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Abstract. We consider the motion of n balls in billiard tables of a special form
and we prove that the resulting dynamical systems are ergodic on a constant
energy surface; in fact, they enjoy the ΛΓ-property. These are the first systems
of interacting particles proven to be ergodic for an arbitrary number of parti-
cles.
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0. Introduction

Consider the motion of n identical balls of radius R in a cube (or, more gener-
ally, in an appropriate domain) Q a TR.d (d ̂  2) that interact elastically among
themselves and with the (piece-wise smooth) boundary dQ. The Boltz-
mann hypothesis claims that the restriction of this dynamical system on a
manifold of constant energy is ergodic. In fact this hypothesis stimulated the
initial development of the notions of ergodic theory itself in the works of
L. Boltzmann [B] and J.W. Gibbs [Gi]. The outstanding contribution in the
approach to this problem was made by Ya. G. Sinai in his papers, [SI, S2]
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where some powerful methods were developed that are used now, not only for
this, but for many problems of the theory of dynamical systems. The method
proposed recently in [SC] is also very important in proving ergodicity for
hyperbolic dynamical systems with singularities. Such methods allowed one to
prove ergodicity of the system of three and four balls on a torus (i.e. on a cube
with identified opposite faces) [KSS1, KSS2]. Unfortunately, new and serious
technical problems, which require the development of some specific methods,
appear at each step from n to n + 1 balls. So, the problem of ergodicity for
a system of an arbitrary number of elastically interacting balls is still open. The
only result, to date, for a system of hard balls are about Lyapunov exponents
and the existence of ergodic components of positive measure [SC]. Such re-
sults, while falling short of the original goal, are important, not only for the
specific problem at hand, but also in the more general context of the ergodic
problem for systems of an arbitrary number of interacting particles.

In fact, only one other model is known so far in which it is possible to ob-
tain comparable results. That is, for a system of one dimensional particles
falling under gravity and colliding among themselves and with a floor, it is
known that the Lyapunov exponents are positive almost everywhere in the
phase space [W2, W3] (provided the masses of the particles are not all equal
and the lighter particles are above the heavier ones), moreover the ergodicity
of the system is proven when only two particles are present [C]. For a review
of the systems of many particles for which one can prove that the Lyapunov
exponents are non-zero almost everywhere see [W5].

In this paper we solve the above-mentioned problem of ergodicity for a
system of n billiard balls, when the balls (we also call them particles) move in
boxes of special type. We will see that some of these boxes are generated by
a periodic Lorentz gas with a kind of a bounded free path (finite horizon)
condition, see [BS, Bui]. This allows us to introduce a class of models of statis-
tical mechanics that, to our knowledge, was never considered before. These
models are intermediate ones between the gas of hard balls and the Lorentz
gas model.

We discuss in detail only the two dimensional case (where balls are actually
discs moving in a plain domain). It turns out that the higher dimensional
cases can be treated in a similar way (in fact, they are much easier); in due
time we will outline the changes necessary in higher dimensions.

The paper is organized as follows:
Section 1 discusses the techniques available to tackle the problem of ergo-

dicity for a general system of n balls. We recall some of the literature and we
describe in more detail the structure of the argument developed in the follow-
ing sections. We also present an explicit model to which the rest of the discus-
sion will mainly refer. In Sect. 2 we derive some explicit results on the evolu-
tion of the tangent vectors under the flow. These are well known facts [S3,
W4, W5] but we present them here to help the reader. Section 3 deals with
the Lyapunov exponents. We produce explicit conditions, for the systems of
m < n balls, under which the Lyapunov exponents of the «-balls system are
non-zero almost everywhere. In Sect. 4 we show that our system decomposes
in, at most, countably many mod 0 open ergodic components. Section 5 is
devoted to the proof that the system has only one ergodic component. In
Sect. 6 we discuss other models, in particular a periodic Lorentz gas, to which
our strategy can be applied. Finally, there are two technical appendices.



Ergodic Systems of n Balls 359

Appendix I deals with the transversality of some manifolds. Appendix II re-
minds the reader of the construction of the Poincare section and of how to
translate our results for the Poincare map to results for the billiard flow.

1. General Facts and a Model

As already mentioned in the introduction, the contributions of many different
people have crystallized, through the years, into a standard strategy to deal
with the problem of ergodicity for systems of elastically interacting balls. The
argument developed follows, ideally, the path outlined by Hopf [H], but ad-
dresses in particular two difficulties typical of these systems. The first is the
lack of uniform hyperbolicity (e.g. for trajectories through which the balls
never collide among themselves). The second is a violation of smoothness of
the dynamics. Even if we consider the flow generated by the dynamics at times
when no collisions occur there are discontinuities, in the derivatives, at points
that experience, in the time interval under consideration, a tangent or a multi-
ple collision. More precisely, a trajectory may experience a tangence of a ball
to the boundary of the billiard table or grazing of several balls. Besides, multi-
ple collisions may occur, when two or more balls collide with each other or
with the boundary at the same time. We call such events "singularities" or
qualify them as "non-smoothness" in the behavior of a given trajectory.

The initial step, in the above-mentioned strategy, is to show that none of
the Lyapunov exponents is zero [Kr, SI]. A typical technique, in this context,
is to find a cone field, in the tangent bundle, which is eventually strictly in-
variant for the dynamics [Wl].

Let φt be the billiard flow (for n balls in two dimensions) on the phase
space M CL R2 w x R2". We call Jί a submanifold of M with constant (ki-
netic) energy E = \ </?,/?>; owing to the law of the conservation of energy,
φ*Jί = M. For that reason we also call sometimes Jί the phase space of
the system under consideration. Given x e Jί, we introduce in the tangent
space yxJί the basis induced by the coordinates q and /?, so that a tangent
vector will have coordinates ξ = (δq, δp). The free flow direction is given by
(p,0); clearly this tangent vector is preserved by the dynamics. More impor-
tantly, the dynamics preserves the property of being perpendicular to the
flow direction (see Lemma 2.3). Since to the flow direction corresponds a zero
Lyapunov exponent, it is natural to define our cone at x in the subspace of yxM
perpendicular to the flow. An invariant cone field is then a collection of
cones C(x)<=/xJt = {(δq,δp}e^xJί\(p,δpy = 0', ((δq,δp)9 ιj>,0)> = 0}
such that dφ* C(x) g C(φtx) W ^ 0. Notice that an element of ZΓκJt can be
interpreted as an equivalence classs of curves (also called variations) γ:
[- ε,ε] -+ Jt, y(0) = x. Any such curve can be pictured as a collection of n
curves in the two dimensional space describing variation of positions for n
particles in the system, each curve endowed with its own family of velocity
vectors; see Fig. 1.

For the systems under consideration here, the first results on the Lyapu-
nov exponents where found in the classical Sinai papers [SI, S3], where he
used the language of continuous fractions. Yet, we obtain Sinai's results by
using an invariant cone family introduced by Wojtkowski in [W4, W5].
Accordingly, we define C(x) = {(δq, δp e SΓκJί \ <<5#, δp> ^ 0} (and C_(jc)
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Particle i
\ _ '

Particle j

Fig. 1. Representation of variations

= {(δq,δp)e^xJί | (δq,δpy ^ 0} for the backward dynamics); for a single ball
on a table it is quite easy to see that the preceding cone corresponds to a family
of diverging trajectories (note that the vector spaces (δq, Bδq\ where B^Q,
belongs to C(x)).

Between two collisions a tangent vector ξ = (δq, δp) evolves according to
the following equations :

dφtξ = (δq + tδp,δp) (1.1)

(we assume that all the particles have mass 1). It is therefore clear that, if a
family of trajectories is divergent «(3#, δp) ^ 0), the free dynamics preserves
such a property. A more complex computation shows that the same is true when
a collision, between two particles or with the boundary, occurs (see Sect. 2) .

What we need in order to have the desired cone property is the "strict"
invariance. This means that any family of trajectories on the boundary of the
cone «<S#, δp} = 0) will be, after some time, strictly divergent, i.e. strictly
contained in the cone «<S#, δp} > 0). In fact a theorem from [Wl], applied
to our situation, states that, if we have an invariant measurable cone family
such that almost every cone has an image strictly contained in the cone at
the image point, then the Lyapunov exponents are different from zero almost
everywhere.

As noted already in [KSS4], the above-mentioned property is determined
by a finite piece of trajectory; in the future we use the symbol (x, [τ1,τ2]),
where xεJl and τ l 9 τ 2 e R , τ 1 < τ 2 , to designate the piece of trajectory

Definition 1.1. A piece of trajectory (x, [τ1?τ2]) is called sufficient for the vector
(δq,δp)*0, where (δq, δp) e dC(φτ^(x)) «<$#, <5/?> - 0), iff dφτ2~τι(δq, δp) e

Moreover, (x, [τ l 5τ2]) is called sufficient iff it is sufficient for each non-zero
vector indC(φτι(x)).

Finally, a point x is called sufficient forward (backward) iff there exists
τ e R+ (τ e R~) such that (x, [0, τ]) ((x, [τ, 0])) is sufficient.

To clarify the relations between forward and backward sufficiency, that is
sufficiency for φl versus sufficiency for φ~l , see Lemma 4.1.

Consequently, to obtain all the Lyapunov exponents different from zero, it
is enough to show that almost all the points are sufficient. Nevertheless, in
order to prove ergodicity, it is necessary to have a more detailed knowledge of
the set of non-sufficient points.
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Fig. 2. Billiard table containing n balls

For our systems (which are a particular case of a semi-dispersing billiard)
the so-called "Transversal Fundamental Theorem for Semi-Dispersing Billiards"
enables us to prove that, given a sufficient point with a smooth history, there
exists a neighborhood of the point that belongs mod 0 to a single ergodic com-
ponent. In other words, only one ergodic component has an intersection of
positive measure with each sufficiently small neighborhood of the point. More-
over, such a component is open, apart from a set of zero measure. On the other
hand, the Fundamental Theorem requires that almost all points (with respect
to the induced measure) on the singularity manifolds of the Poincare map and
of its inverse are sufficient [SC, KSS3, LW]. This is called the Sinai-Chernov
Ansatz. We check in Sect. 5 that such a condition is satisfied for our examples.
In addition, some knowledge of the structure of the singularity manifolds is
required; we discuss this in the first part of Appendix I.

To prove global ergodicity it is necessary to show that the set of non-suffi-
cient points does not separate the phase space, and, moreover, it is well related
to the structure of the singularities (the Sinai-Chernov Ansatz again). Our
proof of these facts, inspired by [SC] and [KSS1], is carried out in Sect. 5.

Next, we introduce an example for which it is possible to establish the stated
results, so that the reader has something concrete to refer to in the next sec-
tions of the paper (the general class of examples to which our techniques apply
is discussed in Sect. 6).

A Special Billiard Table. Figure 2 shows the billiard we suggest for considera-
tion. The boundary dQ of the billiard table Q is strictly inwardly-convex. There
is one ball in each "cell" between consecutive "bottlenecks" A,B,C,. . . The
balls are of radius R and mass 1 they cannot cross the bottlenecks, but can
collide with their neighbors and move in their cells around corresponding ob-
stacles a, b, c, . . . The obstacles make it impossible for a ball to have a colli-
sion with its neighbor on the left followed by a collision with the one on the
right, or vice versa, without having a collision with the boundary. Some of the
obstacles may not be necessary in the case of a billiard table having dimen-
sion d greater than 2: it is generally sufficient to have an obstacle every d — 1
consecutive balls.

We call a system of n balls the dynamical system generated by the motion
of n adjacent balls in the above-described region with the invariant measure
on Jί induced by the Lebesgue volume in R2" x R2" (this measure is also
called the Lebesgue measure on Jf).
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We conclude this section by stating explicitly the theorem proved in this
paper.

Main Theorem. The dynamical system generated by the motion of any number n
of adjacent balls in the billiard table desribed above (or in the ones described in
Sect. 6) is a K-βow on each connected component of a constant energy manifold
(with strictly positive energy).

2. Cone Fields and Dynamics

Here we examine the behavior of the cone field with respect to the dynamics.
To study the evolution of the tangent vectors, it is necessary to use the explicit
form of the laws of reflection.

(I) Reflection by the Boundary dQ. Let us study the collision of particle k with
the boundary. Calling η the unit vector inwardly normal to the boundary, at
the point of collision, and v the unit tangent vector, we have

9k = 9k,
Pk= <A» *>(*)> v(x)- (pk,η(x)y η(x) = Pk-2(pk9η(x)yη(x), (2.1)

where (qk,pk) and (qk9p£) are the coordinates of the particle k before and after
the collision, respectively. (Similar notations are used below for all types of
collisions.) If we consider a variation of trajectory of our system corresponding
to the tangent vector (δq, δp) at the collision point and suppose that δq is
parallel to v(x) (in which case all the trajectories experience a collision of the
particle k with dQ at the same time), we have:

-2(pk, δqJKη - 2(pk, ηyκδqk , (2.2)

where K > 0 is the (inward) curvature of the boundary at the collision point.
Using (2.2) yields

, δPk) - 2<ft, η> (δqk, Kδqky ^ (δqk, δpk> (2.3)

for (pk,ηy ^ 0, in order for the collision to happen. Hence, we have the fol-
lowing lemma.

