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Abstract. We show how methods from cyclic homology give easily an explicit
2-cocycle φ on the Lie algebra of differential operators of the circle such that φ
restricts to the cocycle defining the Virasoro algebra. The same methods yield also
a g-analogue of φ as well as an infinite family of linearly independent cocycles
arising when the complex parameter q is a root of unity. We use an algebra of
g-difference operators and ^-analogues of Koszul and de Rham complexes to
construct these "quantum" cocycles.

The Virasoro algebra Vir is the universal central extension of the Lie algebra
DerίCJXx"1]) of derivations of the algebra C^x"1] of complex Laurent
polynomials. This extension

has a one-dimensional centre and is defined by the following 2-cocycle α on

1 F Q'— res
12 P" β"

with P, β e C[x, x~ *]. Here P' denotes the derived polynomial of P and res is the
residue map. Set Ln = xn+1d/dx; then the cocycle α takes the familiar form

ίτ r \ w?-™*α(Lm,Lπ)=—— <5m + π > 0,

where δit j is the Kronecker symbol.
We now embed Der^O,*"1]) in the associative algebra ^ = Diff(C[x,x~1])

of all algebraic differential operators on C[x, x~*]. The set {^(d/dxy}^^ 7eN is a
basis of the complex vector space 3).

In [5] Kac and Peterson proved that the Virasoro algebra is a Lie subalgebra of
a central extension of 3) considered as a Lie algebra (see also [8] for a
generalization and [4] for related results). More precisely,
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Theorem 1. Let φ be the antisymmetric bilinear form on 2 defined by

' - ίf i

0 otherwise.

Then φ is a 2-cocycle for the Lie algebra 3). The restriction of φ to the Lie
subalgebra Dei^CIX*"1]) is the Virasoro cocycle α.

We shall first give another proof of Theorem 1 based on the following
elementary observation from cyclic homology theory: any cyclic 1 -cocycle (or
equivalently antisymmetric Hochschild 1 -cocycle) ψ on an associative algebra A,
i.e. an antisymmetric bilinear form ψ on A such that for all α0, al9 a2 in A we have

φ(α0αl5 α2) - ιp(a0, a±a2} + ιp(a2a0, α^ = 0 ,

is a 2-cocycle for the Lie algebra A with Lie bracket given by the commutators.
Now cyclic cohomology is easier to compute than Lie algebra cohomology. As a
matter of fact, the Hochschild and cyclic cohomology of differential operators was
determined by Kassel-Mitschi (see [2]), Wodzicki [7], and Brylinski-Getzler [3].
In particular, the cyclic cohomology group HCl(@) of {& turns out to be one-
dimensional. We compute a generator φ which is t&e desired Lie 2-cocycle. Our
main construction is the commutative diagram in Sect. 2. It involves five quasi-
isomorphic chain complexes and relates the standard Hochschild complex of 2 to
the deRham complex of CfXx"1].

In the second part of the paper we observe that the above-mentioned diagram
can easily be quantized, thus giving a non-commutative generalization of the
constructions of the first part. This is done by considering a ^-analogue of the
algebra of differential operators, namely the algebra Q)q of ^-difference operators
generated by x,*"1,^ and the relation

dqx-qxdq = l

which is the ^-analogue of the classical Heisenberg relation. From the quantized
diagram we get a Hochschild 1 -cocycle φq on the algebra @q. It is a one-parameter
deformation of the cocycle of Theorem 1 . Moreover, when q is a root of unity φ 1 ,
we obtain an infinite family of cocycles whose cohomology classes in the
Hochschild group H\<2),3}*} are linearly independent. Such a phenomenon is
reminiscent of what happens for de Rham cohomology in positive characteristic.
The Virasoro generators Ln deform to elements Ln(q) whose linear span is no
longer closed under the commutator operation - which is not surprising in "non-
commutative geometry" - however, they generate 3>q as an associative algebra.
This suggests the algebra of g-difference operators as a ^-analogue of the Virasoro
algebra.

