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Abstract. We estimate the error of the Hartree-Fock energy of atoms and mole-
cules in terms of the one-particle density matrix corresponding to the exact ground
state. As an application we show this error to be of order O(Z5/3~δ) for any
δ < 2/21 as the total nuclear charge Z becomes large.

1. Introduction

The nonrelativistic quantum mechanical model for an atom (K = 1) or molecule is
given by the Hamiltonian

N 1

Σ τ^—i, CD

acting as a self-adjoint operator on a dense domain DN ^ /\f=i (L2(1R3)® <Cg).
Here we regard the nuclei of charge Zj as pointcharges at fixed positions Rj9 for
1 ^ j ^ K. For the sake of brevity we denote Z:= (Z 1 ? . . . , Zκ) and R

a— 1
:= (Ri, . . . , Rκ) The nuclei are surrounded by N electrons of spin s = —-—, so,

in nature q = 2. We are interested in the ground state energy

EQ(N,Z,R):=ini{(ΨN\HN(Z,R)\ΨN}\ΨNeDN, \\ΨN\\ = 1} , (2)

which coincides with the bottom of the spectrum of HN(Z, R). (Henceforth
|| ΨN\\ = 1 is assumed without further notice.) In general, EQ(N, Z, R) is inacces-
sible to direct computation. Here we are concerned with the asymptotic validity of
approximate theories in the limit

Z -• oo, N « Z, Z/Z fixed, min \Rt - Rj\ ^ cZ~2/3+ε . (3)
l^i<j^K

To leading order Z 7 / 3 , EQ is given by the Thomas-Fermi energy £ T F , as was shown
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by Lieb and Simon [14]. This is followed by the Scott correction (cf. e.g. [10]) of
order Z 2 :

EQ(Z9 Z, R) = EτF(Z, Z, R) + f £ Zf + o(Z2), (4)
8

a result proved for neutral atoms by Hughes [6], and Siedentop and Weikard
[18, 17], and for neutral molecules by Ivrii and Sigal [7]. The next correction
includes exchange effects and is expected to be of the form csZ

5/3, where cs is
a constant proposed by Dirac [2] and corrected by Schwinger [16]. Fefferman and
Seco [4] have announced a proof that

EQ(NCi Z) = £ T F (1, 1)Z 7 ' 3 + | Z 2 + csZ^ + o(Z5'3) (5)

for atoms binding Nc electrons. Here Nc denotes the smallest integer such that
EQ(NC9 Z) = infNe]N£«2(iV, Z). It is known that Z ^NC^Z + o(Z) [5]. Also, we
indicated the explicit scaling of EΊ¥ in the atomic case.

In this paper we compare EQ with the Hartree-Fock energy

EHF(N,Z,R):=mϊ{(ΨN\HN(Z,R)\ΨN}\ΨNeSDNnDN}, (6)

where SDN are the Slater determinants. We expect, of course, that EHF already
includes the corrections discussed above, i.e. EQ — EHF = o(Z 5 / 3 ), where o(Z5/3)
might even be 0(1). With this goal in mind we first derive an estimate of EQ — EHF

in terms of the one-particle density matrix y (as defined in Sect. 2) corresponding to
a ground state ΨN e DN of the considered system. Actually, we do not need to use
the Schrδdinger equation, so ΨN may just as well be an ε-approxίmate ground state,
i.e.

(ΨN\HN(Z,R)\ΨN) S EN(Z9R) + ε . (7)

The estimate is as follows

Theorem 1. Let y be the 1-partίcle density matrix of an ε-approximate ground state
ΨNeDN ofHN(Z, R). Thenjor any 0 < δ < 1/12,

\EQ(N, Z, R) - EHF(N, Z, R)\ g dδq
2/3ZN2'3 I U

N

 7 M + ε , (8)

where dδ:=(S5Ί.672)δ-1/3.

This bound is reasonable since, as ε -• 0, it vanishes if and only if y is a projection
or, equivalently, iΐEQ(N, Z, R) = (ΨS

N\HN(Z, R)\ ΨS

N} for some Slater determinant
ΨχeSDN. In the next step we estimate tr{y — y2} in the limit Z -> oo, using the
results of the semiclassical analysis of Ivrii and Sigal [7].

Theorem 2. Consider a molecule of nuclear charges Zj9 1 ^j ^ K, with fixed ratios
Zj/Z, where Z := ^ = 1 Zj and K^L Let m i n ί φ 7 { | ^ - ^ | } ^ c1Z~2l3+e' and
Z — c2Z

1/3 ^ N ^ Z + c3Z
5/Ί for some constants ε\ cu c2, c3 > 0. Let y be the

1-partίcle density matrix of an ε-approximate ground state ΨNeDN of HN(Z, R).
Then there exists c > 0, such that

{ (9)

This estimate, inserted in Theorem 1 for arbitrarily small ε > 0, proves
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Theorem 3. Consider a molecule of nuclear charges Z J ? 1 ^j ^ K, with fixed ratios
Zj/Z, where Z= Σ * = 1 Zj and K^L Let m i n / Φ j { | ^ - Rj\} ^ c1Z~2l?>+e and
Z — c2Z

ll?> ^ N ^ Z + c 3 Z 5 / 7 for some constants ε, cί9 c 2 , c3 > 0. Then for any
0 < δ < 2/21 there exists cδ>0 such that

\EQ(N, Z, R) - EHF(N, Z , R)\ ^ c, Z 5 ' 3 " ' . (10)

We remark that, for N = Nc, this result is already implicit in [4].
The paper is organized as follows. Section 2 is a collection of definitions and

basic properties of fermion density matrices. In Sect. 3 we recall Lieb's extension of
the Hartree-Fock variational principle [12], providing a proof which, we think,
simplifies the original one. Section 4 contains an estimate of 2-body correlations in
terms of γ — γ2. This is the heart of the proof of Theorem 1, given in Sect. 5. The
asymptotics of Z -• oo is discussed in Sect. 6, leading to the proof of Theorem 2.

