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Abstract. Using a superspace approach, it is proved that a JV = 1 Super-Toda
theory can be seen as a constrained WZW model based on a supergroup. The
gauge transformations which survive the constraints are then used a la Drinfeld
Sokolov to determine explicitly the super- W algebra underlying this theory. The
conformal spin content of any such super-Walgebra is provided in the general case.

1. Introduction

Rather recently, it has been remarked and exploited that Toda theories can be
identified with some gauged Wess-Zumino-Witten (WZW) theories [1]. More
precisely, a Toda theory can be seen as a WZW theory with constrained Kac-
Moody currents, these constraints generating gauge transformations of special
interest. Such a property is interesting for at least two reasons. First, because it
relates two cornerstones of two dimensional conformal field theories, namely
WZW models and Toda theories. Secondly, since this connection provides a direct
method for the construction of W- algebra in Toda theories, the W-generators
showing up as gauge invariant polynomials in the constrained currents and their
derivatives.

It is the generalization of such properties to the N — 1 supersymmetπc case,
namely the possible relation between supersymmetric Toda theories and super-
WZW models that we propose to examine in this paper. As is well known, a super-
Toda theory is based on a simple superalgebra admitting a simple root system
(S.R.S.) made only of fermionic roots [2]. Properties of super-Toda theories and
some consequences for super- W algebras have already been considered [3-5]. A
first approach to recognize super-Toda theories in constrained super-WZW
models based on supergroups has also been proposed in [6]. However, in this
paper the WZW action is not explicitly supersymmetric, and the treatment, not
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being based on superfields but rather in their components, does not seem to be well
adapted for the construction of super- W algebras.

Hereafter, we will start from a manifestly supersymmetric WZW action
associated with a supergroup .̂ Mimicking the non-supersymmetric case, and
imposing constraints on the supercurrent components associated with fermionic
simple roots, we will obtain the N = ί super Toda theories. In order to make
complete this gauge theory approach, we consider in a special paragraph the
"component action," and recover the action given in [6] as the one associated to a
Wess-Zumino gauge, obviously not covariant under supersymmetry (Sect. 2).

The general construction of ^components is considered in Sect. 3. Once again,
we will develop a method analogous to the one used in [1] for the non-
supersymmetric case. The new feature here is that a super Toda theory based on a
Lie superalgebra $/ involves the superprincipal embedding of OSp(l 12) - we denote
it OSp(l|2)ppal - instead of the principal embedding of SI(2) as it appears in
a Toda theory based on an algebra. General formulas for the decomposition of
any simple Lie superalgebra stf with a completely fermionic S.R.S. into repre-
sentations of its OSp(l|2)ppaI are established in Sect. 4. From such tables, one can
deduce the spin content of the W-generators associated with a j^-super-Toda
theory (Sect. 5). Then, in Sect. 6, we illustrate our results on a few simple cases,
before discussing further developments in the conclusion.

2. W.Z.W. Action with a Supergroup, and Gauge Constraints

We start this section by fixing some notations. Then, we write explicitly the
W.Z.W. Lagrangian based on a supergroup in a manifestly supersymmetric
framework. The adjunction of a second term to this expression will lead to the
complete gauge invariant supersymmetric action associated with N = \ super-
Toda theories. Finally, examining in some detail the components of the involved
superfields, we can prove that the treatment presented in [6] and denoted "hidden
supersymmetry" is obtained from an action through the use of a Wess-Zumino
gauge.

2.1. Some General Notations and Properties

Super-Toda theories imply the use of special simple Lie superalgebras namely
superalgebras si equipped with a completely fermionic simple root system (SRS)
and admitting an OSp(l|2) principal embedding (see Sect. 3.2). They are of the
following type [2, 7] :

Sl(n + 1 |n), OSp(2n ± 1 |2n), OSp(2n|2n) ,

OSp(2rc + 2|2n) n^l and D(2, 1; α) αφO, -1 .

For brevity, we will call these superalgebras "fermionic" superalgebras1.
By < ? > we denote in ̂  the unique (up to a constant factor) non-degenerate,

invariant, supersymmetric bilinear form; such a form exists for any contragredient
- or basic - simple Lie superalgebra [7]. In the Chevalley basis, the Cartan
generators Ht (i = 1 , . . . , r = rank(^4)) and the fermionic generators E ± α . associated to

1 Note that although each superalgebra PSl(φ) = Sl(φ)/U(l), n Φ 1, possesses a fermionic SRS,
it does not give rise to an OSp(l|2) principal embedding
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the simple root system Δ + = {α1? . . . , αr} satisfy the Commutation Relations (C.R.):

[Hi9 E ± ΛJ] = ± KtjE ± a. ,

(2.1)

where K is the (symmetric [8]) Cartan matrix defined by

Ky=(α, ,0^3 <#„#,>. (2.2)

Moreover one has

<H,£±αj> = <£±ίl(,£±αj>=0,

<£„, £_.,> = $„. (2.3)

We will denote by Kij the entries of the inverse Cartan matrix, i.e.:

Kl'Kjk = δl (2.4)

General results on superalgebras and their Dynkin diagrams can also be found
in [9].