Let us sketch the contents of the paper.
In Sect. 1 we give a Koszul resolution for 3) which we compare with its standard

Hochschild resolution. This enables us to construct in Sect. 2 five quasi-
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isomorphic chain complexes whose homology is the Hochschild homology of 2.
Composing the homology isomorphisms connecting these complexes yields the
cocycle φ (Sect. 3). We introduce the algebra Q)q in Sect. 4 and build up the
homological machinery necessary to deal with it in Sect. 5. In Sect. 6 we give
explicit formulas for φq and the infinite family of "exotic" cocycles arising in the
root of unity case.

1. Comparison of Resolutions for 3)

Any associative algebra 2 has a canonical resolution by free ^-bimodules, namely
the Hochschild resolution C^V where c; = 0®0®"®0 and

all tensor products being taken over the field of complex numbers. The Hochschild
resolution is too big to allow the computation of the Hochschild groups of 2. In
this section we construct a length-two resolution K^ β' for 2. We also build a
chain map

over the identity.
We need the following notations. First, let d = d/dx denote the usual derivation

on the Laurent polynomials. Let V be a two-dimensional vector space with basis
{dx,dd}. We denote by 2° the algebra 2 with opposite multiplication. We now
introduce the chain complex K^ β'. As a graded vector space it is defined by

The differential β' is the ^® ̂ -linear degree —1 map given by

Before we state the main result of this section, let us adopt the following
convention: if α, b are commuting elements in an associative algebra and if i > 0, we
define . .

..
a— b

Proposition 1. The complex K^ β' is a free Qi® 3)° -resolution of 3). There exists a
&®3t°-linear chain map

such that j"0 is the identity of 3)® 3)° and j'1(l®xidj®l) is equal to

± V^/Λ' Λ V^/ -I

if *W^O β"d to

1 (x) x ~~ * _ x ~ * 6<) 1
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Proof. We compute

Proof. Let us start with the following lemma.

Lemma 1. The set {1 ®x — x® 1,1 ®d — d® 1} is a regular sequence of commuting
elements in

ί=0

since [x, δ] = — 1 in Q) and [x, 5] = + 1 in Q)°. Let us prove these elements form a
regular sequence.

The algebra 3}®$° has no zero divisors. The quotient (3>®@ι0)/(\ ®d - d® 1) is
isomorphic to the algebra generated by x, x"1, x', x'"1, 5, d' and the relations

[x,x'] = [d,d'] = 0 and [d, x] = - [#, x'] = 1 ,

which is an iterated Ore extension and therefore has no zero divisors. This proves
the lemma.

It is easy to check that the complex K^, β' is the Koszul resolution attached to
this regular sequence (see [1, Sect. 9]). It remains to check that

which is done by a straightforward computation. We shall do it in the case / < 0 <j.
Then in 2® 2° we have

c-x®l
Ox —

2. A Diagram with Five Chain Complexes

Consider the diagram

I I

Ω°MS

I I"
Ω°

= xίdj®l-l®xίdj=b'(ί®xidj®l).

I" . I
σo

i- "T"
Qi —» 0 —+0

which we describe now.
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1. The upper two rows are obtained from the ^(x) ̂ -linear chain map

° ®Λ*V,βf

by applying the functor ®®®®go — . Then the upper row is the standard
Hochschild complex of the algebra 2.
2. We denote A = C[x, x~ *] and Ω% d the corresponding de Rham complex with
cohomology groups H%R(A). The map ΩQ

A-*H^R(A) is given by Pi— »P(0) and the
map ΩΪ-*HlR(A) by

Pdx;ι->res(P)— .

3. The algebra S is the graded algebra associated to the filtration on 2 by the order
of differential operators. It can be seen as the algebra of polynomial functions on
the cotangent bundle over C\{0}. As an algebra

The vertical map π# : Ωξ -»ί2* is induced by the null-section, i.e. by the algebra map
sending ξ to 0.

4. The maps σ^ are defined by

σl(xidjdx)=-xiξjdx9

They are obtained by composing a generalized symbol map ^(x)Λ*F->Ωf with
the duality isomorphism induced by the symplectic 2-form dx Λ dξ.