Lemma 2.1. A collision of particle k with the boundary dQ is sufficient for
(δq,0) ((δq, δpy increases strictly) unless

(i) (Pk^y — 0 (tangent collision)

or

(ii) δqk = λpk for some λ e IR.

Proof. Notice that (2.3) was derived under the assumption that δqk was paral-
lel to dQ. This can be achieved by letting different trajectories flow different
amounts of times. To be more accurate, we define δq = δq + vp - observe that
(δq, δpy = (δq, δp} (since the conservation of the energy E = ̂ (p,p^ implies
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?> = 0) - and we choose v such that <?/, δqky = 0. We can then apply
(2.3) to the variation (δq, δp). The previous condition reads

and can be satisfied only if (i) does not hold. Thus, we will have strict increase
provided that δq Φ 0, or δqk + — vpk (remember that </y,/? fc) < 0). Observe
that after the collision δq' is given by δq' = δq — vp' . D

(II) Collision Between Particles k and k + 1. In this case, let ή = qk+1 — qk be
the vector that joins the center of k with the center of k + 1 . If we set η = ή/ \\ ή \\
and we call v the perpendicular to η, then

p = Pk,vv + A+
<A + ι » t > > t > + <A,*/>*7 = Pk+ι-(Pk+ι-Pk>iy*l' (2 4)

A variation (<5#, <5/?) corresponds to trajectories that collide at the same
time if

\\(qk+l + δqk+l) - (qk+δqk)\\ = 2R + &(δq2), (2.5)

where R is the radius of the balls; consequently, (2.5) yields

<δqk+ΐ-δqk,ηy = Q. (2.6)

For a variation satisfying (2.6), differentiating (2.4) gives

δpί = <>Pk + π fc,

δpί+i = δpk+i - πk>
πk = <δpk+ί - δpk, η}η + (2K)'1 </?fc+ 1 - pk, δqk+ ^ - δqk} η

+ (2RΓ1 <A+ι - A,*f> (δ?fc+1 - 5?k). (2.7)

Lemma 2.2. ^4 collision involving particles k andk + 1 is sufficient for (δq, 0) wwfoΉ

(i) <Jpk + ! - pk , ry > = 0 (tangent collision)

or

(ii) <5gk + λpk = 5^k+ ! H- λj9k+ ! /or some λ e IR.

Proof. Similarly to the preceding case, we first modify our variation and then
apply (2.7). Consider δq = δq + v/?, then δq satisfies (2.6) if

- (δqk+l-δqk,ηy = v<^, pk+1 - pk} .

The previous condition can always be fulfilled, provided (i) is false. Next, using
(2.7), we obtain
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Since <Λ+ι — A>ί) has to be negative, for the collision to happen, the only
contingency in which (δq, δpy does not increase is δqk+1 = δqk. D

Lemma 2.3. The collisions preserve the properties:

(1) <£, (0,/?)> = 0 (conservation of energy),

(2) <ξ, (p,0)> = 0 (geodesic-lίke).

Moreover, the forward dynamics increases the configuration norm \\ ξ \\q = || δq \\
for each ξ = (δq, δp) e C, while the backward dynamic increases the configura-
tion norm of each vector ξ e C-.

Proof. Lemma 2.3 follows by direct computation, using (2.2), (2.7). D

3. Sufficiency and Lyapunov Exponents

The aim of this section is to find a large set of sufficient points (see Definition
1.1). We consider explicitly only the sufficiency for the forward trajectory; the
discussion of the backward sufficiency is completely analogous (with the only
proviso that the cone is now given by (δq, δpy ^ 0).

Let us start by considering a tangent vector (δq, δp) such that (δq, δpy = 0
and with δpk φ 0 for some k; then, given (1.1), it will follow, for t > 0, that
(δq, δpy > 0 at time /. Hence, sufficiency will be verified, with respect to the
given vector, after any arbitrarily small time. Consequently, we need to discuss
only the variations of the form (δq, 0).

Before going any further we need a few definitions:

Definition 3.1.

£% = {(q,p) e M | the balls experience a multiple or tangent collision},

^0 = {(q,p) e Jt | the forward trajectory never intersects £%},

Q = {(q,p) e JΪQ | the next collision will be i with i + 1 (non-tangent) },

Q = {(q,P) e J#Q | the next collision will be i with dQ (non-tangent) },

ΔΪ = {x = (q>P) e J(Q | there exists t* e R+ such that i, i + 1 never collide, for
t>t*},

n-l

Δ= U 4.
i = l

Ω = J(0\A,

Σ|= {x e Cf | the vectors p{ andpi+i are parallel],

Σ?= {* e Q | the vector p{ is parallel to p{ after the next collision},

Σ?= {x e Ct\ the vector pi+ ^ is parallel to pt after the next collision},

Σί= {x e Q | the vector pt is parallel to pt after the next collision} .
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The set Ω is roughly the set of points whose trajectories, after any given
time, contain all the possible types of collisions. With the next theorem, we
start to heavily use the concept of sub-sets of (Lebesgue) measure zero and
codimension two in the phase space Jt\ a few clarifications are called for.
The relevance of these sets, for the problem of ergodicity, was first noticed in
[S3] , and is due to the fact that they cannot separate the phase space [E] . In
Sects. 3, 4, by codimension two we will mean "codimension two in the Poin-
care section," which really means codimension three in Jt. In fact, in Appen-
dix I, we discuss manifolds with the property of being perpendicular to the
flow direction. For these manifolds we talk sometimes of codimension three
since the direction of the flow is counted. This may be confusing, but it is
convenient, since the theorems to which we refer [SC, KSS3, LW] are stated
for maps (here the Poincare map from collision to collision: see Appendix II)
while many properties are most readily checked for the flow.

Theorem 3.2. Ω is a set of sufficient points, apart from a sub-set of measure zero
and codimension two.

Proof. Unfortunately, the proof is an analysis of many different cases. First of
all, for a particle to have a velocity zero is a codimension two condition. We
can therefore restrict ourselves to the situation in which all the particles have,
and keep, a non-zero velocity. We then start our analysis by concentrating on
two generic particles i and / - h i .

Lemma 3.3. If xeΩ and dφt(δq,ΰ) = (δq(t),ΰ)Vt>Q, then either δqt(t)
= λpi(t) and δqi+ 1 (t) = λpi+ 1 (t) for some λ e IR, t e R+, or x belongs to a set
of measure zero and codimension two.

Proof. We recall that Ω c JίQ, this means that the trajectory does not experi-
ence a singular collision; in particular it does not experience any tangent colli-
sion. We can then use Lemmas 2.1, 2.2 to characterize the vectors that are not
sufficient after a give collision.

Among all the collisions occurring in the system, we distinguish and call
relevant, the following: / with the boundary 3β, / + 1 with d Q and / with / - h i .

Case A. The First Relevant Collisions are i with dQ and / - h i with dQ. In this
case let tv e R+ be the first time the collision / with / + 1 occurs (t1 exists be-
cause of the definition of Ω). Owing to the geometry of the billiard table Q
and the hypotheses under consideration, the preceding collisions involving
/, i+ 1 must have been with the boundary dQ. According to Lemma 2.1, a
variation is non-sufficient, after such collisions, only if it is of the form
<5#i(*Γ) = λpi(tϊ), δqi+ι(tϊ) = λ'pί+1(tϊ), for some λ, Λ 'eR (we have used
the relations that describe the evolution in time of the variations) where by /["
we mean the instant before the collision. Moreover, Lemma 2.2 forces

λpt(tϊ) + vpi(tϊ) = λfpi+1(tϊ) + v/? i +ι(*Γ) (3.1)

If Pi(tϊ) is not parallel to pi+ι(tϊ)9 then the only solution of (3.1) is
λ + v = Q = λ' + v which implies λ = λ' and the lemma. If Pi(tϊ) is parallel to
Pi+ι(tϊ), then a direct computation yields

= (λ + v )/? £ ( fΓ) - vpi+1(tΐ).
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So far we have established the desired result apart from points belonging to
the manifold ^"^(Σi1)- Note that in general, Σi1 has codimension d— 1, where
d is the dimension of the billiard table Q; thus, in the higher dimensional
cases, the result is already established, apart from a set of measure zero and
codimension two. However, in the two dimensional case (the one at hand) Σi1

has only codimension one and, therefore, we need further analysis. Such sim-
plifications, in higher dimension, also occur in all the cases discussed later. In
order not to interrupt the exposition, we will no longer comment on them ex-
plicitly.

For points in Σ? > due to the geometry of the table, either / or / + 1 col-
lide with dQ after the time tί . We consider the first eventuality; the second one
can be treated in a similar fashion.

In order not to be sufficient, after the collision of / with the boundary, it is
necessary that δqι(ίΐ) = σ/>/(/ί"); this forces Λ + v = 0 = σ + v, unless Pi(tϊ) is
parallel to Pi(tf) (x belongs to a pre-image of Σ?) Given that the points, for
which Pi(tΐ), Pi+ι(tϊ) and Pi(tΐ) are simultaneously parallel, form a mani-
fold of codimension two (see Appendix I), we can dismiss them. Therefore,
after this last collision, we have

as desired.

Case B. The First Relevant Collisions are: i+l with dQ Followed by i with
i + 1 . The simplest possibility consists of the following sequence of collisions :
i + 1 with dQ, i with i+ 1, i with dQ and / + 1 with dQ. It follows, from an
analysis similar to the preceding one, that the expected result is determined
outside the following codimension two manifold: pi+^(tϊ)9 A+iCf ί " ) and
Pi(tι) are simultaneously parallel (^ is the time at which the collision / and
/ + 1 takes place). Next, suppose that one of the two particles (e.g. / + 1) will
not hit the boundary before the next /, i + 1 collision occurs (notice that, since
the particle has non-zero velocity, it will definitely collide with dQ, if nothing
else happens). Accordingly, we consider the following sequence of collisions:
/ 4- 1 with dQ, i with / + 1 and i with dQ. Such a trajectory has the desired
property unless xεφ~tl(Σ?) (*ι is, again, the time of the collision /, /+!). If
x belongs to the previous codimension one manifold, then, after the above
sequence of collisions, we have

δqi+1(t) = (λr + v)Λ + 1(ίΓ) - vpi+i(tϊ). (3.2)

A crucial point, for the success of our discussion, is the possibility of control-
ling the evolution of such variations until the next /, / + 1 collision.

Sub-Lemma 3.4. If φt+ι (x) does not belong to a pre-image of the manifolds Σf- 1,
Σf or to a set of measure zero and codimension two, then bq{ will still satisfy

(3.2) before the next i, ί + 1 collision.
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Proof. If only collisions with the boundary are involved, then it is clear that
δqi(i) = λpi(t). Let us see what happens when / collides with i - 1. If such a
collision takes place at time t2 , we have

δqι(*ϊ) = (λ + *)pi(tϊ) - *qi(t}). (3.3)

Next, one of the two particles must collide with dQ, and the Sub-Lemma
follows. Π

The usefulness of the previous Sub-Lemma is emphasized by the following

Sub-Lemma 3.5. The pre-ίmage of the manifolds Σ*j intersect transversally the
manifolds ^m for each j, k, /, m.

Proof. See Appendix I. D

According to the previous discussion, when the next /, / + 1 collision takes
place, (3.2) will still hold, again out of a set of measure zero and codimension
two. It follows, using Sub-Lemma 3.5, that this last collision ensures δqt = λpi9

δqi+ ! = λpί+ ! , out of a set of measure zero and codimension two.

Case C. The First Relevant Collision is ί with i + 1. In this case the definition of
Ω implies that another /, / + 1 collision takes place. We can then skip the first
collision and apply the preceding arguments to the subsequent trajectory. This
concludes the proof of Lemma 3.3. D

Let us review our situation. Lemma 3.3 implies that, given x e Ω and a pair
of neighboring particles / and i + 1 , a time t{ and a number λt exist such that
δqi(ti) = kpifa), δqi+ι(ti) = λipi+^ti). Moreover, Sub-Lemma 3.4 tells us
that, for / > ti , such a situation can change, for / + 1 or /, only if x belongs to
the pre-image of one of the codimension one manifolds Σ*_ l9 £*, ΣH-I, Σ*+2
Also Sub-Lemma 3.5 ensures that only one such instance can occur, since all the
previous mentioned manifolds intersect transversally (so that the set of their
intersections has measure zero and codimension two). Then, after some time
/*, the worst possible situation will be

for some fce{l, ...,«-!}. In addition, any collision between k and k + 1
would force λ± = λ2 (always ignoring a set of measure zero and codimension
two). Since the definition of Ω ensures that such a collision happens, we have
δq(t) = λp(t), for t large enough. Finally, remembering that (<5#,0) is perpen-
dicular to the flow direction, it follows that λ = 0. Hence all the variations are
sufficient. Π

A question remains about the size of the set Ω. To this end we have the
following lemma.
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Lemma 3.6. If, for any m <n, the dynamics generated by m balls ίs mixing, then
the set J(\Ω is of measure zero for the system ofn balls.