2.2. Gauged Wess-Zumίno-Wίtten Action

The light-cone coordinates of the world-sheet (1,1) superspace will be denoted by
x++,x~~,η+,η~. The index refers to the Lorentz weight carried by the coordinate.
The supersymmetric co variant derivatives D± satisfy

The superfield G(x, η) belongs to a supergroup ^ such that the corresponding
superalgebra j/ admits a set of simple roots all fermionic. We shall denote by A the
automorphism of the superalgebra <*/ which changes the sign of anticommuting
generators and leaves commuting generators unchanged. The same notation will
be used for the corresponding automorphism of the supergroup. The starting point
is the WZW action

The corresponding equations of motion read ^ ' '

D.(G~ίD + G) = 0 o D+(D_GG~1) = 0. (2.6)

The action (2.5) satisfies the Polyakov-Wiegmann relation

2G^)y. (2.7)

We denote by <$tf + (respectively j/_) the superalgebras spanned by the generators
of j/ corresponding to positive (respectively negative) roots with respect to the
Cartan subalgebra 3f. The supergroups corresponding to jaf+(j/_) will be
denoted by ^+ (^_). In order to gauge the left action of ̂ + and the right action of
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^_, we make the transformation

where α and β are superfϊelds belonging respectively to ̂  + and ̂  _ . Then one finds :

κί d*xd2η [((oΓ1!)^), (D.GG'1))

^~1)> + <G-1(α'1^ + ά)G,(i)_^-1)>]. (2.8)

One can introduce the gauge superfields

Moreover, we introduce the constant elements μej3/_ and vej^+ which have
non-zero elements along (fermionic) simple roots only:

r r

i = l * i = l

Then the complete gauge-invariant superspace action which leads to the
supersymmetric Toda models is

M+G,^_>], (2.10)
and the infinitesimal gauge transformations of the superfields are

-A+Ά, (2.11)

δA,Ωβ= ~Ωβ=>δΛ,Ω^- = -D-.Ω + A-Ω-UA- ,

where the superfield A belongs to the algebra j/+ and the superfield Ω belongs
to ,£/_.

2.3. Component Action

When turning to components, we shall use the superspace gauge freedom to
eliminate all components of the superfields which transform into a supergauge
parameter without space-time derivatives. Thus, from the transformation laws

,̂β̂  + l, = o = ̂ +Λ=o+...?^,βP-^+)l,=o = Φ-^+^=o + .. 5

we deduce that one can find a gauge such that

A + \η=0 = 0,(D_A+)\η=0 = 0. (2.12)

In the same way, one can choose

^.1^0 = 0, (D+A_)| l f =o = 0. (2.13)

We are then left with the physical gauge fields defined by

A++(x) = (D+A+)\η=θ9A--(x) = (D-A-)\n=Q9

and with the auxiliary fields
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Then we define the components of the superfield G(x, η) by

The auxiliary fields at the second level in η play no role in the sequel and will be
ignored. The gauge transformation laws of t/;_ and ψ+ are as follows:

These components of the superfield parameters have not been used in (2.12, 2.13),
and one can thus choose a gauge such that

(2.14)

We have now used all the parameters of the supergauge transformations beside the
ordinary gauge parameters λ(x) = Λ\η=0 and ω(x) = Ω\η=0. Finally, it is easy to see
that the auxiliary fields ξ+ and ξ_ enter into the action through

Remembering that ξ+ belongs to stf + and ξ- to ««/_, we see that these fields are
Lagrange multipliers for the constraints

V-L-=ft V + L + = v . (2.15)

As a result of (2.14, 2.15), ψ_ and φ+ reduce to

where χ + and χ _ belong to the Cartan subalgebra 3tf . Then the component form of
the action is

-[χ+, v]), ̂ __>-2 <g-M++g, ^L__>] (2.16)

with the following gauge transformation laws:

<5λ,ωg = Λg + gω, δλ > ωχ_ = -{ί, μ}, ^λ,ωχ+ = -{ώ, v},

5Atω^+ + = -ίδ++ί-[^+ + , >ί], ^Λ,ω^__ = -i5__ω + [^__, ω], (2.17)

where 2 (respectively ώ) is the restriction of λ (respectively ω) to anticommuting
generators corresponding to positive (respectively negative) simple roots. The
action (2.16) coincides with the one given in [6]. In particular, the constraints
derived from the A++ equations of motion are

W__gg- 1U_=i{μ,μ}-[χ_,μ]-g^__g- 1 . (2.18)

In the gauge A- _ =0, we recover the constraints of [6] including the fermions
χ_, in which the non-zero currents correspond to the anticommutators of two
simple roots.

Thus, the origin of the supersymmetry of their action is now clear: it is just an
ordinary supersymmetric action in a gauge which is not covariant with respect to
supersymmetry. The supersymmetry transformations of the fields are easily
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obtained from the transformations of the superfields. One finds

(2.19)

It takes some time to check that these transformations are an invariance of the
action (2.16), and also that the commutator of two such transformations with
parameters ε and ε' closes, up to field equations, on a translation and on a field
dependent gauge transformation

with

3. Super-Toda Theories and Super- W Algebras

Here we will use the gauge invariance properties of the action given in Eq. (2.10) to
recognize the N = 1 Super-Toda theories. Then the construction of the ^elements
associated to such theories will be achieved by generalizing in the supersymmetric
case the Drinfeld-Sokolov gauge used in [10].