Proposition 2. The above diagram is commutative; its vertical maps are homology
isomorphisms and for any differential operator D in @, j^(D®xidj) is equal to

.
P=0 / \p=0

if i j7 = 0

As a corollary, we recover the Hochschild groups of ®, namely

fC if i = l,2

[0 otherwise.

Proof of Proposition 2. Since j is obtained from a chain map over the identity
between resolutions, j is a chain map and a homology isomorphism. Let us
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compute j1 when ί<0^j. We leave the other cases to the reader. We have

ί i \
= Y D(l®dj)(xp®xί-p-ί))dx

\p=-ι /

-ι \
d χ - ( l - ) dj-p-^Dxldp dd.

P=-I / f \P=O

The map j5 = id^®^Θ^0j8
/ is given by

x Λ dd) = [x,

With these formulas it is easy to check that σ is a chain map. It is clearly an
isomorphism, hence a homology isomorphism.

Finally, π is a homology isomorphism because of Poincare's lemma.

3. Proof of Theorem 1

We now prove Theorem 1. We define φ\2®3>-+C as

(/) = resoπ1 °σί o jί .

Since the diagram in Sect. 2 is commutative, we have φ o b = 0, which means that
for any triple (D0,D1,D2) of differential operators,

In other words, φ is a Hochschild 1-cocycle. By Proposition 2, φ is an homology
isomorphism. Therefore, its cohomology class generates H1(^,^*)^C.

We now compute φ. We need the following well-known formula.

Lemma 2. Let PeCJXx"1]. Then in D

dnp=
r

vvλere P(r) w ί//^ r-ί/z derivative of P.

Lemma 3. Let i,keZ and ;,/eN. Then φ(xidi®xkdl) is equal to

if f<0<fe, to

if k<0<i and is zero otherwise.

δi + k,j + l
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Proof. Firstly, by definition of res o π1 o σl we have

(res o π! o σJfaWdx) = — (5f> _ ̂ δjt 0

and

In order to compute φ(xidj®xkdl) we have to express xk~p~1dlxidjxp in the basis
{xldj} of 2. Now by Lemma 2,

Σ
r = 0 s =

= Σ Σ J p - i ) - ( i ' - ' +i)(' +p-')(ί+p-' -i)...

We have to look for all monomials whose degree in d is zero. These are the terms
with r=j and s = /. Hence

(res o πι o σ^(xk~p~

= -(p(p-l)...(p-7>l)(f-;>p)(ϊ-7>p-l)...(/-;>p-/+l))(5ί+

Now there are three cases:

(a) If fc = 0, then jί(xidj®dl) = 0 and therefore φ(xίdj®dl) = 0.
(b) Let fe-l^p^O. Then

Zp = (res o πι o σ!)(xfc-p- ldlχψχpdx) = 0

if p<7 — 1. If p^Λ then

^0 and f+p-j^/-l .

Therefore, if ϊ>0, Zp = 0. If i = 0, then &=; + / and i+p-j^ -1. Then Zp = 0 if
p— 7^0. It remains to consider the case p=j—ί for which Zp = 0 again.

The conclusion is that for k> 0, φ(xldj® x dl) = 0 unless / < 0 in which case it has
the desired form.
(c) Let k^p^ — 1. Then necessarily i=j + l—k>0 and

Lemma 4. T/iβ Hochschild cocycle φ is antisymmetric and hence defines a 2-cocycle
for the Lie algebra underlying <£>.

Proof. It is enough to consider the case ί<0<fc. Then by the previous lemma

Setting p=j—i + q = k — l + q9 we get

= -φ(xidj®xkdl),

which proves the antisymmetry of φ.
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We now complete the proof of Theorem 1 by showing that φ restricts to the
Virasoro cocycle α.

Lemma 5.

Proof. Let i<0<k. Then

φ(xid®xkd) = - "Σ p(k-p-l)δi+k>2\p=o
/fc-l

= (i-fe) Σ p + Σ p

fc(fc-l)(fe-2)
= 6

The other cases follow by antisymmetry.

