)B

c(e~1de)c

A

l Z π M3

+ -?- J ε^eiΓ^eid^, (44)
4 π 0 M 3

where (e~1de)A

B = eκ

AdeB, and we have used the identity

ω / B = " ^Ul + Γ%e*el . (45)

In (44), the Lorentz index a and the spatial indices i and j range over 0 and 1. On the
boundary dM3 = M 2 , we require e2 to be normal to M 2 , and we choose local

1 In this action the dreibein field is not a gauge field, but related to the metric of the manifold. The
energy-momentum tensor does not vanish, and the theory is not topological
2 The action (42) has been shown recently to be needed as a counterterm in the renormalization of
Chern-Simons theories [14]
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coordinates (x°, x 1, x 2) near δM3 such that x 2 is transversal to 3M 3 , with

ef\dM3 = 09 for/ = 0 , 1 . (46)

More details are presented in the Appendix.
Next, we wish to determine the transformation properties of the action I\_e~\

under local rotations of the dreibein eA preserving the constraint (46) and under
Weyl transformations:

'e.hy, (47)

where h is SU(2)-valued (or SL(2, Revalued if M 3 is Lorentzian), and, at the
boundary dM3,e

2 is invariant under h. It follows from Eq. (40) that the transforma-
tion (47) acts on the spin connection ω according to

ω Λ π f Γ 1 ^ / ! + h-'d.h^β + \{eAe\ - eμBe
vA)dvφ . (48)

Finding the transformation properties of the action (42) under the transformation
(48) is quite difficult. It is simpler to proceed in two steps: Under local rotations

> = h eh (49)

the action (42) transforms in a well known way,

/[*β] = / [ e ] + — f tτ(ω(e)dhh-1)-— \ tτ{h"x dh)3 . (50)
4π du3 12π ̂ 3

If, after the transformation (49), we apply a Weyl transformation

pAx ±ΦpA — pΐΦ pA e^w

to the right-hand side of (50) we shall have found the transformation of the action
/[e] defined in (42) under the combined transformation (47) of eA. The lengthy part
of the calculation is to evaluate l\_e*φeA~\. To this end it is useful to use identity (44)
between the actions / and /' and to first evaluate Γ\_eφgμv~\. After some lengthy
algebra sketched in the Appendix we find that

-ξ- J (φe~Hφeγ = - L f (e-'de)* - f f ε^φd^djβ^ . (52)
1 2 π M3

 1 2 π M3

 8 π δM3

Plugging these equations into the right-hand side of identity (44) we find the simple
result

/[V| = /[*] + ± f εij(dief)ek

Adkφ . (53)
4 7 Γ δ M 3

Combining Eqs. (50) and (53) we find that

eΛ)ί]=/[eί]+^ J ε'^ω^

f ει%efek

Adkφ - -f- f t r ^ " 1 ^ ) 3 . (54)
5M3

 1 Z π M3
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In order to make contact with the two-dimensional Lorentz-Weyl anomaly, we
recall that, at the boundary of M 3 , e£ is constrained by Eq. (46), and the spin
connection ω?B, restricted to dM3, is the spin connection of the surface δM3 = M 2 ?

i.e.,

ωMeί)\dM3 = ωh(eaj)9 (55)

for A = a = 0,1, B = b = 1,0, and ij = 0, 1, and ωfB\dM3 = 0, for AorB = 2. The
indices a and b label components of vectors in the (co-) tangent spaces to M 2 .