3.1. Constraints and Super-Toda Action

Coming back to the gauged WZW action (2.10), one can write down the
corresponding equations of motion. Then, making use of the gauge invariance and
setting A+ -A. =0, one gets as Euler equations those of the super- WZW model

J) = 0, (3.1)

where J and J are the supercurrents

J = κ:D_GG-1, J=κ(5-1D + G (3.2)

together with the constraints

<£β,D_GG-1-μ> = 0,

<£_α, 0~1D + G + v> = 0 (3.3)

for any αe77+ =set of positive (bosonic and fermionic) roots. That is also, using
relations (2.9):

<Eαί, D_GG- 1> = μί, <£α, D_GG- 1> = 0, (3.4)

<E_αί, 0-*D + Gy= -vί? <E_α, 6-1D + G + v> = 0, (3.5)

with αf e A + and α e Π+\A + . Recalling that μf and vt are constant quantities, these
constraints are obviously the supersymmetric analogues of the ones of [1].
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In order to recognize in the Lagrangian, as well as in the equations of motion,
the N = l super-Toda theory, let us restrict ourselves to supergroup valued
superfields G admitting a local Gauss decomposition

G=ABC (3.6)

with

where E ± Λ is the bosonic or fermionic generator associated to the root ± α e Π + .
The Φ\x + +,x~~,η+,η~) — denoted for simplicity by Φ - are bosonic superfields,
while the Xa and YΛ are bosonic (respectively fermionic) local superfields following
the corresponding generator E±a is commuting (respectively anticommuting).

From the constraints (3.4) and (3.5) we deduce the equations

(3 8)

D_CC-' = Σ μβ-^pί Σ K Λ (3-9)
<ZieA+ \ΛjeA + J

which, together with the Polyakov-Wiegmann relation (2.7), lead to the action

(3.10)

where r is the rank of the supergroup .̂ The explicit form of the equations of
motion can be calculated from (3.10): one gets the r = rank(^) equations of the
N = 1 ̂ -super Toda theory

D.D + Φί + (μfvl)exp(ί:yΦθ = 0(i = l,...,r). (3.11)

Now it is a simple exercise to verify that the invariance group of the constraints
(3.4) (respectively (3.5)) is exactly generated by the elements ρ(x ~ ~,η~) e ̂ +
(respectively σ(x++,^+)e^_). These residual gauge transformations act on the
currents as

(3.12)

(3.13)

3.2. The Algebra OSp(l|2) and Super-Toda Theories

It is known [11] that the superalgebra OSp(l |2) must play in Super-Toda theories
a role analogous to the one played by Sl(2) in Toda theories [2]. This will be seen
explicitly in the following.

Let us concentrate on the supercurrent J = J(x~~,η~). The constraints (3.4)
impose J to be of the form

>T)£«, (3.14)
ΛieΔj,. αe/7 +

where we now call for convenience J_^ the quantity μ defined in (2.9)

(3.15)
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Then, defining

and

H=\{J^,J+t} = ̂ iκ»Hj, (3-17)
z z /= i

it is straightforward to verify that

(3.18)

Defining also

X±=i{J±,,J±i}, (3.19)

we can check that these last quantities are not zero since

V±,JτJ = -2lH,J±i]=τJ±t (3.20)

by using the Jacobi identity. Finally the C.R.

(3.21)

complete the proof that generators {J±±,X±,H} form a basis of an OSp(l|2)
algebra. We note that this superalgebra constructed from (3.15) and (3.16) as a
subalgebra of the si superalgebra, appears as the superprincipal embedding of
OSp(l |2) in si : we denote it OSp(l |2)ppal (as already mentioned in [1] for the case of
algebras, the values of the μf parameters can be chosen equal to unity by rescaling
the step operators £±βi).

Let us emphasize that, following (3.18) and (3.21), J±± and X± are eigenstates of
H with the respective eigenvalues h=±\ and h= ±1. Remembering the C.R. (2.2)
any E±Λi with (xieA+ satisfies

[ff,E± J= ±^Σ K%,£±αi= ±\E±Λt. (3.22)

From the decomposition of any root from simple roots and the Jacobi identity, we
deduce that H provides a grading of the si superalgebra

[H, JBJ = hEh with he±Z. (3.23)

Each fermionic root belongs to an /f-eigenspace jtf(h) with h half-integer, while
r

each bosonic root corresponds to an integer value of h. Denoting by φ = £ 0z αt the
i= l

highest root of j/, the highest value of h in si will be

/W = y>, (3-24)

and we have
h2) if ι/ίι+

= 0 if \hl+h2\>hmn. (3.25)
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33. Determination of the Super-W Generators

We are now in position to generalize to superalgebras the Drinfeld-Sokolov
techniques for the characterization of ^generators. The power of this approach
for Lie algebras has been made explicit in [1].

Let us rewrite (3.14) as

J=hΣ*Jh, (3-26)
*=-i

J0 being associated with the Cartan part and Jh(h>0) to the roots of
) = {a<=Π+/EΛe^(h)}. Now, consider a ^-element of the form:

(3.27)
\aeflW /

One easily notes that

(Ad*(gΛo)(J)-J)e φ ^<"> (3.28)
*έ*o-i

and the restriction of this quantity to j/^0"*' is a linear function of the parameters

(Ad*(gΛo)(J)-J)L,ho-i)= Σ Ω'lX, •/-*]• (3-29)

Then it is natural to look for an element gho annihilating the largest number of
terms in Λ0-i- Repeating the process for the different values of Λ0=i? we wiU be
left with elements belonging to the si subspaces

(330)

with

As it will be explicitly shown in the next section, if

nho = dim Λ^(Λo) = dim J/(ΛO) - dim J _ ±(d(h*+*>), (3.31)

one has

thus a suitable group element

will allow to gauge transform J into

2 i=l

with P(hde^(hί\ ^hi^hmax. Due to the complete reducibility of the si
superalgebra into OSp(l|2)ppal supermultiplets (see Sect. 4), the r elements P(hί) we
have to select in the Jf(Λί) can be chosen such that

= OΛ^ί;i=l,-,r. (3.35)
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Following [1] we will call such particular Drinfeld-Sokolov gauge the highest
weight gauge.