4. The Algebra of ^-Difference Operators

Let q be a complex number φO, 1. The ^-analogue of the algebra 3) is the algebra
2q of ^-difference operators on CIXx"1]. By definition 2q is the algebra of all
linear endomorphisms of CIXx"1] generated by multiplications by Laurent
polynomials and by Jackson's ^-differentiation operator dq defined for any
polynomial P by

qx — x

As a complex associative algebra Q)q is generated by x, x~ 1, and dq and the relation

dqx-qxdq = l

which is the ^-analogue of the Heisenberg relation for differential operators. The
family {x^Jfez, je^ is a basis of 2q. It is convenient to introduce the algebra
automorphism τq of Cfox"1] defined by

τq(x) = qx.

Since τq = l+(q — l)xdq, the automorphism τq belongs to Q)q. We have the
additional relations

dqx-xdq = τq and τqx = qxτq.

The ^-differentiation operator is not a derivation, but a ^-derivation; namely for
all P,β in C^x"1] we have

It is easy to check that {x'δ Jίe z is a basis of the vector space Derg(C[x, x ~ 1]) of all
^-derivations of C^x"1].

For integers neZ and r>0, set
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and
n\ (ΛVB-l)t...(ιι-r+l)t

(H),

It is well-known that I 1 is a polynomial in the variable q. Therefore, ( ) is well-
\ / q \

defined for all complex numbers q. We have the following identities

and
(n-\

with the convention I 1 = 1 . Notice also that if q is a root of unity of order d, then

(ή)q = 0 for all multiples n of d. Using the above identities, we have the following
^-analogue of Lemma 2.

Lemma 6. Let PeCIX*'1]. Then in

Sn

qP = Σ» =

5. Homology of @q

Under the hypotheses of Sect. 4 we define a complex K^(q),β'q which is a
deformation of the Koszul complex K^ β' of Sect. 1. Let Vq be a two-dimensional
vector space with basis {dx,ddq}. As a graded space

The differential /?^ is the 2q® ̂ -linear map given by

/Fβ(l ® Idx Λ ddq) = (1 ®Λ: - 4*® 1)̂  - (^f® 3β - dq® ί)dx ,

We have β'q=Q because of the g-Heisenberg relation dqx — qxdq = l.

Proposition 3. The complex K#(q), βq is a free @q® ̂ resolution of @q.

Proof. Filter 2q by the powers of dq. The associated graded algebra Sq = gr(S>q) is
the algebra generated by x9x'19dq and the relation

dqx = qxdq.

The filtration on £&q induces a filtration on the chain complex K(q\ βq. In the
resulting spectral sequence we have

the differential d° being given by the same formulas as βq. Now the acyclicity of
E°9d° is proved in [6]. The lemma follows by a standard spectral sequence
argument.
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Corollary 1. The Hochschild homology groups of 2q are the homology groups of the
complex

Λ _ /?_

0—>ϊ

defined for any De@qby

βq(Ddx A ddq) = (xD - qDx)ddq - (qdqD - Ddq)dx ,

Moreover, there is a homology isomorphism j^(q) from the standard Hochschild
complex of 2q to the complex @q®Λ*Vφ βq such that j0(q) is the identity on 2q and
for any De3>q, Λ(9)Φ®x<^β) is e(lua^ to

Σ
p = 0

if ϊ',7'^0 and to

( Σ x'-'-^x
\p=-ί

Proof. The first assertion is a straightforward consequence of the lemma. By the
comparison theorem of resolutions there is a homology isomorphism f+(q) from
the standard Hochschild resolution to the resolution K^q), βq such that j'Q(q) is the
identity. Since βq has the same form as βr on @q®Vq, we may take j\(q)=j\. By
tensoring with @q over 0β®SJ, we get j^q) which is the same as jl in Sect. 2.

