
Commun. Math. Phys. 147, 163-180 (1992) Communications in

Mathematical
Physics

© Springer-Verlag 1992

The Faddeev-Popov Procedure and Application
to Bosonic Strings:
An Infinite Dimensional Point of View

S. Paycha

Department de Mathematique, Universite Louis Pasteur, F-67084 Strasbourg, France

Received August 1, 1991; in revised form December 11, 1991

Abstract. A generalisation of the finite dimensional presentation of the Faddeev-
Popov procedure is derived in an infinite dimensional framework for gauge theories
with finite dimensional moduli space using heat-kernel regularised determinants. It
is shown that the infinite dimensional Faddeev-Popov determinant is - up to a
finite dimensional determinant determined by a choice of a slice - canonically deter-
mined by the geometrical data defining the gauge theory, namely a fibre bundle
P -> P/G with structure group G and the invariance group of a metric structure given
on the total space P. The case of (closed) bosonic string theory is discussed.

0. Introduction

The Faddeev-Popov procedure for gauge theories originally introduced by Faddeev
and Popov in the context of Yang-Mills theories [1] has been discussed by many
authors in the physics literature in the context of string theory (see e.g. [2]) from a
topological point of view (see e.g. [3-5]) as well as from a geometrical stand-point
(see e.g. [6-8]). It essentially yields a formal procedure to write a functional integral
on the space P of paths arising from the functional quantisation of a classical action
invariant under the action of the gauge group G as an integral on the quotient space
P/G (or a submanifold Σ of P isomorphic to this quotient). If the quotient space is
finite dimensional as in the case of bosonic string theory (it is given by the Teichmuller
space of a Riemann surface), this procedure reduces a formal integration on an
infinite dimensional space, the space of configurations to an integration on a finite
dimensional manifold. "Factorising out" the gauge group in this way gives rise to a
jacobian determinant, the formal Faddeev-Popov determinant. Some important
clarifications were made as to the geometrical meaning behind this formal procedure
[6, 7]. This geometrical interpretation was done in a finite dimensional setting with
the implicit point of view that the infinite dimensional set up inherent to functional
integration can be seen as a generalisation.

In this paper, we want to discuss how far this generalisation to an infinite
dimensional framework can be made precise from a mathematical point of view.
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We shall more specifically concentrate on the case of (closed) bosonic string
theory.

In this infinite dimensional presentation of the Faddeev-Popov procedure, we
stress the role of elliptic operators pointing out that the Faddeev-Popov operator is
essentially built up from elliptic operators on compact surfaces. Using the heat
kernel regularisation method for determinants of elliptic operators on compact
surfaces, we extend the notion of regularised determinant to the class of operators
of interest in the Faddeev Popov procedure.

Let us briefly describe how the Faddeev-Popov operator arises in this procedure.
A natural way of parametrising the manifold P locally around p is to look for a
local cross section Σp in P at point p. If the tangent map τp at point p to the action
of the group G is injective, the map G x Σp -> P yields a one to one local parametrisa-
tion of P around p in terms of the gauge group G and the slice Σp. Changing from
one local cross section to another gives rise to a change of parametrisation and
hence to a jacobian operator tangent to the transformation going from one para-
metrisation to the other. In gauge field theories, when τp has an injective symbol,
starting from a given local cross section Σp at point p one can choose a local cross
section orthogonal to the fibre at point p and the corresponding Jacobian map is
called the Faddeev Popov operator. In Yang-Mills theory for example, a local cross
section around p orthogonal to the fibre at point p is given by the affine space
{p + Ker τ*}. where τ* is the adjoint of τp given a riemannian structure on P. Note
that this however does not a priori yield a global cross section since Gribov
ambiguities can arise [3].

Inserting this new parametrisation into the formal functional integral on the
space P gives rise to a formal jacobian determinant, the Faddeev-Popov determinant
denoted by "det Fp" which coincides with "det τp" up to a finite dimensional deter-
minant. Up to this finite dimensional determinant which depends on the choice of
the slice Σp9 this Faddeev-Popov determinant is canonically determined by the
geometric data P -> P/G through the operator τp.

We shall give a detailed description of this Faddeev-Popov operator and show
how in the infinite dimensional setting, one can compute a regularised version of
this determinant (extending the notion of heat-kernel regularisation of determinants
of elliptic operators to a class of operators of interest for this Faddev-Popov
operator). We prove it coincides (under an ellipticity assumption on τ*τp and up to
a finite dimensional determinant which depends on the choice of the slice Σp) with
a regularised version of the operator τp so that the Faddeev-Popov determinant is
canonically defined in terms of the geometrical data P -» P/G and a choice of the
slice.