Proof. Looking back at Definition 3.1, we see that it is sufficient to show that
the set A0 = {x e Jί^ \ i never collides with / + 1 for all t ^ 0 and for some
z'e{l, . ..,#}}, has measure zero. In fact, the set Jί\Jt§ is of measure zero
since it is composed of countablχ man^ codimensipn one manifolds. In addi-
tion, given τ e R+ , we have φτ(Aς) c A0 and φτ(Δ) = Δ. Since for each x e A
a τ e IR+ exists such that φτ(x) e A0, this implies that the sets J0

 and A have
the same measure.

Let /ί, Γ2 be two sets in QxΊR2 such that, if (qt.p^eΓ^ and (qi+ι,
pi+ι)eΓ2, the next collision involving / or / + 1 is a collision between the
two balls. Clearly it is possible to choose the sets Γx and Γ2 so that they have

a positive Lebesgue volume. Consequently, the sets Γ2(E) = <(q,p)e JΪ0\
« J I

(?i+ι,Λ+ι) e Γ2, Σ || />.• || 2 = £>, for the value of £ in some interval, are of
J=i+l J

strictly positive measure. (We have in mind here the measure μjp ~ ̂  that is the
projection of the invariant measure on M to the manifold Jί^ ~ ̂  where the
collection of the last n — i particles has total energy E) . It is then a conse-
quence of the ergodicity of the sub-dynamics generated by the first / parti-
cles and of Fubini's Theorem that, for almost all xeJ?0, there exists a mono-
tonically increasing sequence (tk(x)} with lim tk(x) = + oo such that fe(Λ(X))?

fc-+oo

A (**(*))) e ^ι» where (qt(t)9 Pί(t)) is determined by the dynamics generated by
the first i particles only (the system obtained by erasing the last n - i parti-
cles). Calling χ^ ,^ the characteristic function of Γ2(E), it follows that, for

almost all xe A0, Xr(E(χ})(Φtk^(χ^ = ® f°r a^ ^ > O (^W denotes here the
total energy of the last n - ί balls in a point x of the phase space Jt.) Notice
that, for such x, the dynamics is the product of two independent dynamics:
the one generated by the first / balls and the one generated by the remaining
n - i balls. The result is then a consequence of the mixing property of the dy-
namics generated by the last n - i balls. In fact, if χ? is the characteristic func-
tion of AQ, we establish that J0 is of measure zero thanks to the relation

0 = Um " χf(ί)0'*w(*)) χ Jo (*) dfi$ ~ '>(*) d£

for the right-hand side of this relation implies μ^~l\A0nJί^l~^) = 0 for
each E, i. D

Remark 3.7. Lemma 3.6 is a version of the "weak lemma on avoiding balls"
(see [KSS1]). Its proof is based, in essence, on the following fact: in an ergo-
dic system the set of points that avoids a region of positive measure has zero
measure. In the following we will need a slight generalization of Lemma 3.6.
More precisely, it is convenient to introduce the following model: a system of
n balls divided into two sub-systems; the first consisting of the first / balls
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and the second by the last n - i. These two sub-systems are almost indepen-
dent: we allow the ball z to collide with the ball z + 1 only if the distance of the
centers of the two balls would became smaller than 2R- δ (R being the radius
of the balls and δ < R is a given positive number) under the evolution of the
two independent sub-systems (meaning that the balls z and z + 1 can freely
cross each other). In this situation we quote Lemma 3.6 and this Remark to
claim that the set of points for which z and z -f 1 never interacts has zero mea-
sure. It is clear that this statement can be proven in complete analogy with
the proof of Lemma 3.6.

The above lemma suggests that our strategy will be a proof by induction
on the number of balls. Note that it is sufficient to prove the ergodicity since,
for our examples, the mixing (and the £-property) on the ergodic components
is insured by the general theory (see [P, KS]). Also, in the same papers, it is
proven that, if our system has Lyapunov exponents different from zero almost
everywhere, then it decomposes mod-0 into, at most, countably many differ-
ent ergodic components.

4. Local Ergodicity

The aim of this section is to introduce an invariant set Ω =D Ω, such that for
each x e Ω there exists a neighborhood of x that belongs, apart from a set of
measure zero, to only one ergodic component (one says in this situation that
the system is locally ergodic near x) .

As was noted before, our system can be naturally treated as a billiard in
2n dimensions. Owing to the fact that the boundary dQ of the original region
is dispersing (its curvature K is strictly positive), the boundary of the corre-
sponding 2n dimensional billiard is semi-dispersing (has non-negative curva-
ture) . This allows us to use the material elaborated for general semi-dispersing
billiards.

More precisely, to prove local ergodicity we apply the aforementioned
Hopf argument using the results from the general theory of semi-dispersing
billiards (see [SC, KSS3]) which allow us to produce an abundance of mani-
folds of size δ, for δ sufficiently small, in some neighborhood of a sufficient
point. Since this type of argument is explained, in a more or less detailed way,
in various paper [SC, KSS3, Bu2, LW] we will refer toj hem for all the technical
points. The key observation in the construction of Ω is provided by the fol-
lowing.

Lemma 4.1. If the piece of trajectory (x, [/ι,/2]) of φl is sufficient (see Defi-
nition i.l), also the reverse trajectory (x, [— t2 ,— fj), ofφ'*, is sufficient.

Proof. Assuming this is not the case, it would mean that there exists (δq,
( such that <<5#, δp} = 0 and, for (δqf, δpf) = dφt2~^(δq, δp),

But the latter would imply

<5?, δpy > 0

because of the sufficiency of the forward trajectory. D

The previous lemma, remembering that φlΩ c Ω for / ^ 0, readily suggests
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Definition 4.2.

Here — (q,p) stands for the time reversal point (q, — p).

The next assertion, Theorem 4.3, is a specific version of the Transversal
Fundamental Theorem for semi-dispersing billiards. It is stated without a
proof; we refer to the above-mentioned papers for the latter. Some basic defi-
nitions and facts related to the formulation of this theorem are discussed in
Appendix II.

We denote by d+Jί the "outgoing" part of the boundary dJί of the phase
space Jl and by T the Poincare map between consecutive collisions induced
by the flow φt . Let μ denote the standard Γ-invariant measure on d+Jί. Fur-
thermore, ^+ c d+Jί denotes the singularity set for T and ^?~ c d+Jί that
for T~l. Finally, let μ+ be the measure on &+ induced by the measure μ and
μ- be that on a" .

The definitions of the local stable and unstable manifolds and related ob-
jects figuring in the formulation of the Fundamental Theorem (such as paral-
lelograms with smooth faces (sides) parallel or transversal to those manifolds)
may be found in the same papers as before. Speaking of a diameter (or size)
of a given set we have in mind the standard Riemannian metric on d+Jί. We
also use, in a repeated manner, various intermediate geometric constructions
such as a natural identification of the tangent spaces at different points; this is
done by using the Euclidean structure of the phase space.

Theorem 4.3 (Unstable Version of the Transversal Fundamental Theorem for
Semi-Dispersing Billiards). Suppose that 0ί^ is a finite union of 4n — 3 dimen-
sional ^-manifold (apart from the boundary that is supposed to con-
sist of a finite union of 4n — 4 dimensional manifolds) and so is 8fc~ . Suppose
furthermore that the following assumptions are valid.

i) For each z e 9t~ , the tangent space ^Tz(T^~} contains a 2n — 1 dimensional
subspace that belongs strictly to the forward cone C(Tx), and for each ze^+,
the tangent space ^-ιz(Γ~1^+) contains a 2n — 1 dimensional subspace that
belongs strictly to the backward cone C_(Γ-1z).

ii) (The Sinai-Chernov Ansatz) For μ --almost all ze^?~, the tangent maps
DΣT

m obey

lim || Dz T
mξ || = oo for all ξ e C(z){0} .

m-*oo

Let xed+J? be a point with a smooth and sufficient trajectory for φl ', t ^ 0
(backward smoothness and sufficiency ). Then:

a) Eu = f| DTm(C(T-m(x))) is a2n-\ dimensional subspace of^d+Jί.
m > 0

b) For each ^6(1/2, 1) there exist: a neighborhood of x (in d+Jί}, Φ(#), a
constant c2e(ί — ci9 1) and a natural number k^, such that the following holds.
Suppose a one-parameter family {<gδ, δ > 0} , of coverings of<%(x), is given, with
the following properties:
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1. The elements of covering <&δ are topological open parallelograms with smooth
sides, of size δ, either parallel to Eu (that is, with tangent space, at each point,
containing a 2n — 1 dimensional sub-space parallel to Eu) or uniformly trans-
versal to Eu (more precisely, with a 2n — 1 dimensional subspace, of the tangent
space at each point, contained in the backward cone C- (x)).
2. Each element Ge^δ intersects at most k^. other elements. Moreover, for each
G e^δ there exists a collection of neighboring elements N(G) c <gδ such that

I) G' => G and μ(G'n G) > c2μ(G) for each G'εN(G) (note that the vol-
G'eN(G)

ume of an element of the cover will be, roughly, δ4n~2) .
Let us divide the whole set of the elements of the covering ^δ into two dis-

joint collections ^(0) and ̂ (1) as follows. An element Ge&δ belongs to ^(0) iff
the total measure of the collections of unstable manifolds Wu in G such that
Wu n dG = Wur\ (dG\{sίdes parallel to Eu}} (the manifolds run almost parallel
to Eu from side to side in G) is larger than c1 μ(G). Otherwise, G belongs to ̂ (1).

Then the total measure of the elements in ^δ, but not in ^(0), is small in a
strong sense; namely:

Remark 4. 4. In the literature mentioned above the Fundamental Theorem is
stated in a slightly different fashion. The main difference consists in the defi-
nition of ^$(0): where it is required an abundance of unstable manifolds only
near the boundary of an element. Nevertheless, the theorem holds also in our
version without any significant change to the proof. In addition, hypothesis i)
is sometimes not mentioned explicitly, although it can be found, in a form
similar to the one used here, in [Bu2] .

Theorem 4. 3 has the obvious analog for the local stable manifolds (pro-
vided the Sinai-Chernov Ansatz, stated in (ii), is replaced with its converse for
^+ and the point x has a forward smooth and sufficient trajectory). We prove
in Appendix I that condition (i) is satisfied for our cases. Furthermore, in
Theorem 5.14 we prove that, for the system of n balls, the set of non-sufficient
points is of μ+ -measure zero in ^?± under the condition that, for any m < n,
the same holds for the system of m balls and, in addition, the set of non-suffi-
cient points has codimension two in the phase space of the m balls system.
Moreover, it is known that, in a more general situation, for any semi-dispers-
ing billiard, if a point zed+Jί is sufficient, then lim \\DzT

mξ\\ = oo for all
m->oo

ξ e C(z)\{0} (see [S3, LW]) . Here it is crucial that hypothesis ii) does not require
exponential growth of the tangent vector (points that satisfy (ii) may have zero
Lyapunov exponents).

Summing up, we have seen that Theorem 4.3 applies to the system of n
balls if the set of non-sufficient points has zero measure and codimension two
in Jί and zero μ± -measure in ^?± for any system of m < n balls.

Remark 4.5. To verify conditions (ii) we need to know properties of the trajec-
tory at all times and to possess information about sets of zero measure. This
makes the above condition hard to check (at least in general), but it is prob-
ably unavoidable and reflects the fact that the approach considered here can-
not be purely measure theoretic.
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Our next assertion, Theorem 4.6, can also be found in the literature ([SC,
KSS1, LW]). We will sketch the proof, so that the reader can see how Theorem
4.3 is used to obtain some knowledge about ergodic components.

Theorem 4.6 (Local Ergodicity). Assuming conditions (i) and (ii) of Theorem
4.3, it follows that, given x e Ω out of a sub-set of measure zero and codimen-
sion two, there exists a neigborhood of x that belongs, apart from a set of zero
measure, to only one ergodic component.

Proof (a Sketch). From Theorem 3.2, Definition 4.2 and the hypotheses at
hand follows that we can apply Theorem 4.3 to x. We start by sketching the
proof of the theorem under the assumption that the point x has a smooth tra-
jectory and is sufficient in both directions. Since sufficiency is a property of a
segment of trajectory, this last assumption has the only purpose to simplify
the discussion: in general one can consider x and one of its images to obtain
a point sufficient backward and one sufficient forward on the same orbit.
Therefore, the following argument can easily be adapted to the situation with-
out the last assumption.

The proof uses, as we said before, the standard Hopf argument [H]. In
our context this means that, given a sufficient point with a smooth trajec-
tory, we can employ Theorem 4.3 to produce an abundance of stable and
unstable manifolds of diameter δ. Those manifolds can then be used to con-
struct chains that connect different ergodic components in the neighborhood
of x, showing that this neighborhood intersects only one ergodic component
(see [KSS3, Zig-Zag Theorem], also [Bu2]).