2. Fermion Density Matrices

We recall definitions and basic properties of fermion density matrices. For

Jf :=L2(R3)®<C« (11)

let ^(JUT) = 0 ^ = o ^(N) be the corresponding fermion Fock space, i.e. ^ ( 0 ) = C,
and ^f{N) = /\f=1J^ (see [20]). The annihilation and creation operators are
defined as usual and obey for all f g e 3^ the anticommutation relations

a (fW(g) + a\g)a{f) =: [α(/), a^g)! = <f\g> ,

[α(Afl(ff)] = [ α t ( Λ α t t o ) ] = 0 . (12)

Given N orthonormal elements χ1} . . . , χNe Jf, we compute

• "HXN)\0) = (ΛΠΓ1/2Σ(-l)πXπ<i)<x> .®χπmeJfW, (13)

the sum running over all permutations π of (1, . . . , N). These particular wavefunc-
tions are called Slater determinants and we collect them in the set SDN c j«f(N).
Given an orthonormal basis {φJfeN of 3^> we define at:= a(ψi). Then the hamil-
tonian (1) is the restriction of

H= Σ hk,ιaUι + \ Σ VkUmna]alaman (14)
k,l=l Z k,l,m,n=l

to Jf(N\ Here we denoted hk;l:= (φk\h\φi> and Vkl;mn:= (φk (x) φt\ V\φm® φn\
with

( ^ ) !σx)®nσy)9 (15)l(σx\ V : ® l { σ x ) ®
j \χ - y\

on 2tf and Jf ® ffl, respectively. In particular, for a Slater determinant
\ J is

> = Σ Λ*;* + ^ Σ (ni;« - Vkl lk) (16)
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More generally, a p-body observable A is given in terms of a self-adjoint operator
^ ®fff= 1 Jf by

^ = 4 Σ Σ ^ . . ^ . . . ^ ^ . . . ^ ^ . . . α ^ . (17)
P' h,...,ip jι,...Jp

Now, let pN be an Λf-particle density matrix (N-pdm), i.e. pN = £ ί | ΨN,i}λi( ΨN,Ϊ\
for orthonormal set {^VjfeN — ^(N) a n ^ nonnegative numbers 0 ^ / 1 ^ 1 ,
Σ» ^i == l The quantum mechanical expectation of the observable 4̂ with respect to
the state pN may then be written as

p!

= A Σ Σ 4?> ί -h i <al • • • ataJi aJ > ( 1 8 )
" * iί, ,iP jι, ,jp

The reduced density matrices p£ ,1 ^ p i^ N, pN = pN are determined if (18) holds
for all observables A on tf(N) of the form (17):

Of course, pψ ^ 0 and HP{PN} = N(N - 1 ) . . . (N - p + 1). From the fact that
ΣΓ=i akak is the particle number operator, we easily deduce the recursion relation

i oo
ip) x™1 ip ~^~ l )

PNjί...jp;i1...ip

=~Γ: ~ 2 J PNjι...jp,k;iχ...ip,k -
IV — P fc=1

We call y p := p^1 } the 1-pdm and Γ p : = p^ the 2-pdm corresponding to ρN. The
expectation value for H can now be written in the general form

= tr 1 {/ ί T p }+-tr 2 {FΓ p }. (21)

Now, if pN = \ψN}(ψN\ and ΨN = a^Xx). . aHχN)\0}eSDN then one easily
checks

yP=Σ\xι><χt\, (22)
i = l

N

rP= Σ I x i Λ & > < X i Λ Xjl

, (23)

matching (21) with (16). Here,

Ex := Σ! Iφi ® Φj> <Ψj ® Φil (24)

is the exchange operator. Note that ^(1 — Ex) is the projection onto J f Λ J f and it
commutes with 7 (x) 7. So, certainly, (1 — Ex)(γ ® y) is self-adjoint. Finally, since
0 ^ Pivfe /c = (akak} = 1 ~~ (akak} = 1 independently of the chosen basis, we have
0 !g yp ^ 1. Note that, apart from the last inequality, we did not use the fermionic



Error Bound for Hartree-Fock Energy 531

character of the Fock space J^Jf7). Also, apart from the separability, we did not use
the explicit structure of J-f = L 2(R 3) (x) (D*, either. We summarize the properties of
y,andΓ,(cf.[ l]):

tvi{yp}=N, 0 ^ y p ^ l ; (25)

{yp = y2, (25)} o {3ΨNeSDN:pN = \ψN}(ψN\, yp = p#>} (26)

ΨNeSDN, pN = \ΨN)(ΨN\ => Γp = (1 - Ex)(yp® yp) . (27)

3. Lieb's Variational Principle

In this section we define the Hartree-Fock variational principle and Lieb's varia-
tional principle and show that the latter actually is an extension of the former.
Recall the definition (6) of the Hartree-Fock energy EHF of the considered system:

EHF(N,Z,R):=mϊ{(ΨN\HN(Z,R)\ΨN}\ΨNeSDNnDN}. (28)

Since the trial functions vary over a smaller set, it clearly holds

,R). (29)

Using the notations and definitions of Sect. 2 and ensuring ΨNeDN by
tri{hy} < oo, we may rewrite £ H F as

EHF(N, Z, R) = inf{βHF(7)iy = Vf = Ί\ trx {y} = N9 tτx {hy} < αo} , (30)

where we defined

εHF(y) =tr1{hy} + 1-tτ2{V(l-Ex)(y®y)} . (31)

The Hartree-Fock variational principle is mathematically inconvenient, because
the set SDN has no linear structure. Lieb's crucial observation was. that the
condition on yp to be induced by some Slater determinant ΨN e SDN actually can be
dropped [12]. We give an alternative proof of this result which we think is
considerably simpler and more constructive than the original one.