We consider two cases, namely first the case when the total space P is equipped
with a metric structure invariant under the whole structure group G and then the
general case when the metric structure on P is only invariant under a subgroup K
of the structure group G which we then assume to be a semi-direct product G =
H x K, where H is a group acting on K by fc -> /CΛ, this action satisfying the condition
(khl)h2 = khlh2. We shall illustrate this in the string theory where G is the in variance
group of the classical string and H the in variance group remaining at the quantised
level in non-critical dimension.

Ultimately, in the case of a gauge theory with finite dimensional moduli space
P/G, the Faddeev-Popov procedure as described above enables us to define - under
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precise conditions on the integrand - a renormalised path integral"

where h is a functional on P and d[p] a formal Lebesgue measure on path space as
an integral on a finite dimensional manifold Σ^ P/G. More precisely, for ε > 0 let
us denote by detε(Fp) the ε- heat kernel regularised determinant of the Faddeev Popov
operator (defined in Sect. II). If for an ε-renormalised version hε of h (which we shall
describe in the particular case of string theory), hε(p) άetε(Fp) is gauge invariant and

equivalent when ε goes to zero to a density pε(x) on Σ, then ί J h(p)d[p] j is defined
as the integral on the finite dimensional space Σ:

whenever this limit exists. This renormalised functional integral is the mathematical
object implicitly referred to in the physics literature when writing lh(p)d\_p]. We
shall illustrate this in more detail in the case of string theory. p

The paper is organised as follows. In Sect. I, we briefly recall the geometrical
setting for the Faddeev-Popov procedure and define the Faddeev-Popov operator
which, in the context of string theory, is essentially built up from elliptic operators
acting on functional spaces and as such, does not have a well defined determinant.

In Sect. II, we recall the heat kernel regularisation procedure for elliptic operators
on compact surfaces (without boundary) and extend it to a more general class
of operators, namely to certain triangular matrix operators on product bundles
involving elliptic operators on a compact surface (without boundary).

In Sect. Ill, applying the results of the preceding section, we define a regularised
Faddeev-Popov determinant which coincides with the usual Faddeev-Popov deter-
minant encountered in the physics literature and define a renormalised functional
integral on the bundle P when the moduli space P/G is finite dimensional.

Finally in Sect. IV, we apply this procedure to the case of closed bosonic strings
and then define a renormalised Polyakov integral on Teichmϋller space.

I. The Faddeev-Popov Map

In this section, we recall the geometrical setting for the Faddeev-Popov procedure.
In order to describe this procedure independently of any measure theoretic notion
(infinite dimensional Lebesgue measures are not well defined), we shall define the
notion of Faddeev-Popov operator given a riemannian structure on P.

π\P-+V will denote a C°° trivial principal fibre bundle on a smooth base
manifold V with structure group G and canonical projection π. (In some cases, such
as Yang-Mills theory, the bundle P is not trivial but up to a restriction to an open
subset of the base manifold, we can however recover the above set up.) Let σ: K-»P
denote a C°° global cross section of P. Σ = σ(V) can be seen as a C°° submanifold
of P. We shall assume that the group G acts on P smoothly by a right-hand side
action:

GxP-+P
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We introduce two spaces at a point peP, namely the space:

Wp=Tp(RaΣ), (1.1)

where (x, a) is the unique element in Σ x G such that p = Rax, and the space:

Vp=TJfp) (1.2)

tangent to the fibre Fp = π~1(π(p)) at point p. Then Vp = Im τp, where

τp:TeG^TpP (1.3)

is the tangent map at point eeG to

G^P

a^Ra p = p a. (1.4)

Since Σ is a cross section for the bundle P -> P/G, the tangent space to the bundle
P at point p splits into a direct sum:

TpP=Tp(Fp)@Tp(RaΣ)

= Imτp®Wp. (1.5)

Lemma 1.1. T/ie map

is a C°° dίffeomorphism and τp is ίnjective.

Proof. It is a C°° diffeomorphism since Σ is a C°° cross section for the action of G.
Hence, Tp(RaΣ) φ Im τp = T^P, since £ induces a local cross section and the tangent
map:

TeGx TXΣ^TPP

(u9h)^>τpu + Rah

is one to one and onto. It is clearly injective if and only if τp is injective which proves
the lemma.

We now equip the bundle P with a smooth riemannian structure. It induces a
scalar product <γ>p on the tangent space TpP at any point p in P. We shall first
consider the case when this riemannian structure is invariant under the whole group
G, i.e.