More precisely, one observes that, e.g., a stable manifold belongs, morally, to
only one ergodic component, since the forward ergodic average for any continuous
function is the same for all the points in the manifold. In addition, the stable
and unstable manifolds form absolutely continuous foliations (see [KS]) and
the backward and forward ergodic averages are equal almost everywhere.
These last two facts imply that, when a set of positive measure of stable mani-
folds intersects a set of positive measure of unstable manifolds, almost all the
intersection points lie in the set in which the forward and backward ergodic
average are the same.

Now take a family of parallelograms coverings <&δ, δ > 0, with the proper-
ties listed in conditions bl) and b2) of Theorem 4.3; the construction of those
covering is rather standard (see, e.g., [BS, KSS3]). From the previous con-
siderations it follows easily that, according to Theorem 4.3 and its stable ver-
sion, we can construct, near the sides of the parallelograms that are from the
collection #J0), thick chains of stable and unstable manifolds that belong to the
same ergodic component. Moreover, property b) of Theorem 4.3 implies that
a connected component of the union of parallelograms from ^(0) has a mea-
sure arbitrarily near to the total measure of yδ, when δ goes to zero. In fact,
for ^5(0) to be disconnected uniformly in δ, it is necessary that it is divided by
a boundary composed of elements of ^(1) that enclose a volume of order one.
But this is possible only if the measure of the union of the elements from ^(1)

is proportional to δ (that is, approximately the area of the dividing boundary
times δ ) , contrary to b) (see [KSS3] for more details).

A little more careful argument is needed for points that have a smooth tra-
jectory in one direction only, e.g., forward, but the same conclusion holds (see
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[SC, KSS3, Bu2, LW]). The key observation, in this case, is that the con-
struction of Theorem 4.3 can still be carried out, although only in one direc-
tion (forward), producing an abundance of stable manifolds. Moreover such
manifolds are transversal to the singularity manifolds. Here "singularity
manifold" is used, loosely, to mean points at which either a tangent or a mul-
tiple collision occurs, (and images, under the dynamics, of such points), see
Appendix I. Theorem 4.3 can also be applied to each side of the singularity
manifold; the previous considerations show that a neighborhood of x con-
tains at most two ergodic components separated by this manifold. Finally, it
is possible to use the stable manifolds that cross the singularity manifold to
show that the two sides of the singularity manifolds actually belong to the
same ergodic component. D

5. Global Ergodicity

In the previous section we were able to prove that, if the system with m balls
is ergodic and mixing for any m < n, then the phase space of the system gener-
ated by n balls decomposes mod 0 in, at most, countably many ergodic com-
ponents, each component being open. The following stage is to prove that
there is only one ergodic component. Our proof is by induction on the num-
ber of balls. Since the statement for one ball is well known [SI, S2, G], we
need only to prove the inductive step from m < n to n. The subsequent theo-
rem clarifies the relevant properties that we need to study.

Theorem 5.1. If the set Jί\Ω is of measure zero and codimension two and con-
dition ii) of Theorem 4.3 holds, then the system is ergodic, and has the K-prop-
erty (which implies mixing).

Proof. On the one hand, according to Theorem 4.6, if A <= Ω is connected, then
it belongs to only one ergodic component. This result is stated there for the
Poincare map but it can be translated easily in the corresponding statement
for the flow ψ*. On the other hand, Jί\Ω of codimension two implies that Ω is
connected [E], hence the result. The A^-property, as already mentioned, is a
consequence of the general theory of hyperbolic systems [P, KS, S2]. D

We approach the conclusion of our discussion with Theorem 5.2 below.

Theorem 5.2. If, for each m <n, the set M\U is of measure zero and codimen-
sion two, and condition (ii) of Theorem 4.3 holds for the m and n balls system,
then the set Jt\Q, is of measure zero and codimension two also for the system of
n balls.

Proof. By definition, Ω ID Ω. Moreover, in our hypothesis, Theorem 3.6, to-
gether with Theorem 5.1, claims that μ(Jί\Ω) = ύ, so μ(Jί\Ω) = Q. Notice
that this implies that the Lyapunov exponents are different from zero almost
everywhere and that almost every point has local stable and unstable mani-
folds (see end of Sect. 3).

To prove the^second, and harder, part of the statement we note that the
complement of Ω decomposes naturally in three disjoint sets:
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1 . double singularity points,
2. points, with smooth trajectories, for which the system splits, both in the
past and in the future, into non-interacting sub-systems,
3. points for which the trajectory meets a singularity manifold in one time di-
rection and behaves like two non-interacting sub-systems in the other.

We discuss the three cases separately, showing that each one of the three
sets has codimension two.

Double Singularities. These are points for which the trajectory meets a singu-
larity manifold both in the past and in the future. By definition this set is
given by

(5.i)
>o / t<o

Here, with a slight change of notation with respect to the preceding section,
#* are the singularity sets in M (corresponding to tangent and multiple col-
lisions) which are related in a natural way to the previous ones (which were
subsets of d+J(). It is shown in Appendix I that the pre-images of ^?+ are
transversal to the images of 3&~ (their tangent spaces contain In - 1 dimen-
sional subspaces that belong strictly the complementary cones) . Therefore this
set has codimension two, being the countable union of sets of codimension

/
two note that the union I) φt3l± is of codimension one in Jί

\ te[0,l]

Non-Interacting Sub-Systems. Here we are looking at the set of points with
smooth trajectory for which there exist fc_, fe+ε {1, ...,»} and ί_, r+elR,
/_ ^ / + , such that, on the one hand, there is no & _ , k- + 1 collision for each
t ^ t- and, on the other hand, the particles k+ and k+ + 1 never collide for
t^t+.

It is convenient to call A + (k+,t+) and z l _ ( f c _ , ί _ ) the sets of points, with
smooth trajectory, which do not experience a k+, k+ + 1 collision for t ^ t+,
and a fc_ , k- + 1 collision for t^t-, respectively. Then the present goal is to
prove that

is a set of codimension two.
Since Δ + (k, ί) c Λ + (k,j) i f j ^ t and Δ-(k,t)c:A- (kj) if j ^ t, we have

A= U (J + (fc+J+)nJ.(fc-J-))-
J k + , f c - e { l , . . . , n }

It is therefore sufficient to show that each one of the sets A + (k+J+)
r\A-(k-,j-) is of codimension two (since a countable union of codimension
two sets is again of codimension two, see [KSS1]). To pursue the argument, a
few definitions are necessary.
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Definition 5.3. Given m e N and E > 0 we put:

^m,E = phase space for the m balls system with energy E,
&m,E = the set Ω (see Definition 4.2) for the system ofm balls with

energy E,

Θm,E = ^m,E\Ωm,E>

Φm,E = dynamics for the system ofm balls with energy E,
W£,E(x) = stable manifold at x for the system ofm balls with energy E,

provided it exists and has dimension 2m — 1,
Wm,E(x) = the same for the unstable manifold,

E(x) = (kinetic) energy of the point x = (q,p).

During the rest of the proof we often consider the sets and sub-dynamics
relative to m < n balls as objects embedded in the system of n balls. We will not
state this explicitly: the context is self-explanatory. In addition, we suppress
the subscript E unless its omission creates ambiguites.

Lemma 5.4. The sets <9f = (J (<9ί>jBl x Jfn-itEJ u ( J f i t E ί

 x ®n-ί,E2)> for any
E = Eι+E2

E > 0 and / e {1,...,«, are of codίmension two in J(ntE.

Proof. We start by noticing that ΛfitEί x Jtn-i,E2) f°r anY î > 0, and E2 > 0,
is a codimension one manifold in Jtn,E where E = E± + E2. At the same time,
the invariant measure with respect to the relative dynamics on the latter mani-
fold decomposes naturally into the product of the invariant measures on the
previous ones. Furthermore, by the hypotheses of Theorem 5.2, Θί>£l has codi-
mension two in JίitEί. Consequently Θi>El x Jfn-i>E2 has codimension two in
«^ί,jEι x <^n-i,E2 The proof of this last statement can be found in [E, 1.5.16]
or it can be carried out similarly to the proof of Property 4 in [KSS4, Sect.
4.1]. The ideas used in the above-mentioned papers are the same as those we
will use to conclude the proof of Lemma 5.4, that is, to prove the following:
if x e Jίn,E, E > 0, and ^ί(x) is a neigborhood of x, then %(x)\Θi is connected.

Let WEl(x) = <%(x)n(JfitEίxJΐn-.itE2), E2 = E-Ely then <%(x) can be
represented as the union M tftEl(x) We restrict ourselves to the case in

£ιe[0,£]

which all the sets WEl(x) are connected. Indeed, it is clear that any neighbor-
hood tft(x) contains another neighborhood that satisfies the previous assump-
tion. Hence, the general case can always be reduced to the present one.

If qi(x)\Θi is not connected, then there exist open disjoint sets F l 5 V2 such
that F! u V2 => W(x)\Θi9 FJ n (Φ(x)\φ) Φ 0, y e {1,2}. However, we will show
that this is impossible.

Let us define, for E1 e (0, E) and E2 = E - E1,

f O if«£ l(x) = 0
π(^) =| 1 if VEί(x)\(θitEί x Jίn-i^Jίi,Eί x Θn_ ί>£2) c F! .

[2 if VEl(x)\(θitEί X J^n-i,E2^^i,El X Θn-i,E2} ^ V2

The extreme values (E{ = 0 and Ev = E) correspond to cases in which WEl(x) is
a manifold of codimension larger than or equal to two and consequently can be
ignored. The function π is well defined since WEί(x)\(θitEί
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x Θn-i >£2) is connected (in fact, it is a connected set from which a codimension
two sub-set has been removed) .

Moreover, π is a continuous function when different from zero. To see this,
it is sufficient to consider a point y e WEί(x)\(ΘitEί x Jtn-i,E2

 u ̂ ,EI x ®«-i,£2)
for which π ( E ί ) Φ 0. It is clear that there exists a non-empty neighborhood
B(y) ci Vπ(Eί)ΓιW(x). Accordingly, since M^E^Mn-itE2 forms a continuous
foliation of Jt, tf/#(x) will have a non-empty intersection with B(y), and
therefore with Vπ(Eί), for values of δ closed to E^. It then follows that
Φ/MXίίΦMS! x ^n-i,E2} u (J(itEί x βπ-i.ik)) c fς(Jω. Obviously, this means
that π(£Ί), for π^) Φ 0, can assume only one value, contrary to the hypothe-
sis that fy (x) is disconnected. D

As a consequence of Lemma 5.4, we can restrict ourselves to the study of
the sets Aφ(k+ ,y+) n A(l\k. , y_), where

Given xe J(+)(fc+,y+)nzl^)(A:_,7_), it follows from the definition that, set-
ting x+ = φj+(x) = ( x ϊ t X Ϊ ) and x~ = φj~(x) = (*Γ> *2~)> we have xf eί5k+,
x£ e Ωn-k+ and xf e Ω fe_ , xΐ e Ωn-k_ .

Our strategy will be to prove the following (which implies the codimen-
sion two of the intersection Δ(+*(k+,j+)r\Δ(±\k-J-)\ see [E]): there exists
a neighborhood ^(x) of x such that any open sub-set in <%r(x) = W (x)\
(Aφ(k+ ,j+) n Δ(D(k- ,7.)) is connected.

To prove the above statement we proceed in a fashion similar to the one
employed in Sect. 4. In other words, we construct: (i) a pair of foliations in-
duced by local stable and unstable manifolds for our reduced sub-systems, and
(ii) a family of parallelogram coverings ,̂ δ > 0, with properties analogous
to the ones indicated in conditions bl) and b2) of Theorem 4.3. We show
that, precisely as in Theorem 4.3, a "growing majority" of the elements of the
covering has, near the sides, a "large" collection of manifolds that belong to
%r(x) . Finally, as in Theorem 4.6, chains of these manifolds are used to prove that
Wr(x) is connected.

First of all we choose <%(x) so small that φt(y) is smooth for each

The second step is to discard some unwanted directions; we do so by defin-
ing, near the point x, some local manifolds of codimension one and two. We
see in the following how to extend the results obtained for points in such
manifolds to the full neighborhood of x.

By Bδ( ) we denote the ball of radius δ around a given point in Euclidean
space of the appropriate dimensionality.

Definition 5.5. Given zzM, z - (z1?z2) eR4k x R4("-fe), z, = (#(ί)(z),j?(ί)(z))
and q(z) = (?(1)(z), #(2)(z)), we define the local manifolds $(z, <J0) and<%(z, <50)
of codimension one and two, respectively, by

4(z, δ0) = {(q9p)EJίnBδo(z) \ <q - ?(*),/>> = 0},

«(z, ί0) = {(?(1), q(2\P(1\P(2}) e M n B,Q(z) \ <<7(1) - q™(z)9p™) = 0
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Our strategy is based on a study of the sub-systems. It is therefore necessary
to decompose our manifolds according to the foliation (J Jίk $ x Jtn-k E-#.

s

Definition 5.6. Given zzM, z = (z1?z2) eR** x R4(n" fc)

5 zf = (?(ί)00,/>(ί)(z)),
we <fe/zftέ /0c0/ manifolds Φk(z, b} ^ Jίk and Φn-k(z,δ) ^ Jΐn-k by

tfkMJM^V'Oe^i^
C-*(^<S) = {(</<2V2>)e^(z2) | ||y2>|| = ||/2)(z)||; <?<

2>- </(2)(z),;7<2>> = 0}.