Lemma 1. Define Jf, h9 V, and εHF by (11), (15), and (31). Let 0 ^ y S h tvί {y} = N
be a 1-pdm of finite rank. Then there exists a projection y = f1" = f2, trily} = N,
such that

εH F(?) ^ sHF(y) . (32)

Furthermore, V > 0 implies the strictness of the inequality (32) unless y is a projection
itself

Proof We may assume Supiy) < oo. Working in an eigenvector basis of γ, we may
write

t Σk = N, 0 < Λ k ^ l , ( φ k \ φ ι } = δkι, (33)
k=ί
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for some M < GO. Let us abbreviate the diagonal elements hk:= hkk = (φk\h\φk)
and Vu:= Vkι.kl — Vkι.lk = <φfc Λ φι\V\φk A φt}. Note that the positivity of Vim-
plies Vkl > 0 for k Φ /, and Vkk = 0. One easily checks

M _ i M

£HF(7)= Σ Kh + z Σ ^ , K H . (34)

We assume that M > N or, equivalently, y + y2, for otherwise there is nothing to
prove. Then there are at least two eigenvalues 0 < λp9 λq < 1, say, and we may
assume without loss of generality,

hq+ Σ hvkqshP+ Σ **K

Let δ := min{Ap, 1 — λq} > 0 and define

7":= f Σ l ^ > ^ < ^ l ) + \φP>(λp-δKφp\ + |φβ>(λβ + δKφq\ . (36)

By computation one checks that

+ Σ ^ K J - (hq + Σ Λ * n Λ J - <S2FM , (37)

hence, sHF(y) — εHF(y) < 0, according to our choice of δ. Furthermore, defining

n(y):=\{λk\0<λk<l}\, (38)

we observe n(y) ^ n(y) — 1. After at most M — N iterations of this procedure we
obtain a 1-pdm y which obeys εHF(y) < £HF(?) and n(y) = 0. But the latter means
that y = y2 and, hence, proves the assertion. |

Using an approximation argument, it is straightforward to deduce from
Lemma 1 the following corollary.

Corollary 1 (Lίeb's υariatίonal principle).

EHF(N, Z, R) = inf{εH Fωi0 g y ^ 1, t r jy} = N9 tr±{Λy} < ex)} . (39)

Now, we apply Lieb's variational principle to a particular trial 1-pdm. Let
pN:= \ΨN}(ΨN\, where ΨN is an ε-approximate ground state of the molecule we
consider. By Lieb's variational principle it holds

, Z, R) ^ t Γ l {hyp} + - tr 2 {F(l - Ex)(yp ® yp)} . (40)

Thus we have the following bound:

^ ίτi{hyp} + -ztT2{Vrp} -ε-tτ^hy,,} +-tr 2{K(l - Ex)(γp<S>yp)}

= \tr2{ V\Γp - (1 - Ex)(yp ® ypy\} - ε . (41)
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In fact, the last expression is exactly what we are going to consider in the following
section.

4. Correlation Estimate for Fermions

In this section we give a lower bound on the truncated 2-pdm of an N-fermion
system. The interaction is assumed to factorize into projections in each particle
variable.

Assume for the moment that ρ% = \ΨN}(ΨN\ where ^N = aHxi)
• aHxN)\0}eSDN is a Slater determinant. As mentioned in (27),
Γp = (yp ® yp) - Ex(yp (x) yp). We expect the N-pdm pN we will deal with later on to
be very close to such a p^, in some appropriate sense. Therefore it is reasonable to
call Γ/, defined by

Γj:=Γp-(\-Ex){yp®yp), (42)

the truncated 2-pdm. Note that we cannot expect Γp to have a definiteness, for
Coleman [1] constructed an N-pdm pN with BCS type wavefunctions for which Γp

and, therefore, also Γp had an eigenvalue of order N and, on the other hand,
tτ2{ΓP

τ}=-tv1{yp-y2

p}^0.
In practice, we have nonnegative pair interactions V ̂  0 acting on ffl ® J*f and

wish to bound tΐ2{VΓp}. As shown in Sect. 3 we get upper bounds by means of
Lieb's variational principle. Our goal is to obtain lower bounds on tr 2{KΓ/}, too,
at least for suitable V. The lower bound we will prove is as follows.