(1.6)

In gauge field theories, one wants a local parametrisation of P induced by a local
cross section orthogonal to the fibre. A change of local parametrisation of P from
one induced by a given cross section around a point p to one induced by a local
cross section orthogonal to the fibre at point p gives rise to a jacpbian operator
tangent to the transformation map, the Faddeev-Popov operator.

We shall make the following assumption under with Faddeev Popov operators
can be naturally constructed in gauge theories.

Hyp 1. The gauge group G is an infinite dimensional smooth Frechet manifold equipped
with a smooth Riemannian structure, and TeG is the space of smooth sections of a
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bundle E on a compact surface Λ. The operator τp is a differential operator on E of
order larger or equal to 1 with smooth coefficients and has injectίve symbol

In the sequel, we shall denote by <y> the scalar product on TeG. We shall first
assume it is invariant under the action of the whole group G so that we define on
TflG,0eG:

<Λ;ιι,Λ;ι;>βΞ<ιι,f?>VfleG,Vιι,ι?6TβG. (1.7)

If A is a differential operator with C°° coefficients from TeG = C°°(£) to TpP which
is densily defined, A* denotes the adjoint of A with respect to <y> and <y>p. It is
uniquely defined since the domain of A contains the space C°°(E) of C°° sections
dense in the closure L2(E). Moreover, the coefficients of A being C°°, and the
Riemannian structure being smooth, the operator A* is well defined on the image
of C°°(£) through A so that the operator A*A makes sense on C°°(E) and can be
extended in a unique way to a self adjoint operator which we denote by the same
symbol

Remark. Notice that the injectivity of the symbol of τp yields the ellipticity of the
operator τ*τp (see e.g. [9]).

Since τp has an injective symbol, the space Im τp is closed in TpP and the following
orthogonal splitting holds (see [9], Corollary 6.9):

Since Im τp is closed, the orthogonal projection onto Im τp is well defined and we
shall denote it by πp. In gauge field theories, when the manifold P is a C°° Hubert
manifold, using the implicit function theorem, one constructs a local cross section
Sp of P with tangent space Ker τ* which is then naturally orthogonal to the orbit
of p since the splitting Ker τ* © Im τp = TpP is orthogonal. This gives rise to the
following jacobian operator:

Lemma 1.2. The map

(u, h) -> (τpu + πpft, (1 - π

P)
n)

is one to one and onto.

Proof. The map Fp is clearly injective if and only ifτp is injective. Let us check that
it is onto. Take (kl,k2)e\mτp x Kerτ*, the splitting (1.5) yields k1 + k2 = τpu + ft,
w e T G, heW so that /c1 = πp(kl + k2) = τpu + π ft, k2 = (1 - π )/ft and F (n,ft) =
(/cU2).

Definition. Tfte map Fp of Lemma 1.2 is called the Faddeev-Popov operator associated
to the group G.

Remark. The construction of a Faddeev-Popov operator can be generalised to the
case when the gauge group is a semi-direct product

G = G'xiG" (1.8)

of two groups as in the case of string theory, the group G' acting on G" by an action
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satisfying the requirement:

The underlying Riemannian structures are not invariant under the whole group G
anymore but only under the group G', the total group G being the structure group
for the bundle. In the case of strings, G is the in variance group for the classical action
describing the classical motion of the string whereas G' is the invariance group
remaining at the quantised level in non-critical dimension, the group of invariance
of the formal measures arising in the functional quantisation.

In this case, the operator τp has the following shape:

τp:TeG'xTeG"^TpP

where

and

τ'pu' = τp(u')

Under the assumption Hyp. 1, the space Imτ^ is closed and we can define the
orthogonal projection π"p onto this space. Writing

τp(u' + u") = (τ'p - π"τ'p)u' + π'pτ'pu' + τ"pu"

yields the following matrix representation for τp as an operator from TeG' x TeG"
onto Kp- x Kp with Kp = Im τp:

**+">-β ;][:•}
where

and

= πpτp.

The operator τp then has injective symbol if and only if the operators Ap and Bp

have injective symbol. In particular, both operators A*Ap and B*Bp are elliptic.
Lemma 1.2 clearly extends to this more general operator τp and we can extend

the notion of Faddeev-Popov operator to this case whenever τp is injective. Notice
that if G" = [e], we have Im τ"p = {0} and the matrix operator given in (1.9) reduces
to the operator Ap — τp.