It follows from the definitions that there exists δ1> δ0 such that, for
w ε $(z, <50), the intersection (Φk(w, δj x $Λ-fc(w, δj) n $(z, <50) is a manifold
of codimension one in Φ (z, δ0) with the boundary contained in the boundary
of Φ(z9δ0). The final step in our analysis of the neighborhood tfl(x) is the
construction of the aforementioned foliations. First we define a direction
transversal to the energy foliation.

Definition 5.7. Given zeJΐ9 z - (z1?z2) eR4 / c x R4("-fc), Zi = ( q ( ί ) ( z ) , p ( ί ) ( z ) ) ,
we define the curve lz:[— a,a]-> M, a being chosen small enough depending on
z, by /,(*)

It is easy to check that E(lz(s)) = E(z) (which means that lz is a curve in
J(9 i.e. at constant total energy). In addition, if <50 is chosen small enough,
there exists δ2> δ± such that

2]

Remark 5.8. Note that sufficiency and the related properties are of a geometric
nature. That is, they depend only on the geometry of the trajectory and not on
the value of the total energy. It is then an important remark that the points
on the curves 1Z

1} and 1(

Z

2) have the same trajectory, apart from the time and
velocity scaling, under the flows φk and φn-k9 respectively.

This concludes our discussion on the decomposition of the quantities of
interest according to the structure of the sub-systems. We are now ready to use
it in the problem at hand.

It is convenient to perform our constructions around the points x+ and
x~ separately. By hypothesis, x+ e A(+}(k+,0) and x~ eA(^(k-90). Accord-
ing to Remark 5.8, this means that it is possible to choose δ2, and conse-
quently (30, so small that l$>(s)$8h+ and /<2 )J>)φ<9k_ for sε [- <52,<52]. We
can then apply, inside each one of the sets $k+(lx+(s), (5), Φn-k + (lx+(s), (5),
ήϊk_(lx-(s),δ) and Φn-k_(lx-(s)9δ)9 the results of Sect. 4 (Theorem4.3 in
particular) to the flows φk+9 φn-k+9 φ k _ 9 ψn-k_, respectively. See Appendix II
for details on how to apply Theorem 4.3 to flows, instead of maps, in^our pre-
sent situation. In doing so, we try to obtain coverings of the sets $(x+ ,δo)
and $(x~,δo) and abundances of local stable and unstable manifolds in
these sets. More precisely, we have in mind manifolds Wu = Wk_ x Wn

u-k_ near
x~ and Ws = Wk\ x Wn

s-k+ near x+. Note that these manifolds are related to
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the local stable and unstable manifolds of the complete system only in the
case where the latter never experiences a collision of type k+, k+ + 1 in the
future (or & _ , &_ + 1 in the past). Indeed, in this case the dynamics of the
complete system would be precisely the direct product of the two sub-dynam-
ics. In order to avoid confusion, let us remark again that, for example, Wk

u_ is
obtained by erasing the balls {k- + 1, . . . ,#} and using the dynamics of the
remaining ones.

Definition 5.9.

C^ (/) = {(q,p)eJί\\\ ( q ' , p f ) - (q, p)\\<σ implies that the next
collision, for φ*(q',/?'), mil be between i and i + 1},

QΓ(0 = {(#>/?) e Λ( | || ( q ' , p f ) — (q,p) II < σ implies that the previous
collision, for φl(q',/?')> λ&s &eeτ? between i and i + 1},

ί OO = sup{r ^ o | $_ x #-*-00 e c-(*_)},
C 00 = inf {r ^ 0 I C x φ'n.k+ (y) e Cσ

+ (*+)}.

Lemma 5.10. If, given yeύlί(x-,δQ) and δ > <50, tδ (y) > — oo, then all the
points of the smooth manifold Wu(y)r\Bδ(y) (provided it exists) have a k-,
k- + 1 collision in the past.

Proof. On the one hand, if some point of Wu(y) has a k-, k- + 1 collision in
the time interval [tt(g)90\, we have what we are looking for. On the other
hand, the points of Wu(y)r\Bδ(y) have a configuration distance less than δ
from y (i.e. if w e Wu(y) r\Bδ(y) then || q(y) — q(w) || < (5) and Lemma 2.3
implies that such distance cannot grow under the action of φ{_ x φn-k_, / ^ 0.
Therefore, since the points that do not experience a k-, k- + 1 collision will
evolve according to the two independent sub-dynamics, their distance from
Φ ί _ x φ n - k - ( y ) cannot be more then δ. Consequently, remembering that the
definition of tδ (y) implies that, following the trajectory of y under the product
dynamics, the two center of the balls k_ and k_ + 1 would pass at a distance less
than R — δ from each other, we can claim that the points under consideration are
bound to have a collision of type k_, fc_ + 1 after the time tδ (y). Π

From the proof it is immediately apparent that the same argument proves
the analogous statement for Ws. Lemma 5.10 goes in the right direction in-
sofar as it shows that a simple condition can ensure that the local manifolds
φ~J-(Wu), φ~j+(Ws) belong to tflr(x). Unfortunately, there is one drawback:
the fact that WU

9 Ws are 2n — 2 dimensional manifolds; this means that, ge-
nerically, they do not intersect each other.

It is then clear that we need 2n - 1 dimensional manifolds with the prop-
erty stated in Lemma 5.10, if we want to be able to construct chains of inter-
secting manifolds. We will achieve this by adding an extra dimension to the
manifolds WU,W\

Definition 5.11. Given a point z = (zί9z2) e M^_ x JKn-k_, where zi = (q(i\z),
p(ί\z)), if a local manifold Wu(z) exists, we define
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v^here

The corresponding definition holds for WQ(Z).

Lemma 5.12. Given y e $(x~ , <50) and y' ε $(x + , (50), the following facts hold:

0 ^cΓOO ^ fl smooth 2n — 1 dimensional manifold (if Wu(y) exists).

ii) Wo"00 w /« fλe staό/e direction and satisfies the same perpendicularity con-
ditions, with respect to the flow, as does the unstable manifold Wu(y).

iii) Wζf(y) exists, unless y belongs to a subset of$(x~, (50) of measure zero.

iv) W$(y) n Δ(-\k- , 0) = 0 unless y belongs to a set of measure zero.
v) The properties corresponding to (i)-(iv) hold for WQ.

vi) If the manifolds φ~j~(WQ(y)), Φ ~ j + ( W o ( y ' ) ) intersect, then they intersect
transversally (provided 'k_ φ k+ and the intersection point does not belong to a set
of measure zero) .

Proof. Property i) follows from the regularity of the line bundle that gener-
ates WQ

U.

The tangent space 3^W^(y) at a point w = (w l 5 w2) e W$(y) consists of
vectors of the form (δq, δp) = (δq(i\ δq(2\ δp(1\ δp(2)) + λ(v(w,k), 0, 0).
Here (δq(1\ δp(1}) e«^^Wk

u_ , (δq(2\δp™}e^2Wn

u-k_ and A e R . Further-
more, setting w = (q,p), we defined

Pi fθΓ « ^ k

.
w)/?i for z > fc

(α(w) is determined in Definition 5.11). Since

<5?,Jp> = A( | |y ι >| | 2 + α||^2>||2) = 0

and

{δq, Spy = (δq(1\ δp(Vy + (δq(2\ δp(2^ ^ 0

we have that 3^ W£(y) is contained in the unstable cone [note that if one of the
previous vectors lies on the boundary of the cone, then it must be of the form
λ(v(w,k.),Q,ϋ)}.

The third statement of the lemma follows then by noticing that the stable
and unstable manifolds of the sub-systems exist almost everywhere and that
the construction of Definition 5.11 can be carried out at every point, apart
from the manifold of codimension ^ 2 defined by p(2} = 0.

A simple variation of Lemma 3.6 (see Remark 3.7) shows that, in our hy-
potheses, for almost all points y e$(x~, <50), t^~(y)<vo for each εe(0,#).
The proof of iv) can then be concluded with an argument completely similar
to the one used in the proof of Lemma 5.10. To see this we notice that, let-
ting z = (q(ί\ q(2\ p(1\ ;?(2)) and φ\z) = (q(ί\ q™, p(ί\ p™} , we get the follow-
ing. If particles k- and k. + 1 do not collide, then φ\z + s(>(1), βp(2\ 0, 0))
= φ\z} + s(p(ί\ βp(2\ 0, 0) for each β e R.

Property v) is easily verified with the same argument as that used above.
This leaves us with the only task being to prove (vi) .
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LQt^weφ-j-(W0

u(y))nφ-j+(W0

s(yf)). We recall that φ~J~(Wu(y)) and
φ~~i+(ffis(y')) are strictly contained in complementary cones. On the con-
trary, φ~s~(Wo(y)) and φ ~ s + ( W o ( y ' ) ) 9 although contained in complemen-
tary cones, may intersect the boundaries of their cones and therefore fail to
be transversal. Thus, we need only to check that the images of the added di-
rections are transversal. This last property is certainly true, out of a manifold
of codimension one, because of the condition k+ φ k- . To verify this state-
ment we consider two different possibilities. First, there is the case in which
neither the balls fc_, &_ + 1 nor the balls k+, k+ + 1 collide for te\j-,j+]',
a direct check shows then that the two added directions are linearly inde-
pendent. Second, there is the case in which at least one of the two above-
mentioned collisions occurs for ye [/_,y+]; suppose it is the fc+, k+ + 1 col-
lision. According to Lemma 2.2 the added direction becomes sufficient after
the collision, out of a codimension one manifold (defined by the condition
that the two colliding particles have parallel velocities). Since the union of
such manifolds forms a set of measure zero, this ends the proof. D

To conclude the argument we must provide a covering to which we can
apply Theorem 4.3. A covering with the necessary properties can be con-
structed by starting with two transversal 2/7 — 1 dimensional foliations: the
In — 1 dimensional sides of the elements of the covering can be chosen from
those foliations (one can convince oneself that this is the case thinking of
2n - 1 dimensional linear subspaces of R4"~2). From our hypotheses and
point (a) of Theorem 4. 3 it follows that there exist subspaces E%_, E%-k_,
Es

k+ and E^k+ defined by

t>0

EI+ = C] dφ
ί > 0

£„*-*+ = Π dφ-l^C^-^φί^xί)),
f > 0

where C(J), CLJ) stand for the unstable and stable cone for the system of j par-
ticles.

From now on we will identify any tangent spaces with a standard Eu-
clidean space of the corresponding dimensionality. Accordingly, for y =
OΊ> y2)ε$(x+> do) and y' = ( y ί 9 y ' 2 ) E $(x~, δ0)9 and for δ2 sufficiently
small, we define the manifolds

Es(y) = {/w(ί) | w e y + Es

k+ x Es

n.k+ , t e [- <52, δ2]} ,
Eu(y') = {/w(0 | w e y + EL x E^k_ , / e [- <52, <S2]} ,

and, through them, the 2n - 1 dimensional foliations 3F+ = {Es(y)}ye^^x+ίδ^
and 3F- = {Eu(yf)}y,e<%(x-^δ(j. Finally, we are able to specify the coverings' to
which we apply Theorem 4. 3. The covering of Φ(x+ , δQ)9 ^

+, is constructed
by using the foliations ^+ and φj+~j'^, while the covering of Φ(x~ , δ0),
^", is constructed by using the foliations 2?_ and φj-~j+^+. After thinking
a while it appears clear that the two coverings can be chosen so that
φi-&ΐ = φU($δ

+ = &δ, and {̂ } is a family of coverings of Φ(x, δ0) that sat-
isfy conditions bl) and b2) of Theorem 4.3.
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In addition, the intersections

9ϊ(k-) = 9ϊnΦk_(χ-9δ2)9

9i(n - k.) = yό~ n$π_ f c_(χ-, (52),
yδ

+(k+) = %

and

form ^coverings of neighborhoods ύUk_(x~,δ2), $n_k_(x~ , <52), $fc+(*+,<$2)
and $π_ f e+(.x+, (52), respectively, with the properties required to apply Theo-
rem 4. 3. This means that any element Ge(S^( )9 apart from a set of total
measure o (δ) , has an abundance of <5-long Wu- and W^-manifolds (hence of
W$- and Wζ -manifolds) near its sides (see assertion b) of Theorem 4.3) .

Moreover, according to Remark 5.8, the construction obtained through
Theorem 4. 3 in the above-mentioned neighborhoods is completely consistent
with the same construction carried out in the neighborhoods of l^(s)9 l^(s)9

lχty(s), and lχ2J(s), s e [— δ2, δ2] , so that, if the intersection of G with the neigh-
borhoods of x~ and x+ has an abundance of stable and unstable manifolds
then, all the elements G along the curves lx- and lx+ contain a large measure
of manifolds WQ, W0

S. We consider the set

(k+ ,y+) n Δ™(k. ,y_) |
) or W0

s(y) exist and their intersection with
+ J+) n ΔV(k- ,y_) is empty} .