Theorem 4. Let ̂  be a separable Hubert space and 2F(ffl) the corresponding
fermion Fock space. Let pN be an JV-pdm, and denote the corresponding 1- and 2-pdm
by y and Γ, respectively (see Sect. 2). Let X = X* = X2 be an orthogonal projection
on jf. Then

tv2{(X (x) X)Γ τ} ^ -trx {Xy} min {1, 7.554[tΓl {X(y - y2)}]1 / 2} . (43)

Proof. For the proof of Theorem 4, an appropriate choice of the orthonormal basis
{<P;}ΐeN ^ ^ is crucial. We choose {φJfeN t 0 consist of the eigenfunctions of y:
yψi = λiψi. For λi > 0, φt is called a natural orbital of yp. Recall that the general
property (25) of yp implies σ(yp)\{0} = σdisc(yp)\{0} and we obtain {φJ ί e N by
adding some discrete ON-basis of Ker( yp), whose eigenvalues are set to 0, to the
natural orbitals. Also, we remark that for this particular basis we have

= < φ m Iy\ φk> = δmkλk . (44)

We denote Xkm:= <φ f c |X|φw>. We have

k,l,m,n

Σ XkmXin{{a}alamany}-YJXkkXnλkλι + YJ\Xkl\
2λkλι. (45)

k,l,m,n k,l k,l
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For the sake of comprehensibility we break up the proof into several lemmata. We
start with the left part of inequality (43).

Lemma 2.

tτ2{(X®X)Γτ}^ -tr^Xy}. (46)

Proof of Lemma 2. We follow the usual method of the mean field approximation,
known from quantum mechanics. More precisely

= Σ XkmXιn«a}alaman) - <βίβm> (a]an}) + £ \Xk,\
2λkλt

k,l,m,n k,l

.k,m J \_k,m

k,l,m,n k,l

> V ι γ |2 i /i 2 \ > V Y } I (Al\
= — 7, I •*** kl\ f̂cV — ^l) = — /,-^kk^k ' I \*' J

kj k

Note that in the last line the exchange term Σk,ι \Xkl\
2λkλt partially cancels the

self energy ΣkXkkh as long as λx is close enough to 1. Indeed, this is the main idea
for proving Theorem 4. It suggests to treat large and small λk separately. To this
end we fix a number 0 < τ < 1 and introduce the operators

cp:= Σ Xpkβki dp:= Σ xpk^k , (48)
k<τ k^τ

where k < τ and k ̂  τ denote λk<τ and λk ̂  τ, respectively. We compute their
anticommutation relations and quadratic expectation values. For all /?, q e N we
have

= [cP, 4 ] = c4» rfJ = tcP> d«i = kl> 4i > (49)

= <4^> = <4cg> = <cpdβ> = <c,dj> . (50)

The nonvanishing contributions are

k,Kτ k<τ

Σ Y Y 2 ίS1ϊ
k<τ
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We may rewrite tτ2{(X ® X)Γ} as follows:

= Σ
= Σ <(4 + 4)(ύ + 4)(c« + d<,)(cP + dP)>

= (Main Part) + (Remainder), (52)

where

MP = Main Part:= Σ <dj(cj + d\)dq(cp + dp)) (53)

and

R = Remainder

•.= Σ {<cl(cl + dl)dq(Cp + dp)y + <4(cj + dl)Cq(cp + dp)y

= X {2Re(cl(cl + 4)dq(cp + dp)) + <4(4 + dl)cq(cp + dp)>} . (54)

Now we start proving the right part of (43) in Theorem 4 by estimating the Main
Part. In fact, MP is large enough to cancel tr2 {(X ® X)(l — Ex)(y ® y)}. We claim

Lemma 3.

MP-tr2{(X(χ)X)(l ~Ex){y®y)}

2 1
- ) tr1{Xγ}-tΐι{X(γ-γ2)} . (55)

— τ

Proof of Lemma 3. We proceed as in Lemma 2.

MP = Σ <(cl + 4)dqdl(cp + dp)) - Σ (C4. ̂ ] <(cj + 4)(c, + d p)» . (56)

Observe that ^ <dj(cβ + dj> = Σk^Xkkh- So, abbreviating A := ̂  [4( c ^ +
- (d\{cq + dβ)>], we obtain

k^τ l

— I Z J Xkk^k ) ~ Z^ l^"wl λ k h — 2 1 ^ XkkK

k^τ l

fc / \k<τ

-- Σ \xkι\
2{λk-λ2

k)λ,
τ

(57)
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Using \Xk}\
2ύXι

the assertion. |

V. Bach

letting the sums run over their entire range, we arrive at

In the next step we estimate the Remainder. Again we cast this into a lemma.
Note that [ 4 dp~\ = Σ ^ τ l * k p | 2 ύ τ-'Σk^lXupfλu £ τ-\d\dp\ of which there
is no analogue for [c£, cp~\. Thus, one could summarize the strategy of the proof of
the following lemma as avoiding anticommutators of type [cp, cp~\ in the estimates.

Lemma 4.

R> -
_ τ )

+ •

1 +•

- τ) 1 / 2

1 1/2

(58)

^ τ l / 2 ( 1 _ τ )l/2 ^ • τ ( 1 _ τ )

'tri{Xy} (tr1{X(y-y2)})V2.