We have already remarked above that

((dh)h-1)/^((dh)h-1)a

b = ̂ dσεa

b, (56)

at the boundary, M 2 , of M 3 , so that the constraint (46) is invariant under local
rotations of the dreibein satisfying (56). With Eqs. (46), (55) and (56) taken into
account, Eq. (54) simplifies to

δ π dM3

+ -ί- j εiJdie
a

Je
k

adkφ
4 π

Γ J trίΛ- 1^) 3, (57)
Z 7 Γ M 3

where ω^ ,̂ = i ^ ε V The third term on the right-hand side of Eq. (57) can be
rewritten, using Eq. (11), as

- f ί Vgg^djφ, (58)

so that, after an integration by parts, Eq. (57) becomes

- f J y/βg^idjφ--^- f trίΛ-1^)3 . (59)
δ π δM3

 1 Z 7 Γ M 3

Setting gμv = ^ μ v , ̂ ^ = e^ and ω μ = ώμ, with e* \dM3 = ef, for A = a
= 0,1, μ = i = 0,1 and ώμ | 5 M 3 = ώ ί ? for μ = i = 0,1, we find that, apart from the
last term on the right-hand side of (59), the anomaly of the gravitational Chern-
Simons action I\_e~\ cancels the Lorentz- and the mixed Lorentz-Weyl anomaly of
24ΓL[>]. This is seen by comparing Eq. (59) to Eq. (15), (with α = - β = 1), or to
(27), (with k2 = A)-

Next, we consider the last term on the right-hand side of (59). Let h be an
arbitrary SU(2)-valued transformation on M 3 with the property that h(x) tends
continuously to the identity, 11, as x -• dM3 = M2, and that the support off/z(x) — 1
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in M 3 is homeomorphic to a ball. Such transformations fall into different
homotopy classes labelled by their winding numbers, n{h\ where

f trίft" 1^) 3. (60)
M3

We conclude that, for every level N = 1, 2, 3, . . . , the functionals

and
e-NI[e] + 24.NΓR[e]

are free of Lorentz-(SU(2)-)anomalies and mixed Lorentz-Weyl anomalies. By Eqs.
(5) and (15), these functionals only exhibit a Weyl anomaly given by

^ J d2x^(φΔάφ + 2φR)]. (63)

Had we chosen M 3 and M2 to carry Lorentzian, instead of Riemannian, metrics
then the term JM3tr(/z"1rf/z)3 would vanish, because h would then be SL(2, Un-
valued, instead of SU (2)-valued. There is then, a priori, no quantization of the
level N.

We feel that the main results, Eqs. (59)-(63), of this note provide another
glimpse at a three-dimensional aspect of string theory, relating it to Chern-Simons
gauge theories and gravitational Chern-Simons theories. However, if one
really wishes to apply our results to string theory one must "quantize" the
three-dimensional Chern-Simons theories. This is fairly well understood for
Chern-Simons gauge theories [15], but less well understood for the gravitational
Chern-Simons theory considered in this note. One would expect that if M 3 , and
hence M 2 , carry Riemannian metrics functional integration of exp — I\_e~] over
{ef}, subject to the boundary conditions (46), will yield conformal blocks cancell-
ing the Lorentz- and mixed Lorentz-Weyl anomalies of exp 24Γ L [e] and contribu-
ting to the Weyl anomaly (63), in accordance with (33); (this contribution can be
traced back to the dependence of the formal volume element 3)g e£ on the Weyl
mode, [16]).

It is tempting to speculate that the conformal blocks of all conformal
field theories can be obtained from three-dimensional Chern-Simons theories; see
[17] for related conjectures. If true such a result would be useful in finding
a foundation for string theory in three-dimensional topological field theory. This
would require understanding the dependence of the conformal blocks obtained
from the three-dimensional theories, (e.g. from the integral of exp — I\_e~\ over
{βμ}), on the topology of M 3 and on Teichmuller parameters related to M2 = dM3

when M2 is a higher-genus Riemann surface. A three-dimensional foundation for
string theory might permit one to construct tunnelling amplitudes between differ-
ent string vacua and to think about "sums over world sheet topologies" in a novel
way.

Acknowledgements. We thank G. Felder and U.M. Studer for very helpful discussions.
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Appendix

In this appendix we shall derive some basic identities for the gravitational Chern-
Simons action which are used in this paper.