The Whi quantities are differential polynomials in the components of the
currents J(x~ ~,η~). Their construction ensures that they form a complete set of
gauge invariant polynomials, so that they will close under the Poisson Brackets
(PB) of the theory and constitute a super- Walgebra. To determine the spin content
of this algebra (Sect. 5), we have first to reduce the adjoint representation of each
fermionic superalgebra with respect to its OSp(l |2)ppal (Sect. 4).

4. OSp(l|2)ppa, Multiplets in Fermionic Simple Superalgebras

In this section we study the decomposition of a fermionic simple superalgebra s/
into irreducible representations of its OSp(l|2)ppal subalgebra. Before presenting
the results, let us recall some general properties of OSp(l|2) superalgebra.

4.1. Some Properties of the OSp(l|2) Superalgebra

The following features about OSp(l|2) will be useful for the rest of the section.

Proposition 1 [12]. All finite dimensional representations 0/OSp(l|2) are completely
reducible.

This ensures that the adjoint representation of a superalgebra si reduces to a
direct sum of irreducible representations of its OSp(l|2)ppal.

Proposition 2 [12, 13]. Any irreducible representation 0/OSp(l|2) is characterized
by a quantum number q = 0, ̂ , 1, f , and decomposes under its bosonic part Sl(2, R)
into two multiplets (<?,#— i) for <?ΦO - the case q = 0 reducing to the trivial (one
dimensional) representation.

We note that the dimension of irreducible OSp(l|2) representation R(q) is

Proposition 3 [12,13]. The product of two irreducible OSp(l|2) representations
decomposes as follows:

R(qι)xR(q2) = Ύ R(q), (4.1)
«=kl~«2|

q taking integer and half-integer values.

As an aside comment, we remark that these properties confirm OSp(l|2) as
the supersymmetric analogue of SI (2).

We recall that OSp(l|2)ppal in jtf is generated from the fermionic root:

(4.2)

(we repeat that the μf coefficients in previous sections are irrelevant since they can
be absorbed by rescaling of the £α/s). Then the negative bosonic root appears as
the sum of negative roots which are simple for the bosonic part of j/,

X- = {F-t,F-J =ΣE-βi (4.3)
i= 1
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with r = r for si = OSp(2n ± 1 |2n), OSp(2n|2n) and OSρ(2n + 2|2n), and f=r -1 for

4.2. Reduction of a Superalgebra into OSp(l|2)ppal Multiplets

Let us consider separately each family of superalgebras admitting a fermionic
S.R.S.

4.2.1. Sl(n + l|n) case (n^l). This is the simplest case. Indeed the Sl(n + l|n)
fundamental representation (n + l)0n reduces with respect to OSp(l |2)ppal into the

representation R\ -) = (Dn_, Dn-Λ. The adjoint representation of Sl(n + l|n) can
\2J \ 2 2 J

be constructed from the direct product of the fundamental by its contragredient
one (with respect to Sl(n + l)φSl(n)), then subtracting in the obtained result the
trivial representation. Using the Prop. 3 above, one has

( n\ ίn\ «=n

9 x* U = Σ *(<?), (4.4)2/ \2/ «=o

where the sum goes over integer and half-integer g's. Therefore

Sl(/ι +1 W/OSp(l |2)ppal = R(n)®R(n -±)®R(n - 1)Θ... Θ*(i). (4.5)

Let us add that the Dynkin diagram of Sl(n + l|n) relative to the S.R.S. is [9]

® — ® — ®
εl-δl δl-ε2 £2-δ2 δn-ι-εn £n~

δn δ

n-
£

n+ι

The OSp(l|2)ppal is built from

F+± = Eεί_δl + Eδi_ε2 + +Eδn_εn+ί, (4.6)

while the bosonic root is

X+ = {£+i,£+4} = £ει_ε2 + ... + ££n_εn+1 + £,1_a2 + . •+£,„_,_,„. (4.7)

Moreover,
n, (4.8)

that is the highest q value in the above R(q) decomposition.

4.2.2. OSp(2n — 1 |2n) case (n ̂  1). The superalgebra OSp(2n — 1 |2n) contains as its
bosonic part the algebra O(2n — l)0Sp(2n), and its fundamental representation
reduces with respect to its bosonic part to (2n — 1,1)0(1, In). The (2n — 1)
fundamental of O(2n — 1) is irreducible with respect to the OSp(l|2)ppal bosonic
part, i.e. Sl(l, l)ppal part, that is (2n — 1) = Dπ_ ± , as well as the (2n) representation of

n.i.
The adjoint of O(2n — 1) can be obtained by taking the antisymmetric part in the

product (2n — 1) x (2n — 1). In terms of Sl(2) representations, one can use the table of
O(2n-l) exponents [10] to get:

(4.9)
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In the same way, the adjoint of Sp(2n) can be constructed from the symmetric
product of (2rc) x (2n), and again the list of Sp(2w) exponents provides the result:

A,-iXA,-ils = J>2,,-ιθI>2,,-3θ ΘJ>ι. (4.10)

Fermionic generators in the adjoint of OSp(2w — 1 \2n) will be contained in the
product (2n-l)®(2«), that is

(4.11)

Using Proposition 1 and Proposition 2, one can gather the Sl(2) representations
of (4.9), (4.10) and (4.11) into OSp(l|2) ones in an unique way to obtain

OSp(2n - 1 |2n)/OSp(l |2)ppal = R(2n - l)®R(2n - f )®R(2n -3)®...