Proof of Lemma 4. First observe that by expanding and relabelling

llcqcp}) . (59)

Hence, after some algebra, anticommutations, and dropping of vanishing expecta-
tion values,

R =

- Σ c4

2Re

(60)

(61)

(62)

We estimate the above sum term by term, merely using the Cauchy-Schwarz
inequality |<AB>|2 ^ {ΛA^y^B^B}. But before doing so, let us single out an
estimate which will be used over and over again. Written in a somewhat redundant
way, it holds

Σ<cU , (63)

because the left-hand side of (63) equals

Σ iclcp)id\,dq-] =
k<τ

(64)



Error Bound for Hartree-Fock Energy 537

Hence, completing the square and using (63), the sum in the right-hand side of (60)
is bounded from below by

Σ «cWqcqcpy - 4(clc\cqcpyι\cldldqcpyi2

— — 71 I / •**> k k X A k — A v i l l / Λ i f h A i f I . l U J l
τ U - v \ k J \ k J

The first sum in (61) is obviously nonnegative and the second sum is explicitly
computable. After doing the p, q summation the second sum in (61) yields

Σ Γ ι y |2 T •*-> / V1 V (1 ]2\ I / V V 1 \ (&£\

/ Λ M A] ^— — — ~ I / Λ I,I,[Ah — Ah I I I / ΛhhAh I . (OΌ;

k > τ l < x ^\^ v \ fc / \ k /

The estimate on the first sum in (62) goes as follows:

^ -2 Σ «cldqdlcpy\dqdldpdlyi2)
PΛ

1/2 / \ 1/2

Σ<Vk4> (67)

Now, the first factor is taken care of by (63) and in the second factor we again
anticommute d\ and dp and use (dqdl) = \_d\, dq~\ - (dldq}. Hence we obtain

Σ <d dU / ) < (Σid' d ]) (Σ(ίdf d ] - (dU y))
P,q \ p / \ q /

— ( Y X \ ( V X (1 2
— I / Λ-kk I \ / -̂ -frfrl-L — A

^ ^ ( Σ χ

kkλk) (Σ χkΛλk - λl)\ . (68)

The above product therefore leads to the inequality

T \ l ~ T) \ k

- λ2

k)) . (69)

It remains to estimate 2Re<(ΣPCpdp)2> which will actually give the leading error
term. As the way we write this term suggests, we use the Cauchy-Schwarz
inequality on the embraced operator, yielding the lower bound

- 2 Σ <c\dpd\cqy Σ <4cqcldpy . (70)
\p,q / \p,q /

Now, observe that
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so, again, (63) applies. After an anticommutation, a similar argument is used to

estimate the other factor

\ d c c d / —— / \ \d d /\ c c I) • \c d d c ?

= Σ Σ \χki\ λk + Σ (cpdqdqcpy
k^τ Kτ p,q

/ \ Γ l / \Ί
d lVJ H-T: -AΣχkk(λk-λ2)) . (72)

Lemma 4 is proved by collecting all these estimates. |

Taking into account all the estimates from Lemma 2, 3 and 4 and denoting
- y2)} =:a2, ir^Xy} =:b and g~x := τ(l - τ), we arrive at

^ - fo min | l , a \(lτg + ± + 3^ + ^ 1 / 2 ) fl + 2^^ 2 (1 + ^ α 2 ) 1 / 2 ! ! . (73)

We just describe in words how to get from here to the final inequality. Note that the
term in brackets, let us call it F(a, τ), is monotonically increasing in a. Also we only
consider the range of a, where aF(a, τ) ^ 1. This leads to the range 0 ^ a ^ ao(τ) for
an explicitly given function ao(τ). But then aF(a, τ) ^ aF(ao(τ\ τ) = aa^ 1(τ) and it
remains to optimize with respect to τ, which gives τ o p t = 0.533 and
ao 1 (τ o p t) = 7.554, and the above inequality reduces to the desired result. |

5. Error Bound for the Hartree-Fock Energy

The next task we undertake is the application of the fairly abstract result of Sect.
4 to the Coulomb interaction in atoms and molecules.

5.7. Application of the Correlation Estimate. As explained in Sect. 3 we have

0 = EQ(N, Z, R) - EHF(N, Z,R)^ t r 2( VΓJ} ~ £ > ( 7 4 )

where Fj is the truncated 2-pdm of an N-pdm pN = | ^ > < ! P J V | 9 ΨNeDN being
an ε-approximate ground state of the molecule in question. V:=

-<g> l(σx) (x) l(σv) is the Coulomb interaction on Jf <g) Jf. We use the de-

composition

: = - J d3Z j - j XB(r,z)WZB(r,z)(3^) > ( 7 ^ )
1̂  "" ^1 π o r

which was introduced by Fefferman and de la Llave [3]. Here, χβ ( r,z ) is the
characteristic function of { X G R 3 | |X — z\ ^ r}. We denote the multiplication
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operator on J f corresponding to χB(r,z)®H<ή by X^zy N o t e t n a t clearly
Y — Y + — Y 2

Λ(r,z) — A(r,z) — A(r,z)
Furthermore we define

'= Σ 7p(^σ |x,σ), (76)

, σ) - y*(x, σ|x, σ)} , (77)
σ = l

so p is the one-particle density of the ε-approximate ground state ΨN and we call pτ

the truncated one-particle density. With the above notations we can prove the
following estimate.

Lemma 5. Assume (15), (75) and (76). For any 0 < δ ^ 5/24 it holds

where cδ:= (185.417)(7.554)2/3^"1/3.

Proof. The first step consists in applying Theorem 4 to X := X(r,Z) and superimpos-
ing all the obtained estimates.

2π Q r

^ ( ί
v i / 2

min<jl,α( J pτ(x)d3x

ί
I 0 ' \|x-z|

+ J ί ( { PW d 3 χ)}' (79)
for any measurable choice of R(z\ with α := 7.554. We proceed analogously to Lieb
[8] introducing the Hardy-Littlewood maximal functions of p and p Γ .