We proceed now as in Sect. 2 and compare the complex @>q®Λ*Vq,βq with a
^-analogue of the de Rham complex of S = C[x, x~ 1

9 ξ\. Let us define a degree + 1
differential on ί2| by

where σp:3ιq®ΛpVq-*Ωs~p is the linear isomorphism given by

A straightforward computation yields

Lemma 7. We have

Λ dξ .
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We shall not compute the Hochschild groups of £ ,̂ i.e. the cohomology groups
of the twisted deRham complex Ω$,δq. Instead we map the latter onto the
g-de Rham complex Ω\, dq, where

for PeA = C[x,x~1']. The cohomology of Ω%,dq is easy to compute.

Proposition 4. (a) // gφO is not a root of unit,

C l if i=0

•- y » =ι
Λ

otherwise.

(b) // q is of order d>\, we have

C IΘ 0 ex
NeZ\{0}

.Nd if ϊ =

C —0 0 CxNd— if i =
X NeZ\{0} X

0 otherwise.

dx
We denote by resα the projection of Ω\ onto C— and res^d) the projection of

Ω\ onto the summand CxNd—. The generalized residue maps res^° (NΦO)

vanish unless q is a root of unity =f= 1.
Consider the projection π# :Ω$^>Ω% defined in Sect. 2.

Lemma 8. The projection π^ is a chain map from Ω$, δq onto Ω%, dq and induces a
surjection from Hί(Ωξ9δq) = Hί(S>qίS'q) onto Hί(Ω%dq).

Proof. The first assertion follows from a simple computation. As for the second
one, it is easy to lift the generators of Hί(Ω%dq) into 1-cocycles for Ω$,δq.

To sum up we have the following commutative diagram which is the ̂ -analogue
of the diagram in Sect. 2.

i {"
0 —> @q®;.
| J.,
r\ C~)®

I J
Ω°

|jι(«) jjoίβ)

Ul Uθ

f. ^f~
i J

oi

h I
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6. A q- Analogue of the Virasoro Cocycle

As in Sect. 3 we define a Hochschild 1-cocycle φq on £$q by

Since n1oσioj1(q) induces surjections on homology, the cohomology class of φq in
Hl(3ϊ^ @%) is not zero. If moreover q is a root of unity of order d > 1, the 1 -cocycles

represent an infinite family of linearly independent cohomology classes.
We give now explicit formulas for these quantum cocycles.

Theorem 2. (a) We have

-φq(xkdl

φx
ldj

q) if k<0<i

otherwise .

(b) // q is a root of unity of order d>ί and N is an integer Φ 0, then
is equal to

min(k-l,d-l)

Σ

'δj, xkdq)

ι//c^l, ίoO ifk=0andto

Proo/ As in Sect. 3 we have to compute

Firstly, we have
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Now by Lemma 6 of Sect. 4,

Σ
r = 0 s =

(i + p-r)q(i+p-r-l)q...(i+p-r-s

We have to look for all monomials whose degree in dq is zero. These are the terms
with r=j and s = l. Hence

> o πι o σ

Composing withj^q) yields Part (b) of the theorem. Using the same arguments as
in Sect. 3, we deduce Part (a).

We conclude this paper by evaluating the cocycles φ^Nd) on the ^-analogues

of the generators of the Virasoro algebra. These elements form a basis of the vector
space Der^CIXx"1]) of the ^-derivations of CJXx"1]. In the associative
algebra &tq we have

which shows that Der4(C[x,x *]) is not closed under ordinary commutators.
Nevertheless, we have the following ^-commutator relations

Lm(q)Ln(q) - qn ~ mLn(q)Lm(q) = (n- m\Ln + m(q).

The reader may check the following formulas.

Proposition 5. For all pairs (m, n) of integers, we have

φ?d\Lm(q),Ln(q))

7~ 7 \ 2 ~ δm + n,Nd t f n = ®

0 otherwise.

One verifies that the above fractions tend to the "classical" — (n3 — n)/6 when q
tends to 1. The special case

Nd

(4-1)2

shows that the exotic cocycles φ(

q

Ήd} are not antisymmetric when N φ 0.
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