We know already that μ(Φr(x9 <50)) = μ($(x, <5o)) (it follows from the equal-
ity μ(Jί\Ω) = Q and Lemma 5. 12). Now, given any two points w9 wf in
<%r(x9 <50), we can connect neighborhoods of w and wf by chains of WQ- and
H^os-manifolds, with intersections out of the set of zero measure where the
transversali ty of the manifolds may fail (see Lemma 5.12(vi)). Indeed, this can
be done by using a simplified version of the argument sketched in the proof
of Theorem 4.6.

As anticipated, this shows that the set Φ(x9 δ0)\^r(x9 <50) which contains
the intersection Δ(+)(k+9j+)nΔ(l\k-9j-)nΦ(x9δo) has codimension two.
By using the flow direction we obtain codimension two in ^(x).

The result is proven so far for k+ Φ k- . If k+ = k- = k, there are two
possibilities. In the first case there is a k, k + 1 collision for te(j-9j+).
When this possibility takes place it is easy to see that assertion (vi) of Lemma
5.12 holds and the argument can be completed as before. In the second
case the k9 k + 1 collision never takes place; this case corresponds to
x e A(+}(k, 0) n Δ(-\k, 0) for some &e{l , ...,«}. To discuss this last possibility
it is useful to introduce again the explicit dependency from the energy. Let
EI be the energy of the first^fc particles and E the total energy of the system.
In this case, the manifolds Wu, Ws are not in a generic position with respect
to each other: they both belong to JίktEi x ^n-k,E-ε^ This means that it is
possible to use, for example, chains of manifolds WQ, Ws in order to carry out
our argument and prove that the intersection (A(l}(k,Q)nA(±\k, 0))nΦ£ (#),
where WEl(x) = <%(x) π(Jί^El x Jtn-ktE-E^ has codimension two. The desired
result is then proven in the same fashion as in the case of Lemma 5.4.
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Singularity and Non-Interacting Sub-Systems. The statement that the corre-
sponding set is of codimension two, although of a purely topological nature, is
a consequence of the Sinai-Chernov Ansatz that will be proven in Theorem
5.14. Indeed, here we are assuming the Ansatz to prove the desired result.

Let us concentrate on a point x whose trajectory experiences a singular
collision in the past and separates into non-interacting sub-systems in the fu-
ture, the other possibility being left to^the reader. If ^(x) is a sufficiently
small neighborhood of x, then we call $ the image in °tt (x) of the singularity
manifold that intersects the trajectory of x. It then follows that $ divides the
neighborhood into two disjoint connected components.

The sets we are considering are $πΔ + (kJ) where k e {!,...,«} and
j > 0 and our goal is to show that <%(x)\(3lnΔ + (k,j)) is connected. We
notej hat ^(x)n^ has positive measure with respect to the induced measure
on $. Accordingly, by the Sinai-Chernov Ansatz, to almost all the points
y e m (x)r\$ we can apgly Theorem 4.3.

Remembering that 31 is transversal to the foliations by the local manifolds
WQ, we obtain a family of local manifolds W^y), of positive total measure,
which cross $ and therefore connect the two components of ^U (x) . This con-
cludes the proof, since almost all the manifolds WQ belong to the complement
of A + (k,j) by properties (iv)-(v) stated in Lemma 5.12. D

We still need to prove that the Sinai-Chernov Ansatz holds for the w-ball
system. We will obtain this last result by studying a stronger property.

Definition 5.13 (Generalized Ansatz). For each <g2 -manifold W a Jί in the
stable (unstable) direction (see Definition I.I in Appendix I) the following equal-
ity holds:

μw(W n {sufficient points}) = μw(W)9

where μw is the Lebesgue measure restricted to W.

The property stated in Definition 5.13 implies the Sinai-Chernov Ansatz
since, apart from manifolds of codimension three, the singularity set βfr is com-
posed of the finite union of smooth manifolds (see Appendix I) and since, for
semi-dispersing billiards, a sufficient point with a smooth trajectory will auto-
matically have the unbounded property required in the Ansatz (see [S3, LW]).

The Generalized Ansatz holds for the one-ball system where every point on
Wis sufficient (see [S, G]). We can therefore continue in our strategy and the
prove the validity of the Generalized Ansatz by induction on the number of
balls.

Theorem 5.14. If, for any m < n, the Generalized Ansatz holds and the set
is of measure zero and codimension two for the system of m balls, then the Gen-
eralized Ansatz holds also for the systems of n balls.

Proof. We discuss only manifolds in the stable direction; the other possibility
can be treated by exactly the same arguments and is left to the reader. For
each z e W we will prove that there exists δ > 0 such that
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As explained in Sect. 3 and Definition 4.2, - Ω consists of points that are
sufficient in the past so that the above statement implies Theorem 5. 14.
Choosing δ small enough we can suppose, without any loss of generality,
that there exists a #2-function W:Bδ(z)-+1L such that Wδ(z) = WnBδ(z)
= {weBδ(z)cιJί\ W(w) = Q}.

The first thing to notice is that the points in Wδ(z) that have a singularity
in the past have μ^-measure zero. In fact, a point has a non-smooth trajectory
in the past only if it belongs to the image of some singularity manifold. But
those images are all in the unstable direction (see Appendix I) and therefore
transversal to W. Consequently, the set of non-smooth points, in the past,
belonging to W is contained in a countable union of smooth sub-manifolds
of codimension one (in W) and hence is of /%-measure zero. Accordingly, the
set W c\ (Jί\(— Ω)) is contained, apart from a set of μ^-measure zero, in the
union

l ..... n}

For a definition of the sets Δ-(k, — j) see the beginning of "Non-interacting
sub-systems" in Theorem 5.2. The lemma is then equivalent to

μw(A-(k,-j)nWδ(z)) = 0 Vk e {1, . . . , n - 1} a n d y e N . (5.2)

Moreover, since T~jWis a finite collection of smooth manifolds in the stable
direction, it suffices to discuss the case j = 0.

The proof will be by contradiction: we suppose that μw(A-(k,Q)
n Wδ(z)) > 0, for some k, and we will derive a contradiction.

We use, in part, the same notation as that used in Theorem 5.2 but, for
the convenience of the reader, we again introduce most of it explicitly. The
discussion at the beginning of Appendix I (Lemma 1.3) shows that W in the
stable direction is equivalent to VW'm the unstable cone. Given w G Wδ(z), we
write w = (wi9w2), w, = (q(i\p(i)), where w^eJίk gives the positions and the
velocities of the first k balls and w2eJίn-k of the last n — k; as before we
call E(w) the energy of the point w. Analogously, for each w e Wδ(z) we will
set V^W= π(w) = (π^w), π2(w)) with πt(w) = (ξi(w), η^w)), πι(w)eJίk and

We start by defining

Wφ = {we Wδ(z) | <π(w), (^(1)(w), α(w)/><2>(w), 0, 0)> = 0} ,

where />(1), p(2) and α are defined in Definition 5.11 (where one chooses
k-=k). Essentially, W+ is the part of Wδ(z) that contains the neutral direc-
tion for the dynamics of points belonging to A _ (k, 0) . Our first claim is the
following:

Suppose it is not true. It is then possible to construct the set
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Clearly μ(B) > 0, but the points in B, by construction, have the property
that, under that product dynamics φ ί x φ ί i - k , the balls k, k + 1 never get
closer than 2R — 2δ^. Since δ± can be arbitrarily small, Lemma 3.6 (see also
Remark 3.7) implies that μ(B) = 0, in contradiction with our assumption.

We are left with the possibility

We will show that this is impossible by using an argument similar to the one
just employed; the only difference will be in the construction of the transversal
fibers. Using the previous notations the property of being in the stable direc-
tion reads :

<ίι(w),ifι(w)>^-«2(ιv), ί 2(w)>. (5.3)

It is therefore natural to define Wγ = {w e W* \ <^ι(w), f/ι(w)> ^ 0} and W2

= {weWή:\(ξ2(w),η2(w)y^O} , it then follows from (5.3) that WiuW2

= W#. In addition, since the manifold W is of class ^2, so that wh->π(w) is
a #* -function, the boundaries of W{ are <gl -manifolds of codimension one in
W. Therefore, calling W® = int W{, we have

Note that this is the only place in which we use the ^-smoothness of W. In
the following we will assume that z e Wγ and δ is so small that W% = Wγ the
other possibilities are completely analogous.

Let ^ί(z) be a sufficiently small neighborhood of z2 in R4(n~ fe). For each
w2eW(z) we define Wz

(i)(w2} = {w^ Jίk,E(z}-E(W2, \ w = (vv1 ?H>2) e J%(z)}.
From the previous discussion it follows that Wz^\w2) is contained in
J%k,E(z)-E(w2)

 and ft i§ a smooth, codimension two manifold in the stable di-
rection. Indeed, if δv = (δυv, δv2) e y^M with δvi = (δq(l\δp(l)), then the
property δ υ e f f ^ W ^ implies

0. (5.4)

Moreover, if δv^e c^Vl Wz

(1\w2), then by definition (δv^^e ^W^ . Accord-
ingly, (5.4) becomes

,δt;1> = 0. (5.5)

That is, Wz

(i)(w2) is a manifold in J?k,E(z)-E(W2) perpendicular to the flow di-
rection and to π1(w). Next, we want to check that this manifold is in the
stable direction. Since πί(w) it is not necessarily in ΛKk,E(z)-E(w2)

 we neec^ to

find another perpendicular vector to J^(1)(w2); to this end we define πf (w)
= (ξ*> nT> = nί(w) + λ(pί,0)-\-σ (0, π1 (w)) where λ and σ are chosen so that

(5.6)
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In fact, remembering that w e W* and that π (w) is perpendicular to the
flow direction, it follows that λ = 0. We can then compute

<ξί, ηf> - <ξι,1ι> + σ<£ι,/>ι> ^ 0, (5.7)

where we have used (5.3) and (5.6). The inequality (5.7), as discussed in Ap-
pendix I, implies that Wz

(l\w2) is in the stable direction. From the definition it
is also clear that the union (J J^(1)(w2) forms a neighborhood of z in W.

This means that, if we apply all the previous construction to a point z e W
which is a density point of J_(fc,0), with respect to μw, then the hypotheses
at hand imply, by Fubini's theorem, the existence of a set A(z2) <= %(z2) of
positive Lebesgue measure such that

μwΐ>w(Wz

(l\w2) n Δ _ (k, 0)) > 0 V w2 e A (z2) .

We are now ready to produce the contradiction.
We will use again the basic idea of constructing a set of positive measure in

which the trajectory, under the dynamics defined by the product of the dynam-
ics of the first k and last n — k balls (i.e. dynamics in which the balls k, k + 1
can, in principle, cross each other without interacting), has the property that
the centers of the balls k, k+ 1 are never closer that 2R minus some fixed,
arbitrarily small, amount (almost no collision possible for the true dynamics).
The proof is then concluded since the existence of such a set of positive mea-
sure is in contradiction with Lemma 3.6 (see also Remark 3.7).

Let us go ahead with the construction. By hypothesis we have that, for
each w2e^(z2), μWr(zD(W2)-alιnost all points of J^(1)(w2) are sufficient. For
each w2eA(z2) we can choose vi^e Wz

(l\w2) to be both a μ^D^-density
point of A-(k,0) and a sufficient point for the dynamics of the first k
balls. We can then use Theorem 4.3 (and the comments in Appendix II) to
see that there exists a set B(w2) <= ^ ( 1 )(w2)nZl_(A:,0) and a δ > 0 such that
μίr(zD(W2)(Jβ(w2)) > 0 and each point in B(w2) has an unstable manifold of
size δ. In fact, choosing c± close enough to one in Theorem 4.3 (b) and remem-
bering that ^(1)(w2) is in the stable direction (that is, transversal to the un-
stable manifolds), it follows that μ^L1)(w2)(^(1)(H;2)n^(1)) = o(δ). Choosing δ
small enough we can then construct the set B(w2) = (j W£E(z}-E(W2}(w).

W 6 B(W2)

Next, by the absolute continuity of the unstable foliation (see [KS]), we have
μ>k,E(Z)-E(w2)(B(w2)) > 0 where μk,E(z)-E(w2) ^s the Lebesgue measure restricted
tθ ^k,E(z)-E(w2)

Moreover, since B(w2) belongs to J_(£,0) and the configuration space
size of the unstable manifolds cannot expand in the past (see Lemma 2.3 and
Lemma 5. 10), for each point wίeB(w2) we have that the trajectory of the
point (Wi , w2) has the desired behaviour in the past. More precisely, if we
consider the product dynamics φl*φn-k on Jt^E(z}-E(^^ x Mn-^E(yf^ then
the trajectory (^ί(wι)* ^ί-fc(w2))» ^ < 0, has the property that the particles
k, k + 1 are never closer than 2R — δ. Finally, we construct the set BQ(z)
= \J 5(w2); by Fubini's Theorem, μ(BQ(z)) > 0 and this set has the same

w 2 eΛ(z 2 )

property as the sets B(w2). But this is in contradiction to Lemma 3.6 (since
our hypotheses and Theorem 5.1 ensure the necessary ergodic properties for
the systems of m < n balls) . D
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Review. Since the argument explained here may seem intricate, let us review
the logic of our induction. From the literature is known that the one-ball
system has no non-sufficient points and it is then mixing (it is actually a K-
system). Next, we suppose that, for any m < n, the set of non-sufficient points
for the system of m balls is of measure zero and codimension two and the
Generalized Ansatz (see Definition 5.13) holds for this system. This allows us
to use Theorem 5.1 (based on Theorems 4.3, 4.6) to prove the ergodicity and
mixing property of the systems of m balls. Lemma 3.6 then implies that the
set of non-sufficient points for the n balls system is of measure zero. A more
careful analysis, carried out in Theorem 5.2, shows that the set of non-suffi-
cient points for the n balls system has codimension two. Finally, Theorem
5.14 shows that the Generalized Ansatz holds for the system of n balls, there-
fore closing the induction.