M(z) := sup 1-̂ -3 ( J p(x)d3x ) 1, (80)

Mτ(z):= sup \ ^ ( J p Γ (x)d 3 x) j . (81)
\\x-z\Zr J)
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Recall that in general, if / e L ^ R 3 ) , then its maximal function Mf(z)\=
sup r>o{3(4πr 3)" 1(J| x_ z |^ r |/(x)|rf 3x)} < oo on R 3 a.e. and fulfills the maximal
inequality

^ ^ i ' d 3 * (82)

for all p > 1 (cf. [19], pp. 58). By means of M and Mτ we find for any q > 1/3
R(z) dr ί \ ( V

\ % [ \ P(x)d3)( J ()d*)
0 r \\x-z\Zr

M(z)Mq

τ(z) J

and similarly

f * ( J
Λ(z) Γ \ |x-z|

on R 3 a.e. Thus we obtain

^ dr ί \ f /
J ^ J p(χ)d3χ min l,α J pτ(x)d*x
0 r \\x-z\£r / I \|jc-z|^r

4π f c )
^ — M(z) \—^--Mq

τ{z)R3q-1{z) + R~1(z) t , (85)
3 [3g — 1 J

where cq = (4π/3)βα. An optimization yields #(z) = c~ 1/3qMj 1/3(z) and bounds the
right-hand side of the inequality above by

(86)

Observe that there is no dependence of the estimate (86) on q apart from an overall
constant. In this respect, a substitution of (tΓi {X(y — y2)})1'2 by tτ1 {X(y - y2)} in
Theorem 4 would not have yielded a better result. Inserting the actual value
q = 1/2 we obtain

3(z)d3z . (87)

We fix 0 < ε ̂  1/12 and apply the Holder and the maximal inequality (82) to the
right hand of (87). This gives

/ 3 \2/3+β / 1 \l/3-ε

JM(z)Mi/3(z)d3z ^ J[M(z)]2 + 3iJ
\

l/3-ί

(88)
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Applying the Holder inequality again, we find

3(1-3ε) l + 15ε
3 / \2(2 + 3ε)/ \2(2

ί ίρ(x)']2~TTεd3x ^ \p5l3{x)d3x \p{x)d3x

9ε 2-15ε

We exploit ^ p5'3 and get

3 \2/3+β

J

2(l-3ε) / \2(l-3ε)

ΠpT(x)d3x)

l/3-β

(89)

(90)

l / 2 1/2 l/3-5ε/2

(91)

Combining these estimates, we prove the assertion (78) above. |

5.2. A Simple Bound on the Kinetic Energy. We need to bound the kinetic energy
<^vlΣf=i — ^ Ϊ I ^ N ) in order to prove Theorem 1. Our goal is to use as little
information as possible about the system, i.e. about ΨN, N, Z, and R. We derive our
bound essentially by reproducing a similar result of Lieb [10].

Lemma 6. Let q^N and ΦNeDN such that (ΦN\HN(Z, R)\ΦN) ^ 0. Then

ΦN Σ -4 (92)

Proof Dropping the Coulomb interaction of the electrons, we have

N / K ry

ΦN

Σ I - A , -
2Z

Σ -

xt - Rj

Zj (2Z)2

J = I

(93)

In the last step we just added up the eigenvaues of the Bohr atom. |

We are now in position to prove Theorem 1

Proof of Theorem 1. We recall the Lieb-Thirring inequality [15], which bounds
j p 5 / 3 by the kinetic energy. Namely, denoting cLΎ:= 2.1Ί09q~2/3 (see [9] for this
value), it holds

N

Σ - (94)
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where pφ is the one-particle density of ΦNeDN. Inserting the Lieb-Thirring in-
equality into Lemmas 2 and 6 we thus complete the proof of Theorem 1. |

6. Asymptotics for Large Z

Our goal in this section is to derive Theorem 2. The idea underlying our proof is
that ΨN is not only the ground state oϊHN(Z, R), but it is an oc-approximate ground
state of a suitable one-body Hamiltonian which approximates HN(Z, R), too,
where α = o(ZΊI3). However, the exact ground state ΦN, say, of such a one-body
Hamiltonian is a Slater determinant and the corresponding 1-pdm is a projection.
Therefore, we expect y to be close to a projection. It is here that we use semiclassical
results, namely the considered one-body Hamiltonian is suggested by Thomas-
Fermi theory.

We assume the existence ofε, c l 5 c2, c3 ^ 0 such that

Z - c2Z
1/3 ^N ^ Z + c3Z

5Π , (95)

hold throughout this section without further notice.

6.1. The Semiclassical Results of Ivriί and Sίgal. Let 0 T F = ΦΎF(Z, Z, R) be the
Thomas-Fermi potential of a neutral molecule with nuclei Z at positions R (cf.
[10]) and define

H:=(-A-φΎF(x))®l(σ) (96)

self-adjointly on D c jf = L2(IR3)(χ) <C*. For all α > 0 we define the spectral
projections Pa:= χ (- 0 0, - α ] (^) and Po:= χ^-^^^H). For £ ^ 0 w e then denote

HE:=PEHPE. (97)

We define the energy e ^ 0 as follows:

Zth eigenvalue of H if tr{P 0} > Z

U } ^ Z . (98)

In other words, if H has at least Z negative eigenvalues (counting multiplicities)
then — e is the Z t h eigenvalue and otherwise e = 0. Since M : = tr{P e} 5Ξ Z, P e

certainly has an integral kernel and we define the corresponding one-particle
density by pM(x):= ^ | = i P β ( ^ σ l ^ ? <ή on R 3 a.e. Note that §pM(x)d3x = M.
Furthermore, we set for/ gfeL 1 (R 3 )

^ ^ (99)