...®R(2(n-p)-l)®R(2(n-p)-ϊ)®R(2(n-(p + l))-l)®...

(4.12)

The Dynkin diagram associated to the fermionic S.R.S. is

where there are 2(n — 1) grey dots (®) and the black dot (•) corresponds to an
OSp(l|2) fermionic root.

One notes that
2n-l (4.13)

indeed corresponds to the highest g-value in the above R(q) decomposition.

4.2.3. OSp(2n + 1 \2n) case (n ̂  1). We can follow the same method as the one used
just above, replacing (2n — 1) by (2n + l). The result is

OSp(2n + 1 |2n)/OSp(l |2)ppal = R(2n -^)®R(2n - l)®R(2n -f )Θ - -

...01ί(2(n-p)-i)Θlϊ(2(π-p)-l)Θlί(2(n-(p + l))-ί)Θ-

-ΘΛ(f)Θ*(l). (4.14)

The OSp(2w + l|2w) fermionic Dynkin diagram is

where there are (2n — 1) grey dots. The value

hmax=&(2n-l) + l) = 2π-i (4.15)

does correspond to the highest R(q) representation.

4.2.4. OSp(2n|2n) (n>l) case. We recall the isomorphism OSp(2|2)^Sl(2|l). The
reduction of the adjoint of O(2n) and of Sp(2n) with respect to Sl(2)ppal is given by
the table of exponents [10] for these algebras

l9 (4.16)

(4.17)
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The (2ri) fundamental representation of Sp(2n) is irreducible under Sl(2)ppal: an
indirect proof stands in the property of the Sp(2n) adjoint representation to
contain D2n- 1 (see the exponent table [10] for example). Such a representation can
only come from the product Dn_±xDn_±.

However, the (2n) of O(2n) cannot be irreducible with respect to Sl(2)ppal: in such
a case the OSp(2n|2n) fermionic generators coming from (2n) x (2n) = Dn_± x Dπ_i
would belong to Dj representations with j integer, and it would be impossible to
reduce the OSp(2n|2n) superalgebra into OSp(l|2) representations. But one needs
the O(2n) fundamental representation to contain Dπ-ι in order to get D± by the
product £)„_! xDn_i->Di: this D{ is necessary to reconstruct OSp(l|22) corre-
sponding to (D19D±} in OSp(2n|2n). Therefore for O(2n) we have the Sl(2)
decomposition

ppal

It follows that the fermions in OSp(2n|2n) will belong to

(4.18)

(4.19)

and we finally get

OSp(2n|2n)/OSp(l |2)ppal = R(2n -1)0 R(2n -f) Θ R(2n - 3) Θ •

(4.20)

The OSp(2n|2n) fermionic Dynkin diagram is

2 2 2 2

with 2n grey dots and

fcmax =i[2(2n - 2) + 2] = 2n - 1

indeed corresponding to the highest R(q) representation.

(4.21)

4.2.5. OSp(2n + 2|2n) case (n^ 1). The reasoning is the same as for the OSp(2n|2n)
case, and the result is

OSp(2n + 2|2n)/OSp(l |2)ppal = R(2n - i) 0 R(2n -1)0 R(2n -

We find again that

in accordance with the value of q in the above decomposition.
The OSp(2n + 2|2n) fermionic Dynkin diagram is

(4.22)

(4.23)

with 2n +1 grey dots.
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4.2.6. D(2,1 α) case (αΦθ, — 1). We get the same decomposition as for OSp(4|2),
that is

D(2, 1 α)/OSp(l |2)ppal = 2R(ί) φ R(|). (4.24)

The Dynking diagram is now

l + α

with

>W=! (4-25)

as expected.
It would be of some interest to study the consequence of the α parameter on the

corresponding super- W algebra.

5. The Spin Content of Super- W Algebras

We start by constructing the stress energy tensor of a super-Toda theory. Then, it is
straightforward to deduce the conformal spin of a W generator from the results of
Sect. 4. It appears that the orthosympletic algebras are well-adapted to produce a
generalization of the ΛΓ=1 super- Virasoro algebra, while the N = 2 super-
conformal algebra always shows up in the Sl(n + l|«) theories. In this last case,
we introduce the Sl(2|l)ppal superalgebra, containing OSp(l|2)ppal, and better
adapted to describe the group theoretical situation.

5.1. Stress Energy Tensor for Super-WZW and Toda Theories

In order to determine the superconformal spin of the P^-generators, we have to
construct the stress energy tensor of the theory. Let us first define1:

JΛ(X) = < J(X\ TΛ > with X = ( x ; η ) , (5.1)

TΛ being any generator of the Lie superalgebra jtf under consideration. We also
note

ηab =

the scalar product already defined in (2.2, 2.3) with

f V = £ (5-3)

and the grading [α]=0 (respectively [α] = l) if T" is a commuting (respectively
anticommuting) generator. Then

= JaT"=(-i)MjaTa , where Jb = J"ηab (5.4)

1 From now on, we drop the Lorentz indices and write (x, η) instead of (x , η )
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and, for example
(J(X\J(X)y = Jaη°*Jb. (5.5)

Do not forget at this point that J(X) is a fermionic superfίeld, which implies
Ja(X) to have the grading ([α] + 1).