The first identity is a relation between two Chern-Simons actions, one being
a function of the spin-connection and the other one a function of the Christoffel
symbols. Let

ωA

B{e)dωB

A{e) + \ωA

B{e)ωB

c{e)ωc

A{e)\ , (A.I)

/ 2 \
Ji _ f P μvp| pσ pi pic j pσ pK pλ \

1 ~ J ε I 1 μκ°v1 pσ T- -1 μκl vχl pσ I

where ωμA

B{e) is given in Eq. (12) and Γp

μv is

(A.3)

Using Eq. (12) it can be easily shown that the combined covariant derivative of the
dreibein eA with respect to coordinate and Lorentz transformations vanishes

Vμe
A = dμe

A + ωμ

A

Be
B - Γ%eA = 0 . (A.4)

This can be solved for ωp

A

B to give

ωμ

A

B(e) = T%eA - dμe
AeB . (A5)

Substituting Eq. (A. 5) into Eq. (A.I) would immediately change the action / into /',
plus additional terms.

The exact form is found from the expansion of the two terms in Eq. (A.I). The
first term gives

ε ωμ BGvωp A — ε L-* μK^v1 pσ ' L pK1 pσ°veδeB

- dμe-£Γδ

pλe
κ

Bdve$eA

. r f ^ - ] . (A.6)
The second term is simpler and gives

2 /I
- ε"v"ωμ

Λ

Bωv

B

cωp

c

A = 2ε^» ί -Γ°μκΠλΓ
λ

pσ - Γ°μκπλdpe
c

ae
λc

+ Γμκdve!dpe
c

σeceκ

B

c 1 Λ . (A.7)

By grouping similar terms, and reordering dummy indices, one can show that the
terms ΓΓe~1 de cancel among themselves. The terms Γe~1dee~1de would partially
cancel with the remainder combining with dΓe~1de to form a total derivative

μ p . (A.8)

The final relation is then the identity in Eq. (16).
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The Weyl transformation of the action J, could be obtained by first deriving the
Weyl transformation of the action /' and then using the identity in Eq. (16).

Under the Weyl scaling
et^e*+e* (A.9)

the Christofϊel connection and the spin connection transform as

Γ% - Γ% + l- (δ^φ + δζdμφ - gμvg
fiσdσφ), (A.10)

ωμ

A

B-+ωμ

A

B + ί ( β ^ v _ eμBe
A*)dvφ . (A.ll)

Substituting the transformation (A. 10) into the action /', one finds that the first
term transforms to

^ ( Γ»λγdμΠpv - ^

\ gλydμg
yσdvφdσφ

The second term transforms to a large number of terms which after some cancel-
lations reduce to

Γ»λγΓμτnp - 1

Combining Eqs. (A. 12) and (A. 13), one finds that the terms linear in dφ give
a term proportional to the curvature which vanishes by the cyclic identity, as well
as the total derivative

1
2 μ pv y

The quadratic terms in dφ can be easily shown to vanish.
We then have to identify

2 dM3

This shows that the Chern-Simons action as a function of the spin-connection is
invariant under Weyl scaling up to a boundary term. It can also be seen from the
identity in Eq. (16) that /' is invariant under general coordinate transformations
inside M 3 but not on the boundary, unlike / which is obviously invariant.
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The Weyl-transformation of the "winding-like" term can be evaluated to be

The boundary term in Eq. (A. 16) transforms according to

I zHieiT^e), J sij(dietnxeA) + J s»(diefeA - dteigκl)SιΦ • (A. 17)
dM3 dM3 dM3

Combining the terms in (A. 15), (A. 16) and (A. 17) one obtains the Weyl trans-

formation of the action /:

1 - > I + o ί εiJίΓγ

Pig
pkgjγ + ^ejek

A - d^g^e^ δkφ . (A. 18)
^ dM

The dkφ terms in (A. 18) can be finally simplified to

J eiJdtefeAd^. (A. 19)
5M3
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