Let us quote the results of Ivrii and Sigal in form of a lemma (cf. [7], Thm. 2.4 and
Lemma 2.8)

Lemma 7. {Ivrii and Sigal). Let m i n { | ^ - ^ | |1 ̂  i < j ^ K} ^ cZ~2/3+ε for
some c, ε > 0. Then, for some c > 0 and for all α ̂  0,

(i) D ( p M - p T F , p M - p T F ) ^ c Z 5 / 3 ,
(ii) tr{Pα} = csc$ lφΎF(x) ~ *yj2d3x + 0{Z2>3\ where csc:= 6π2q'\
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6.2. The Energy Truncation. Our first result in this section is an estimate on the
energy expectation of y with respect to H. We claim

Lemma 8. Let y be the 1-pdm of an ε-approximate ground state of HN(Z, R) with
ε ^ cZ 5 / 3 . Then, for some c ^ 0,

tr {Hy} ^ + (100)

Proof By the variational principle for HM(Z, R) and the Lieb-Oxford inequality
[13]

1

ig;<j§ίv \ x

ΨN)^~D(p, p) - (1.68) Jp4 '3(x)d3x , (101)

we obtain

= tr{hPe} + - D(pM, pM) + - D(pτF, PτF)

- - D(ρM - pτF, pu - pτF)

^ EQ(M, Z,R) + - D(pτF, pτF) - - D(pM - pτF, pM - pτF)

^ tr{hγ} + - D(p, p) - IEQ(N, Z, « ) ] - EQ(M, Z, Λ)] - ε

- (1. \ D(pτF, pTF) - l- D(pM - pΎF, pM - pΊF)

^ tr{Hy} - IEQ(N, Z, R) - EQ(M, Z, R)] - ε

- (1.68) J p4'3(x)d3x - l- D(pM - p τ F , p M - pΎF) . (102)

Now, Lemma 7(i) states D{pM — p T F , ρM — p T F ) ^ cZ513 and using Lemma 6 yields

\p4l3{x)d3x S {] P5l3{x)d3x)ίl2(] p{x)d3x)ίl2 g c Z 5 / 3 . (103)

Next, denoting EN := EQ(N, Z, R), we show for all N ^ 3

(104)
EN

N

VII

EN-I

N - 1

Namely, setting hi'= —Δi + Y*=ίZj\xi — Rj\
 1 and using an ε'-approximate

ground state ΨNeDN of HN(Z, R) for a suitably small ε7 > 0, we infer

(105)
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Now, if N ^ M, we already arrive at the claim. Conversely assume N < M.
Then, by (104),

^ c Z 1 / 3 Z 4 / 3 . I (106)

We remark that tτ{Hγ} and tr{iί e} are both of order Z 7 / 3 . Thus one may
interpret Lemma 8 as stating that y cannot deviate much from Pe = P 2 . It hence
implicitly asserts the smallness of y — y2. We introduce a cut-off in energy to make
this explicit.

Lemma 9. Let E > e. Then, for some c > 0,

75/3

tr{PE(y - y2)} g c — + - t r { P 0 - Pe) . (107)

Proof We observe that 0 ^ tr{H 0 (P e - y)2} implies tr{(-if o)(y - y2)}
^ tr{( — He)(l — y)}. This inequality, 0 ^ y ̂  1, and Ho~H^0^—HE

^ -HeS -Ho yield

£tr{P£(y - y2)} ̂  tτ{(-HE)(y - y2)} ^ tr{(-H β)(y - y2)}

S -tv{He} + tr{Hy} - tv{(H0 - He)y)

ScZ5/3 + etτ{P0-Pe} , (108)

applying Lemma 8 in the last estimate. |

As will be shown next, Lemma 8 does not only supply a bound on
tr{PE(y — y2)}, but also on tr{(l — PE)(y — y2)}. Intuitively this is clear provided
there are approximately Z eigenvalues of H below — E. More specifically, we will
prove

Lemma 10. Let E > e. Then, for some c > 0,

tr{(l - PE)(y - y2)} g Z - tr{P£} + cZ5>Ί + c ^

+ | t r { P 0 - P e } . (109)

Proof As in the proof of Lemma 9 we observe

£tr{P £ ( l - y)} ̂  tr{(-// e )(l - y)} ̂  c Z 5 / 3 + ̂ tr{P 0 - Pe) . (110)

Also,

tr{(l - PE)y) = N- tr{P£} + tr{P£(l - y)} . (I l l)

These two inequalities (110), (111) imply the assertion, since y^y — y2 and
N S Z + cZ5/Ί. I

Now we will put these estimates together and insert the bound (ii) of Lemma
7 on tr{Pα}, α ^ 0 .
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Lemma 11. Let E > e. Then, for some c, d > 0,

tr{y - y2} ^ c Z 5 ' 7 + c'7^- + 3csc j {φ&2(x) - [φτF(x) - ETJ2}d3x . (112)

Proof. We add up the estimates from Lemma 9 and 10. This yields

tr{y - 7

2 } ^ Z - tr{P£} + c ̂  + cxZ^ + 2 - | tr{P 0 - i>*} . (113)

By (ii) of Lemma 7 and Thomas-Fermi theory (cf. [11]) it holds

Z = csc\ φ&2(x)d3x = tr{P0} + O(Z2'3), (114)

which implies

- Pe} ί Z - tr{PE} + cZ2'3 . (115)

On the other hand, (ii) of Lemma 7 also asserts

trίP X > r Γ VA\ ί\-\ Ϊ7~1 3 / 2 /7 3 V /-'Z 2 / 3 i\ 1 fλ
IT^ϊβf = Csc J \_ΨΎF\X) — ^ J + W Λ — CZ/ , ^IIΌJ

thus establishing Lemma 11. |

6.3. The Semiclassical Number of Particles. As we have seen in the section before it
remains to bound

and to assure E > e. We will do this by means of Lemma 12 below. Let us
emphasize that the only parameters which enter in our estimate are Z and K.
Nothing needs to be assumed about Z/Z and R.