Then we can set

{ Ja(X\ J*(y)}p.B. = /( - l)[α](1 + m (ffδ(X - Y)JC(Y) + κηabDxδ(X - Y)) , (5.6)

the fc

ab being the structure constants and K the parameter of the central extension
of the Kac-Moody superalgebra si. We point out that in the Γα's basis, the
constants fabc = fd

abηdc are completely graded-antisymmetric, i.e.
j-abc _ _ / \[α] \b\rbac _ _ / _ \[&] [c]sacb /^ y\

The super Dirac distribution is defined as

δ(X-Y) = δ(x-y).(η-θ) if X = (x,η) and Y=(y,β) (5.8)

which implies in particular
δ(X-Y)=-δ(Y-X)znd

(Ja(X\ J&(7)}P.B. = - ( -

After these preliminary measures, we can construct the super stress energy
tensor. As in the non-supersymmetric case, it will be obtained by adding to the
WZW part a correction term such that the current components constrained to be
constant, have a vanishing superconformal spin.

The WZW stress energy tensor reads

= - JL <j(χ); J(X)J(X)y - JL <JW, DJW> (5.10);

with

-δ(X-Y)dyJ
a(Y)-±Dxδ(X-Y)DJa(Y)), (5.11)

and finally we get

Lτoda(*) = LWZW(X) - fD2<H, J(X)> , (5.12)

remembering D2 = id and H given by (3.18).
Owing to the CR

{H(X),Eh(Y)}P.B=ihδ(X-Y)Eh(Y), (5.13)

where he^Z\{0} (cf. (3.17)), we get:

{LToda(X), £„( Y)}p.B. = ί((i+ ΛJS^X - Y)Eh(Y)

-δ(X- Y)dyEh(Y)-±Dxδ(X- Y)Eh(Y))). (5.14)

One may remark that the Cartan components of the current are not primary
fields in a Toda theory, while the other generators are. Since there is no Cartan
generator showing up in J9 given by (3.34), one concludes that the Wh. are primary
super fields with superconformal spin (/^ + 2), that is Whi contains one component
with conformal spin (Λi+i), and one component with spin (
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5.2. Orthosymplectίc Superalgebras and the N = ί Case:

We recall that to each R(q) representation of OSp(l |2) appearing in the above
decomposition is associated a W generator with superconformal spin (q+^\ the
two component fields being therefore of spin (q+^\ (# + !)•

Let us first consider the spin content of the orthosymplectic algebras. We have:

Z)(2,l;α)αΦθ, -l:2(f,2) + (2,f). (5.15)

One remarks that the conformal spin content of OSp(2n + l|2n) is obtained by
adding the spin multiplet (2n,2n+%) to the spin content of OSp(2n — l|2n).
Similarly one goes from OSp(2n + 1 \2n) to OSp(2(n + 1) - 1 \2(n + 1)) by adjunction
of the conformal spin multiplet (2n+|,2n + 2). These features of course reflect the
embeddings OSp(2n-l|2n)cOSp(2n + l|2n)cOSp(2n + l|2n + 2). In the same
way, one has to add the spin multiplet (n,n+i) to the OSp(2n — l|2n) spin
multiplets to get the set of OSp(2n\2ri) spin multiplets, and the multiplet
(n + i n + 1) to those of OSρ(2n + 1 |2n) to obtain the OSp(2n + 2|2n) spin decompo-
sition. In these cases, the associated embeddings are OSp(2n — l|2n)CθSp(2n|2n)
and OSρ(2w + 1 \2n) C OSp(2n + 2|2«). As is well known the OSp(l |2) algebra has the
correct spin content to build the JV = 1 Super Virasoro algebra [5, 14]. Thus, all
these orthosymplectic algebras which are permitted for Super-Toda theories
furnish simple generalizations of the N = 1 Super Virasoro algebra that is N = 1
Super- Walgebras. We note in particular that there is, in any such a series, neither
spin 1 nor spin \ element.

5.3. Sl(n + l|rc) Super algebras and the N = 2 Case

5.3.1. Introducing the Sl(2| l)ppal Superalgebra. For the Sl(n + 1 |n) superalgebras, we
have the following spin decomposition:

(5.16)

and one remarks that two spin multiplets, namely (n + 1 , n + f ) + (n + f , n + 2) have
to be joined to the spin content of Sl(n + l|n) to obtain the Sl(n + 2|n + l) one.
Indeed, considering the embedding Sl(n + l|n)cSl(n + 2|n + 1), one has to add the
two OSp(l|2) representations R(n+j) + R(n + l) to the adjoint representation of
Sl(n + 1 |n) to get that of Sl(n + 2\n + 1). Actually, these two OSp(l |2) representations
constitute an irreducible one under a special Sl(2|l) subalgebra of Sl(π + 2|w + l)
which we will call Sl(2|l)ppal. Let us define more precisely this algebra.