In order to simplify the presentation of the Faddeev-Popov procedure, we shall
assume that the operator Bp takes a simple form, this being the case in string theory.
However, the setting could be generalised to any differential operator Bp with C°°
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coefficient's and injective symbol as we shall point out throughout paper. We assume
that TeG" is canonically embedded by an isometry ip into TpP and that Bpu" = ip(u"}.
We shall henceforth identify TeG" with ip(TeG") thus replacing the operator Bp in
(1.9) by 1.

The Faddeev-Popov operator Fp associated to the gauge group G reads:

FP = DP + RP (1.10)

with

(1.11)
[_u n j

and

0 πp/Wp

' LO -*jw,\
where Dp and /^ are seen as operators from TeG x Wp to T^P ̂  Imτ^ x Ker τ*.
Here πp/Wp denotes the restriction of the projection πp to the finite dimensional
space Wp.

From now on, we shall assume that the moduli space is finite dimensional, i.e.
that the following assumption is fulfilled

Hyp 2. dimP/G< oo.

Notice that the matrix Rp is then of finite rank and hence of finite trace. The operator
D*Dp on the other hand will essentially be an elliptic operator and to define its
determinant requires a regularisation. The object of the following section is to define
the Faddeev-Popov determinant, i.e. to give a meaning to the expression "det Fp"
and to give a mathematical interpretation of the formal equality:

= (det(τ*τp))1/2 det(l - πp)", (1.13)

where det(l — πp) is a finite dimensional determinant given by the determinant of
the matrix of H — π seen as operator from W onto Ker τ*

II. Regularised Determinants for Elliptic Operators

In this section, we shall extend the presentation of heat-kernel regularisation for
determinants of elliptic operators which was done in [12 and 13] in the particular
case of string theory to a more general setting so as to be able to define the regularised
Faddeev-Popov determinant "det Fp" Let E be a smooth vector bundle with fibres
of finite dimension based on a boundaryless C°° real compact manifold A of dimension
k ̂  2 and let CCO(E) be the vector space of smooth sections of E. Let H = L2(E) be
the closure of C°°(£) with respect to the L2 scalar product induced by an L2 -scalar
product < , •> on E. Let E\\ + (E) denote the space of positive elliptic self adjoint (with
respect to <•,•» operators on H of strictly positive order. We apply here classical
results for elliptic operators on compact surfaces for which we refer the reader to
[10]. Since A is compact, for AeEll*(£), the orthogonal space HA = (KeτA)λ to
the kernel Ker A of A is invariant under A and we can define the restriction >4/(Ker A)1
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of- A to this Hubert space HA. Let us set

A' = A/HA. (2.1)

This defines a strictly positive self adjoint operator on HA.
We now introduce a heat-kernel cut-off function which yields the usual heat-

kernel regularisation for infinite dimensional determinants via the spectral theorem.
For ε > 0, Λ,elR+/{0} we set:

+ (2.2)

and for ,4eEll + (E), we define hε(A') through the spectral theorem.
If JI(H] denotes the set of compact operators A on H such that \A\ has finite

trace (the trace is taken with respect to the scalar product < , » then for A = 1 + C,
CeJ !(//), we can define the determinant det A of A as in [11] and it coincides with
the product of the eigenvalues of A (theorem of Lidskii). The asymptotic behaviour
of the eigenvalues of a positive self adjoint elliptic operator of strictly positive order
on a compact boundaryless finite dimensional manifold yields that

Jι(HA) (2.3)

for all AeE\\ + (E\ ε > 0 and hence the finiteness of the "ε-cut-off" determinant:

det'Λ(A) = det(hε(A% VAeE\l + (E). (2.4)

The regularised determinant is then defined as

det' (A) ΞΞ lim exp [log det /zε(,4')-divergent terms]. (2.4 bis)
ε->0

Let now £, F be two smooth vector bundles based on Λ with fibres of finite dimension
and C°°(E), C°°(F) be the corresponding vector spaces of smooth sections.

Let Λ:C°°(E)->C00(F) be an operator such that A*AeE\\ + (E\ then applying
formula (2.4), we can extend the notion of regularised determinant setting:

)1/2 (2.5)

and

det'(A) = det(AM')1/2. (2.5 bis)

When the operator is injective, we shall omit the prime.
We now generalise this heat-kernel regularisation for determinants of a class of

triangular matrix operators.

Proposition 2.1. Let E = E1 x £2, F = Fί x F2 be products of C°° bundles equipped
with scalar products and

T:CCO(E1) x C'Λ(E2)^CCO(F1) x C°°(F2)

be an injective operator of the form

C
°Ί=μ oTi on
tj LO iJLc ij