Lemma 12. Let φΎF := φτF(Z, Z, R) be the Thomas-Fermi potential of a neutral
molecule with nuclei Zj at positions Rjfor 1 ̂  j ^ K. Let furthermore Z := Σf=1 Zj
andΰ<E^ o(Z4/3). Then, for sufficiently large Z,

2π / 3 c Λ 3 / 2 £ 3 / 4 ̂  r {φ^ίx) - [φΎFίx) - E~]ψ}d3x (118)
3 \ π / ~~

9 )

Proof Let φz be the Thomas-Fermi potential of a neutral atom at the origin.
Using the maximum principle (cf. [11]) one sees that for all 1 ̂ j ^ K and x e R 3

a.e.,

φZj(x - Rj) S ΦTF(X) ^ Σ ΦzM ~ Rj) (120)

We prove the inequality (118). Observe that φ3/2 — \_φ — £]+ / 2 is monotone in φ.
Since at least one of the nuclei, the / h , say, has charge Zj ^ Z/K, we derive



546 V. Bach

ΦTF(X) ̂  ΦzM ~ Rj) ^ Φz/κ(* ~ Rj), and hence, using φz(x) =

ίΦz/κ(x ~ Rj) ~ Eyj2}d3x

- E^2}d3x , (121)

where Z:= Z/K and E:= E/Z4'13 = o(l). As a result of Thomas-Fermi theory,
φi(x) is a function of |x| and decreases monotonically in |x|. Furthermore,
φi(x)tί (3/π)2c2

c\x\~4' =:c 2 / 3 |x |~ 4 and, indeed, for |x| sufficiently large,

£2/3

(cf. [11]). Therefore, E = o(l) implies φ^x) ^ c 2 " 2 / 3 | x Γ 4 on

A:= {xeWflφΛx) ^ E} =2 {xeR3 |c2 / 3 |x|-4 S E) =:B . (123)

This yields

x) - ίΦΛx) - ET'2}d>x ;> J φ\ι\χ)d*x ^ 11 |xΓ 6d 3x

Applying these estimates, the inequality (118) follows.
Now, we prove the inequality (119). We divide the space into the K regions,

j Vl S i ύ K : \ x - R j \ ^ \ x ~ R t \ } . (125)

On Aj9 we estimate

K K

φΎF(x) ύ Σ Φz,(x - R i ) ^ Σ ΦzM - Rj) ^ KΦzix - Rj) • (126)
i = l i = l

Hence it follows, with E:= EK'ιZ~Aβ,

^ Σ ί {K3l2φP(x - Rj) - [Kφz(x - Rj) - EYJ2}d3x
J = l Λj

S Σ ί {K3l2φ3

z'
2(x - Rj) - ίKφz(x - Rj) - EγJ2}d3x
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^ K5I2Z J {c\x\~6 - [c 2 / 3 | xΓ 4 - EYJ2}d3x

J c 1 / 3 Λ + c f =J
0 5Ί/6F-1/4 ^

(127)

This establishes inequality (119) and hence Lemma 12. |

We are now in position to prove Theorem 2

Proof of Theorem 2. In order to apply Lemma 11 we need to have an upper bound
on e. First, assume that e^cZ for some c > 0. Then tτ{Pe} = Z, by definition.
Again applying (ii) of Lemma 7, this implies

(x) ~ LΦTF(X) - erj2}d*x SZ- tr{Pe} + c'Z2 * ^ c'Z2>* . (128)

By the monotonicity in e, (128) would still hold true if we replaced e by cZ on the
left-hand side. Now, by Lemma 12, we know that for E = o(Z4/3\

2 (-J cs

5/2£3/4 ^ csc J {φ|t2W " [ΦTFW - EfJ2}d3x . (129)

Hence, setting E:= cZ, (128) lead to the contradiction Z 3 / 4 <* constZ 2 / 3 . Therefore,
e = o(Z) ^ o(Z 4 / 3 ). This assures we may set E:= e in (129) which, together with
(128), implies

e S cZ8/9 . (130)

Now, using Lemma 12, we derive from Lemma 11,

7 5/3

tr{ r - y2} Z cZ5'Ί + C— + 3cscf {φ&{x) - ίφτF(x) - EYJ2}d3x

7 5/3

^ cZ5'1 + c' — + c"E314

E

^ c Z 5 / 7 , (131)

choosing £ : = z 2 0 / 2 1 = o(Z 4 / 3 ). This choice is justified for sufficiently large Z,
since E = Z 2 0 / 2 1 > c Z 8 / 9 ^ β. |

We would like to emphasize that the method of proving Theorem 2 is not
intrinsically semiclassical, despite the fact we use results from semiclassical^analysis.
Indeed, if we had substituted H by some other one-body Hamiltonian H, say, we
could have proved tr{y — y2} = o(Z), provided its ground state energy agrees with
EQ in leading^order. Of course, we needed to have some explicit access to spectral
functions of H as well, which is why we chose H = ( — A — ΦTF(X)) ® 1 (cr).
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