Starting from the fermionic Dynkin diagram of Sl(n + 1 |n) - see Sect. 4.2.1 - we
set

F+*= Σ E*t-*i + ί> F+β= Σ JE.,-*, (5.17)
i = l i = l

F-.= Σ Σ K^E_ej+l+dj, F_β= Σ Σ K«2J-»E^εj (5.18)
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with K'V=(K"% and:

/ O 1
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K =

1 0 -1
-1 0 1

1 0

\

0 1

• o/

(5.19)

It is now a simple exercise to verify that the algebra generated from F±Λ9 F±β

constitutes an Sl(2|l) algebra. Indeed

{F±a9F±Λ} = {F±β9F±β} = Q, (5.20)

{F±a,F±β} = E±9 (5.21)

{F+Λ,F_a} = H++H_, (5.22)

with H± = »H2J_ ,) ,

= +F±β,

(5.23)

(5.24)

(5.25)

(5.26)

and

(5.27)

We call the subalgebra just defined Sl(2|l)ppal in Sl(n + l|n). One immediately
notes that: Sl(2|l)ppal contains OSp(l|2)ppal as a maximal subalgebra, with
fermionic generators

±β (5.28)

and bosonic generators E±9 H+.
More generally with respect to its Sl(2|l)ppal, the adjoint representation of

Sl(n + l|n) reduces to

Sl(n + l|n)/Sl(2|l)ppal = Λ(n)Θ%-l)Θ...Θ^(l), (5.29)

where we denote by R(m) - with m integer - the Sm-dimensional typical
representation of Sl(2|l), the decomposition of which with respect to OSp(2|l)
being:

R(m) = R(m) 0 R(m - i). (5.30)
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The superalgebra Sl(2|l) corresponds to the N = 2 Super- Virasoro case - or
N = 2 Ademollo et al. algebra - with spin (1, f, f, 2).

As discussed in [15] the superalgebra Sl(3|2) does correspond to the super- W3

algebra with spins (l,f,f, 2, 2,f, 3) and it is reasonable from the study of their spin
content, to consider, following [16], the superalgebras Sl(n+ l|n) as corresponding
to a direct generalization of the N = 2 superconformal algebra. The just above
defined Sl(2|l)ppal algebra with its particular position in Sl(n + l|n) appears, the
N = 2 case, as the analogous of OSp(l|2)ppal for the N = l case.

In this context, one can wonder whether the second Cartan generator #_ in
Sl(2| 1 ) could be associated to some grading, in the same way the generator H + , also
in OSp(l|2)ppal, defines the grading (see (3.23)) related to the conformal spin.
Actually, by a direct calculation, one can prove that:

ί|-βi + 1),ίe{l,2,...,n}, (5.31)

εi.δi), (5.32)

while for any bosonic root Ea in Sl(n + \\ri):

[tf_,EJ=0. (5.33)

It follows that for any fermionic generator Ey in Sl(n + l|l),

[_H.,Ey-\=a(y}Ey with a(γ)e{-^}. (5.34)

To some extent, the H _ generator is related to the (7(1) Kac-Moody generator -
or spin 1 generator - appearing in the N = 2 Super-Virasoro algebra.

Let us mention that our results for the spin content of Walgebras associated to
super-Toda theories, agree with the tableaux given in [4] and guessed from spin
values of low dimensional super- W algebras.

Finally, let us remark that the existence of only one spin one in the Sl(n + l|n)
decomposition - and no spin one in the orthosymplectic cases - forbids the
possibility to obtain super-Virasoro algebras with N > 2 in this approach. For the
super-Toda model based on Sl(n +1 |rc), the N = 1 superconformal tensor given in
(5.14) is improved with the superspin 1 operator W1 that contains the second
supersymmetry generator together with the (7(1) Kac-Moody generator. The
construction of the W1 operator goes as follows:

5.3.2. The Super-W^ Generator. Since the W1 operator is the lowest spin
generator, it is easy to obtain it from the general method of Sect. 3.3.

We first execute on J a gauge transformation (3.12) based on negative simple
roots

(5.35)

so that the coefficients of all the Cartan generators in Ad*(g_i) (J) are set to zero.
Then, a second gauge transformation

Σ + ι Ω
α £_Λ (5.36)

is used to cancel all the coefficients of the (negative) simple roots generators, except
the one associated to a lowest weight of OSp(l|2)ppal, and which is exactly W^. In
order to give a compact form for Wl9 we first define a linear transformation τ which
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acts on a general element of Sl(n + l|n),
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+ <Pn-n-l

<Pn

Φl+Ψl

(5.37)

as

τ(Af) =

/Φi
φ2-φί

-X

~<Pn
. (5.38)

This transformation is not an automorphism of the superalgebra, but has the
following properties2:

τ2 = Id, (5.39)

Str(τ(M)τ(JV)) = - Str(MN), (5.40)

[τ(M), τ(N)} - τ([τ(M), N}) - τ([M, τ(N)}) + [M, N} = 0. (5.41)

τ makes explicit the role played by Sl(2|l)ppal in the N = 2 case: actually, the
smallest Lie algebra containing τ(OSp(l|2)ppal) is just Sl(2|l)ppal, the action of τ on
the generator of this superalgebra being given by (the notations are the same as in
Sect. 5.3.1)

τ(H+) = H., τ(H_) = H+. (5.43)

In fact, the transformation iτ is a complex structure [17] on the compact
supergroup generated by Sl(n + l|n), and it is not surprising that it appears in the
expression of Wl9

ί =i Str(Jτ(J)) -\ Str(# _DJ). (5.44)

6. Examples

Let us apply the general properties discussed above on the two simplest and basic
examples.