6. Other Boxes (Periodic Lorentz Gas)

In this section we discuss other examples that can be treated with the same
technique as developed in the previous sections.

We start by pointing out the parts of our argument that are model-depen-
dent.

In Sect. 2 we made explicit use of the fact that the curvature K of the boun-
dary d Q of the billiard table in which the motion of the balls takes place, is
strictly positive. This is an essential feature in our discussion: a flat boundary
would not provide any hyperbolicity, thus making much more difficult the dis-
cussion of the sufficiency of the trajectories. In general it could be possible to
allow flat pieces of 3g, and even special convex ones (see [Bu3]), provided
that the invariance of the cone structure is preserved and that between two
ball-ball collisions involving any given particle k there are enough collisions
with dQ to ensure that all the non-sufficient vectors satisfy δqk = λpk (the
equivalent of Lemma 2.1).

In Sect. 3 other model-dependent hypotheses were used in an essential
way: the fact that the geometry of the boundary d Q constrains the region
which each ball can explore and the property that, when two neighboring
balls collide, the next collision involving one of them will be with the bound-
ary. The previous two conditions are all that is needed to prove Lemma 3.3,
while Lemma3.6 is a modification of the weak lemma on avoiding balls from
[KSS1], which holds in a more general situation.

Section 4 contains result that are model independent. In particular Theo-
rem 4.3, as stated, applies to any semi-dispersing billiard. Moreover, after ad-
ding some hypothesis (see [LW]), Theorem 4.3 holds for a quite general class
of symplectic maps.

Section 5 contains the proof that the hypotheses of Theorem 4.3 are in
general satisfied and that the set where this theorem cannot be applied does
not separate the phase space. The proof of hypothesis i) is referred to in
Appendix I which contains quite general arguments that hold for any semi-
dispersing billiard. Hypothesis ii) is proven at the end of Sect. 5 by a reason-
ing which relies on quite general arguments. The analysis of the set of the
non-sufficient points is contained in Theorem 5.2. Looking at the proof it is
clear that it can be generalized to show the following. Given a system of n
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balls, for which all the m<n sub-systems are mixing, the set of points with
trajectories along which the system splits into two independent sub-systems,
both in the past and in the future, is of measure zero and codimension two.
In fact, the mixing condition can be further weakened: the ergodicity of the
direct product of any two sub-dynamics suffices. In Sect. 3 we have proven
that the points with the above-mentioned property are sufficient. Obviously,
since Sect. 3 is model-dependent, Theorem 5.2 implies sufficiency on a large
set only for the billiards to which Sect. 3 applies.

In conclusion, given a system of n balls in a region Q with dispersing
boundary (K>ϋ), the only requirements needed in order to aply our tech-
niques are the ones on which depends Sect. 3. From this consideration it is
clear that a generlization of Sect. 3 is the missing ingredient to treat the gen-
eral case.

Of course, the example introduced at the end of Sect. 1 is by no means the
unique one which possesses the properties that we require. We shall describe
three different models that share such properties and, therefore, can be studied
using our strategy.

The first model is a straight channel containing obstacles. There is one ball
between each pair of obstacles. The size and shape of the obstacles confine the
balls; yet, at the sometime, allow them to collide against each other. In addition,
the narrow regions between the flat and the curved boundary, where the particles
can interact with each other, are shaped in a way that prevents two consecutive
collisions between particles - see Fig. 3.

The second model is a cylinder surface with two types of obstacles. The
obstacles that intersect the dashed lines have the same function that the ob-
stacles in the previous model, while the internal ones prevent consecutive
collisions between particles; see Fig. 4. Note that this last example can be
lifted from the cylinder to the plane providing a two-dimensional array of
scatterers.

The third example is an even simpler two-dimensional array of scatterers.
It can be constructed starting from a triangular lattice on the plane and put-
ting a scatterers around any vertex (shadowed discs in Fig. 5). If the radius of
the scatterers and the radius of the moving balls are chosen properly, then
each ball is confined among three neighboring scatterers. In addition, the
geometry of the lattice is such that it is impossible to have two consecutive
ball-ball collisions without having a collision with the boundary in between.
The last model is in fact a periodic Lorentz gas where instead of point par-
ticles we have hard spheres. As was noted before, the condition that no ball
can have two consecutive collisions with the other balls without some inter-
mediate collision (s) with the scatterers corresponds, in a sense, to the finite-
ness of the horizon in the Lorentz gas [BS, Bui]. In general, any periodic
array of obstacles that enjoy the above-mentioned properties will provide a
model to which the techniques described in this paper apply. It would be in-
teresting to investigate kinetic properties of these models, e.g. diffusion of the
energy.
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O,

Fig. 3. Straight channel with obstacles

Fig. 4. Cylindrical table with obstacles

Fig. 5. Two dimensional array of scatterers
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Appendix I (Transversality)

Let us start with some general facts. Recall that the dimensionality of the
phase space Jt of our system is 4n — 1.

Definition I.I. We say that a sub-manifold in Jί is (strictly) in the stable (un-
stable) direction if its tangent space is perpendicular to the flow direction and
contains a 2n — 1 dimensional subspace belonging (strictly) to the stable (un-
stable) cone.

Notice that, since the stable and unstable cone are not disjoint, a manifold
can be both in the stable and in the unstable direction; however, if a manifold
is strictly in one of the two directions, it cannot be simultaneously in the
other. This is emphasized by the following lemma.

Lemma 1.2. If a manifold Σl9 strictly in the stable direction, intersects a manifold
Σ2, in the unstable direction, then the intersection is transversal.

Proof. We will show that, for any zεΣ1nΣ2, dim(^Σ1 0 2ΓZΣ2} =
dim(^) — 1, where the —1 is a consequence of the fact that both manifolds
do not contain the flow direction. To see this, let At c ̂ zΣt be 2n — 1 sub-
space such that y41cC_(z), strictly and A2<^C(z). We will check that
dim(Aί@A2) = <iim(A1) + dim(A2). The only manner in which the previous
statement can fail is if there exist linearly dependent vectors ξ1 = (δql9 δpί)eAί

and ξ2 = (δq2, δp2)eA2 (let us say, ξι + ζ2 = Q). But, given that (δqί9 δp^y < 0
and <<5#25 δp2y ^ 0 for each ξl9 ξ2 φ 0, we would have then that ξ1 = ξ2 = 0. Q

In view of Lemma 1.2, it is useful to have a simple criterion to check
if a manifold is in the stable or in the unstable direction. To this end, let
us consider a codimension two manifold Σ c M whose tangent space is per-
pendicular to the flow direction (as already noticed, this corresponds to codi-
mension one in the Poincare section - see Appendix II). We will study its
tangent space SΓZΣ at a point z = (q,p) εΣ (for simplicity, the lower index z
is omitted wherever possible). Observe that 2ΓΣ is a 4n — 3 dimensional
space. Since 2ΓΣ is perpendicular to (p, 0), in SΓJi there is only one vector
rl = (*lq9*lp) perpendicular to both (^,0) and 2Γ Σ. We restrict ourselves to
2n — 1 dimensional subspaces W <=. ZΓΣ, with the property that for each δq,
<c><7,/?> = 0 there exists δp such that (δq, δp) e W. The vectors of such a sub-
space can be represented as (δq, Aδq), where A is a 2n x 2n matrix such that
(Aδq,py = 0 for each δq (the case of a more general subspace can be treated
similarly) . For these vectors we have

or, equivalently,

The last equation implies ηq + Aτηp = λp for some λ e IR.

Lemma 1.3. A codimension two manifold in ;Jlif, whose tangent space is perpen-
dicular to the βow direction, is in the stable (unstable) direction iff its normal
vector lies in the unstable (stable) cone.
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Proof. We start by proving the necessity of our condition. Let {(δq, Aδq)}
~ belong to the unstable cone. Then

for each δq such that (δq,p} = 0. According to our previous discussion, and
remembering that η e SΓM (i.e. (ηp,p} = 0), we have

<1p> 1q> = ~ <*/P, ATnp> + λ(ηp,py = - <J/P, Aηpy £ 0. (I.I)

To prove that (I.I) is a sufficient condition, consider first the case
(ηq,ηpy Φ 0. We can then define the symmetric matrix

Clearly, A satisfies (Aδq,py = 0 and the space {(δq,Aδq)} belongs to
Indeed,

Moreover,

In the case (ηq,ηpy = 0, consider the subspace generated by the vector (Q,ηq)
and the vectors (c5#,0), with (δq,ηqy = 0. The generic vector ξ, in such space,
will then have the form ξ = λ(δq,0) + μ(09ηq). A direct computation shows
that the above subspace belongs to 9~Σ and lies in the boundary of the un-
stable cone. D

We can now use the above criterion to study the manifolds that appear in
the paper.

Let us start with the codimension two manifolds that form the singularity
set ^?+. By this we mean any manifold, perpendicular to the flow direction,
composed of points for which one of future collision will be a singular one.
For the sake of brevity, in this Appendix we denote such a manifold again by
^?+ and consider the case where the next collision is a singular one. In our sys-
tem we have three types of singularities :

(1) tangent collision with 3β,

(2) tangent collision between two balls,
(3) multiple collisions.

We will consider them one by one.

(1). Suppose that the next collision for ze^?+ is a tangent collision of par-
ticle k with the boundary δg, and let η be the unit normal vector to d Q at
the collision point. Given a vector <fe5^+ , we transport it along the flow
direction until the collision point. Let us call ξ = (δq,δp) the resulting tan-
gent vector. Recall that the manifold of tangent collision at the collision point
is defined by

<A,ί>=0. (1.2)
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Suppose <<5# fc,τ/> = 0, so that δqk is tangent to dQ. Then differentiating (1.2)
yields

δqky=Q9 (1.3)

where K > 0 is the curvature of the boundary dQ at the collision point. If δqk

is perpendicular to the boundary, and therefore to pk, we obtain that

<δpk,η> = <δpk,η> + *<A, δqky = 0.

By taking linear combination we get that all the tangent vectors, belonging
to the image of ZΓZ3%* just before the collision, are perpendicular to the vec-
tor (ήq,ήp) = (0, . . . , - Kpk, 0, . . . , n, 0, . . . , 0); such a vector is not perpen-
dicular to Q?,0), but it can be used to construct the vector (ηq,ηp) =
(Kp1 , . . . , Kpk- ! , 0, Kpk+1 , . . . , Kpn, 0, . . . , Λ, 0, . . . , 0) that has all the neces-
sary properties for applying Lemma 1. 3. Since (ηq,ηpy = 0, the manifold ^?+,
at the collision point, is in the stable direction. Moreover, if we consider a
manifold J?+ before the collision (which is a pre-image of the above one), it
is strictly in the stable direction. To see this, we define vectors { β ί } f = ϊ 2 by

<&,/?> =0,

<A,ίβ> = 0. (1.4)

It follows that the vectors {βi,p,ηq} form an orthonormal basis in R2".
Moreover, setting

Av = -2Σ2 <βt,vy βt (1.5)
i = l

the vectors {(δq, Aδq) \ <<>#,/?> = 0; (δq, ηqy = 0} together with {(0,^)} span
a 2n - 1 dimensional subspace perpendicular to η. In addition, this space is in
the stable direction. In fact, the only vector not strictly contained in the stable
cone is (0, ηq) . The image of this vector, at any epoch before the collision is
(tηq,ηq), where t > 0 is the time that remains until the collision. Thus 0t+ is
strictly in the stable direction at any time preceding the collision.

(2). Suppose that the next collision for ze^?+ is a tangent collision between
particles k and k + 1 . Let η be the unit vector in the direction of the line con-
necting the centers of the two balls, at the moment of collision. In this case the
collision manifold at the collision point is defined by

<Λ+ι- Pk,η> = 0. (1.6)

As before, we differentiate (1.6):

(δpk+1- δpk, ηy + R-l(pk+ί- pk, δqk+1- δqky = 0.

The conclusion then follows in complete analogy with the previous discussion.

(3). This case splits naturally into three sub-cases: a) a particle collides with
one of its neighbors and with the boundary simultaneously; b) two particles
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collide at the same time (not with each other) and c) a particle collides simul-
taneously with two different parts of the boundary.

a) If we consider a variation at z, for which, along the infinitesimal family of
trajectories, the collisions of particle k with dQ happen simultaneously
((δqk,ηy = 0)? ώe condition for z to be a point of ^?+, owing to a contem-
poraneous collision with particle k + 1 , reads

| | fc + ι- f t | | =2R.

Differentiating now yields

Qk> = 0.

So, the vector ή = (0, . . . , qk — qk + x , qk+ 1 — qk, 0, . . . , 0) is normal to
It is then clear that ^?+ is in the stable direction at the collision time, and that
it is strictly in the stable direction at any preceding time.

b) This case is dealt in a fashion similar to the preceding one.

c) This case happens when a ball is colliding at the last reachable point in a
corner or a bottleneck. It is easy to convince oneself that, in our examples,
there is only a discrete number of positions in which a given ball, say ί, can
touch two different parts of the boundary dQ. Let q be one such position,
then the tangent vectors to the manifolds of the points that experience a
double collision of the particle / with dQ will be given by (δq,δp) with
δqt = 0. Accordingly, if υ is perpendicular to pi9 the vector η = (0, . . . , v9 . . . , 0)
is perpendicular to the signularity manifold and to the flow direction. The
same reasoning as that used before shows that &+ is strictly in the stable cone
at any time preceding the collision.

It is simple to observe that the above discussion yields analogous results
for 0ί~ (the manifolds of points that experience a singular collision in the
past); namely, 2fr~ is strictly in the unstable direction at any time following
the singular collision.

We still need to discuss the manifolds Σf and their images.
Since the discussion is completely standard, we will limit ourselves to Σ/,

and will leave the other possibilities to the reader. We study first Σf and then
its images after the /, / + 1 collision (see Definition 3.1). Let us define the
2 x 2 matrix / by

j - ( °
V - l 0

Obviously, (Jv9 t;> = 0 for all v e R2 . Using the matrix /, we can write the
condition z = (q9p)e I/ as

A + ι> = 0. (L7)

Hence, the vector (δq, δp) e yzΣ^ iff
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Thus, the vector η = (0, . . . , — Jpί+ 1 , Jpi9 0, . . . , 0) is orthogonal to
According to Lemma 1.3, Σf is then a manifold in the stable direction. Next,
we will prove that the image of Σt

l , after the /, i + 1 collision, is strictly in the
unstable direction. In analogy with (1.4), we consider vectors βt such that

and a matrix A defined as in (1.5) (apart from the minus sign). It can be
easily verified that Kc^Σj1, where V= {(δq, Aδq) \ (δq,p} = 0}. More-
over, V is contained in the unstable cone. The reason why the inclusion is
not strict is the vector (ηp, Aηp) = (ηp90): this vector lies on the boundary of
the cone. If (ηp90) becomes strictly contained in the cone after the collision,
all the space V will be strictly unstable (remember that (ηp9p) = 0). Accord-
ing to Lemma 2.2, if (pi+1 - pi9 η) φ 0 (which is warranted by the definition
of I/), the above-mentioned vector may fail to become sufficient only if

- Jpi+ i + λpi = Jpi + λpί+i

for some λ. But this is clearly impossible, out of the measure zero and codi-
mension two set {/?,- = pi+1 = 0} , since

by definition.

Appendix II (Flows and Maps)

We have already noticed that, while the results of Sect. 4 are stated for maps,
many properties are most readily checked for flows. In this Appendix we
remind the reader of the concept of the Poincare section and we show how
to translate results or the map into results for the flow and vice versa. These
things are either simple or well known so the Appendix is added only for the
sake of clarity.

The phase space M of our examples is a smooth manifold with a piecewise
smooth boundary SJ(. Physically, dJί is obtained by the boundary dQ of
the table in which the balls move and by the boundary of the cylinders that
describe the forbidden positions of the balls (the centers of two balls cannot
get closer than 2R). All these conditions are formulated in terms of the vector
q e R2n describing the positions of the balls, or, equivalently, the position of a
particle in the corresponding 2n dimensional billiard. Therefore, we can speak
about a configurational boundary of this billiard. The flow φ* in M generates,
in the In dimensional billiard picture, linear trajectories that are elastically
reflected by the configurational boundary. As we repeatedly noted before, in
the examples considered in this paper M has the configurational boundary
with non-negative curvature (semi-dispersing billiards).
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As to the boundary of M, it splits naturally into two parts: d+Jt
= {(q,p)edJ('\ <j>9η) ^0} and d-Jl = {(q,p)edJl\ <p,f/> ^0}, where
7/eIR 2 M is the inward normal vector to the configurational boundary at the
point (q,p). Physically speaking, d-Jί consists of the points just before a
collision while d+Jί consists of the points just after (remember that the flow
is not defined at the collision times).

Let us call $ the non-singular part of d+Jί', the boundary of & is con-
stituted by points that correspond to tangent or a multiple collisions. The
flow φl induces a map T: 36 -+Λ. This map is symplectic with respect to the
induced symplectic structure. In particular, the measure μ on Si induced by
the projection of the Lebesgue measure on M along the flow direction is an
invariant measure for T. The transformation T is called the Poincare map or
Poincare section asssociated to φ*. Sometimes in the literature the name of
the Poincare section is used for the pair (β, T) or for the corresponding dy-
namical system with the invariant measure μ.

The set contains two subsets: ^?+, the set of points for which a tangent or
multiple collision occurs in a future, but no such collision occurs in the past, and
$?~, the set of points for which a tangent or multiple collision occurs in a past,
but no such collision occurs in the future. Both sets have μ-measure zero, but
carry their own measures μ+ induced by μ. The map T and its positive iterates
are defined on 0t~ while the inverse map Γ"1 and its positive iterates (i.e. the
negative iterates of T} are defined on 3ί+.

From the above construction it is clear that the properties of T can be
lifted to properties of φl. Let us consider, for example, Theorem 4.3. If x is a
sufficient point with a smooth trajectory in the past and π(x) is the first
point on dJt reached by ^'(x), for t ̂  0, then Theorem 4.3 can be applied
to π(x). Since, according to Lemma 2.3, the billiard flow preserves the
property of being perpendicular to the flow direction, it is natural to define
orthogonal manifolds like the ones used in Sect. 5.

Let $(x) be a local manifold containing x such that yy^(x) is uniformly
transversal to the flow direction at y for each ye$(x) (for example an
hyperplane in Ji}. It is then obvious that it is possible to transfer the
construction carried out in Theorem 4.3 to $(x) using the flow. If we want
to produce a covering in a full neighborhood of x we can just use the cover-

ing induced on the manifolds Φ(φr(x)) for τe\-—-δ> and complete
l\\pII J » 6 / « = z

them with edges in the flow direction. We can then construct chains of, e.g.,
weak-unstable manifolds (the unstable manifold supplemented with the flow
direction) and stable manifolds and perform the same construction as dis-
cussed in Theorem 4.6. The general theory of dynamical systems also ensures
that, for semi-dispersing billiards, the mixing and ^-property of the Poincare
map imply, respectively, that the billiard flow is mixing and K [KS, S2].

Acknowledgements. We would like to thank N. Chernov, L. Chierchia, V. Donnay, S. Olla,
N. Simanyi, D. Szasz and M. Wojtkowski for helpful and enlightening discussions. Particular
thanks go to J. Guckenheimer, Director of the Center for Applied Mathematics at Cornell
University where one of us (C. Liverani) was visiting during part of this work; in addition
L. Bunimovich and C. Liverani thank the I.S.I. Foundation for the kind hospitality in I.S.I,
where this paper was finished. Finally, we would like to thank D. Szasz and S. Troubetzkoy
for carefully reading a draft of the paper.



Ergodic Systems of n Balls 395

References

[B] Boltzmann, L.: Lectures on gas theory (translation from german). Berkeley, CA:
University of California Press, 1964

[BG1] Burns, K., Gerber, M.: Continuous invariant cone families and ergodicity of flows
in dimension three. Ergodic Th. Dynam. Syst. 9, 19-25 (1989)

[BG2] Burns, K., Gerber, M.: Real analytic Bernoulli geodesic flows on S2. Ergodic
Theoret. Dynam. Syst. 9, 27-45 (1989)

[BS] Bunimovich, L. A., Sinai, Ya. G.: Statistical properties of Lorentz gas with periodic
configuration of scatterers. Commun. Math. Phys. 78, 479-497 (1981)

[Bui] Bunimovich, L. A.: Decay of correlation in dynamical systems with chaotic behav-
iour. Sov. Phys. JETPh 62, 1452-1471 (1985)

[Bu2] Bunimovich, L.A.: A theorem on ergodicity of two-dimensional hyperbolic bil-
liards. Commun. Math. Phys. 130, 599-621 (1990)

[Bu3] Bunimovich, L.A.: On billiards close to dispersing. Matem. Sbornik 95, 40-73
(1974)

[C] Chernov, N. I.: Ergodic Hamiltonian system of two particles in an external field.
Preprint

[DL] Donnay, V., Liverani, C.: Potentials on the two-torus for which the Hamiltonian
flow is ergodic. Commun. Math. Phys. 135, 267-302 (1991)

[E] Engelking, R.: Dimension theory. Amsterdam: North Holland 1978
[Gi] Gibbs, J.W.: Elementary principles in statistical mechanics. New York, 1902
[G] Gallavotti, G.: Lectures on the billiard. Lect. Notes in Phys. Vol. 38, pp. 236-295.

Berlin, Heidelberg, New York: Springer 1975
[H] Hopf, E.: Statistik der Geodatischen Linien in Mannigfaltigkeiten negativer Krύm-

mung. Ber. Verh. Sachs, akad. wiss., Leipzig 91, 261-304 (1939)
[K] . Katok, A.: Invariant cone families and stochastic properties of a smooth dynamical

systems. Preprint
[Kr] Krylov, N. S.: Works on the foundation of statistical physics. Princeton, NJ: Prince-

ton University Press 1979
[KS] Katok, A., Strelcyn, J. M. with collaboration of Ledrappier F. and Przytycki F.: In-

variant manifolds, entropy and billiards, smooth maps with singularities. Lect. Notes
in Math. Vol. 1222. Berlin, Heidelberg, New York: Springer 1986

[KSS1] Kramli, A., Simanyi, N., Szasz, D.: Three billiard balls on the v-dimensional torus is
a #-flow. Ann. Math. 133, 37-72 (1991)

[KSS2] Kramli, A., Simanyi, N., Szasz, D.: The ^-property of four billiard balls. Commun.
Math. Phys. 144, 107-148 (1992)

[KSS3] Kramli, A., Simanyi, N., Szasz, D.: A "transversal" fundamental theorem for semi-
dispersing billiards. Commun. Math. Phys. 129, 535-560 (1990); Erratum. Commun.
Math. Phys. 138, 207-208 (1991)

[KSS4] Kramli, A., Simanyi, N., Szasz, D.: Ergodic properties of semi-dispersing billiards. I
two cylindric scatterers in the 3-D torus. Nonlinearity 2, 311-326 (1989)

[LW] Liverani, C., Wojtkowski, M.P.: Ergodicity of Hamiltonian systems. Preprint
[O] Osceledec, V.I.: A multiplicative ergodic theorem: characteristic Lyapunov expo-

nents of dynamical systems. Trans. Mosc. Math. Soc. 19, 197-231 (1968)
[P] Besin, Ya. B.: Lyapunov characteristic exponents and smooth ergodic theory. Russ.

Math. Surv. 32(4), 55-114 (1977)
[SC] Sinai, Ya.G., Chernov, N.L: Ergodic properties of certain systems of two-dimen-

sional discs and three-dimensional balls. Usp. Math. Nauk 42, 153-174 (1987)
[SI] Sinai, Ya.G.: On the foundations of the ergodic hypothesis for a dynamical system

of statistical mechanics. Dokl. Akad. Nauk. SSSR 153, 1261-1264 (1963)
[S2] Sinai, Ya.G.: Dynamical systems with elastic reflections. Russ. Math. Surv. 25(1),

137-189 (1970)
[S3] Sinai, Ya. G.: The development of Krylov's ideas. In: Works on the foundations of

statistical physics, by Krylov. Princeton, NJ: Princeton University Press 1979,
pp. 239-281

[Wl] Wojtkowski, M.: Invariant families of cones and Lyapunov exponents. Ergodic
Theoret. Dynam. Syst. 5, 145-161 (1985)



396 L. Bunimovich, C. Liverani, A. Pellegrinotti and Y. Suhov

[W2] Wojtkowski, M.: A system of one dimensional balls with gravity. Commun. Math. Phys.
126, 507-533 (1990)

[W3] Wojtkowski, M.: The system of one dimensional balls in an external field II. Commun.
Math. Phys. 127, 425-432 (1990)

[W4] Wojtkowski, M.: Measure theoretic entropy of the system of hard spheres. Ergodic
Theoret. Dynam. Syst. 8, 133-153 (1988)

[W5] Wojtkowski, M.: Systems of classical interacting particles with nonvanishing Lyapunov
exponents. Preprint

[W6] Wojtkowski, M.: Private communication

Communicated by Ya. G. Sinai