We recall that for the Sl(« + l|n) series, the super-trace operator is proportional to <, >
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OSp(l 12) is generated by two fermions F± and a bosonic Sl(2) (H,E+,E_). Its
commutation relation reads3

(6.1)

Using the 3-dimensional representation

'i 0

f f= o -i o
\0 0 0

/O 1 0\ /O 0 0

, £+= 0 0 0 , £_= 1 0 0

\0 0 O/ \0 0 0

/O 0 i\ / 0 0 0

F+= 0 0 0 , F_= I 0 0

\0 i O/ \-i 0 0

One gets for the constraints current J,

/Φ 0 μ

j= y -Φ -i

\U u 0

(6.2)

(6.3)

(6.4)

Φ, y being fermionic and U a bosonic superfϊeld and a constraint <J,F_>
= 2μ = Csl. An element of the residual gauge group then takes the form

/ 1 0 0\

G=exp(Λ£_+2ΩF_)= I A 1 Ω (6.5)

\-Ω 0 I/

A (respectively Ω) being bosonic (respectively fermionic) G acts on J as:

,Ω)(J) = OJG-1+(DG)G~ί

Φ + μΩ 0 μ \

I + μΩA) + DA + ΩDΩ -(Φ + μΩ) U + ΩΦ-μA-DΩ\ .

U + ΩΦ-μA-DΩ μ 0 /
(6.6)

With the special values:

(6.7)

Be careful of the change of normalisation J± —±2F±, X± = ±E±
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we get the invariant supercurrent
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(6.8)

with ~

Note that the invariance of J9 under the residual gauge transformations can be
explicitly checked thanks to

J M(A29 Ω2) = M(A1+A2- Ω^Ω29 Ωί + Ω2) , (6.9)

(6.10)

Finally, W3f2 can be identified with the super- Virasoro generator via the
formula:

W3/2 = . Str JDJ-HD2J (6.12)

with the supertrace operator (Str) proportional to the scalar product < , >.

6.2. Cαseo/Sl(2|l)

The fundamental representation ofSl(2|l) is 3-dimensional:

1/2 0 0\

0 -1/2 0

0 0 O/

0 1 0\

E+= 0 0 0 ,

0 0 O/

/O 0 0\

F+ + = 0 0 0 ,

\0 1 O/

/O 0 0\

f- + = 0 0 0,

\1 0 O/

The constraints <J,F__> = -μ1( <J,F_ + > = μ2, and <J,£_>=0 lead to

0 ^ , . . .
„ \ Φt,Φ2,Y fermiomc /, ^«

J= 7 Φ, {7, I with " 2' . . (6.17
,̂ (72 bosomc

(6.13)

(6.14)

(6.15)

(6.16)
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The residual gauge elements

act on J as
O

0 0\

1 Σ

0 I

(6.18)

0

Φ2-μ,Σ

μ2

(6Λ9)

0 0 0 ^

+ \DA-$((DΣ)Ω + ΣDΩ) 0 DΣ\

0 0,

with ^ (respectively Ω, Σ) bosonic (respectively fermionic).

Again, for the special transformation A0 = - - (μ2U \ —μ1U2-^ DΦ^ —DΦ2\2μίμ2

Ω0= — Φi amd Σ0= — Φ2 we obtain the invariant current

/ o o M2

1
0 -W,\

Mi 0

(6.20)

with

(6.21)

that is also

- 1 / 1 1 \
= Str ί - JJJ+ - JDJ-HιD2J\

(6.22)
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where τ is defined as (see Sect. 5.3.2):

i 0 μ2 \ IΦ,
r Φ2 l/2 = 7 -Φ2 -1/2 J . (6.23)

! μ, Φ1 + Φ2/ \U, μι

7. Conclusion

Using an TV = 1 superfield formalism we have shown that Super-Toda theories are
constrained super-WZW models associated with superalgebras admitting a
completely fermionic simple root system. Carrying a constrained super-WZW
model leads to reduce the corresponding superalgebra with respect to its OSp(l 12)
principal embedding. To each OSp(l 12)ppal representation showing up in this
decomposition is attached a super- W generator belonging to the symmetry
algebra of this super Toda theory, or super- W algebra. The Sl(n + l |n) series
provides a family ofN = 2 super- W algebras, whereas the other series lead to N = 1
super- W algebras. We remark that if the classification is governed by the
OSp(l 12)ppal algebra in the orthosymplectic series, it better stands on a bigger
subalgebra, that we have denoted Sl(21 l)ppal and which contains OSp(l 12)ppal, in
the Sl(n +11 ri) case. As examples, we explicitly construct the N = 1 super-Virasoro
algebra from the OSp(l 12) theory and the N = 2 Ademollo et al. algebra from the
Sl(211) theory.

Among the developments we can think of, let us first mention the N = 2
supersymmetric case, in which the algebra Sl(2| l)ppal has a role to play. New
types of super- W algebras will also be provided by constructing non-Abelian
[18] - or generalized [19] - super-Toda theories, then limiting the constraints to
a subset of the original ones. Technically, the different OSp(l 12) embeddings in
the superalgebra of the theory will have to be studied, each of them giving rise to
a different super-W algebra: these OSp(l |2) embeddings replace the Sl(2) ones
for a non-Abelian non-supersymmetric Toda theory [18, 19].

Finally, from a simple group theoretical point of view, our study deeply shows
that the OSp(l 12)ppal embedding in a simple superalgebra plays a role analogous
to the one of the SI (2)ppal in an algebra. Our results suggest that a general relation
exists between the OSp(l 12)ppal subalgebra and the Casimir degrees of a
superalgebra. Such a property would generalize the result of [20] for algebras.
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