© Springer-Verlag 1992

Cyclic Homology of Differential Operators, the Virasoro Algebra and a q-Analogue

Christian Kassel

Institut de Recherche Mathématique Avancée, Université Louis Pasteur - C.N.R.S., 7 rue René Descartes, F-67084 Strasbourg, France

Received August 14, 1991

Abstract. We show how methods from cyclic homology give easily an explicit 2-cocycle φ on the Lie algebra of differential operators of the circle such that φ restricts to the cocycle defining the Virasoro algebra. The same methods yield also a q-analogue of φ as well as an infinite family of linearly independent cocycles arising when the complex parameter q is a root of unity. We use an algebra of q-difference operators and q-analogues of Koszul and de Rham complexes to construct these "quantum" cocycles.

The Virasoro algebra Vir is the universal central extension of the Lie algebra $Der(\mathbb{C}[x,x^{-1}])$ of derivations of the algebra $\mathbb{C}[x,x^{-1}]$ of complex Laurent polynomials. This extension

$$0 \rightarrow \mathbb{C} \rightarrow \text{Vir} \rightarrow \text{Der}(\mathbb{C}[x, x^{-1}]) \rightarrow 0$$

has a one-dimensional centre and is defined by the following 2-cocycle α on $Der(\mathbb{C}[x, x^{-1}])$:

$$\alpha \left(P \frac{d}{dx}, Q \frac{d}{dx} \right) = \frac{1}{12} \operatorname{res} \begin{vmatrix} P' & Q' \\ P'' & Q'' \end{vmatrix} = \frac{1}{6} \operatorname{res}(QP''')$$

with $P, Q \in \mathbb{C}[x, x^{-1}]$. Here P' denotes the derived polynomial of P and res is the residue map. Set $L_n = x^{n+1} d/dx$; then the cocycle α takes the familiar form

$$\alpha(L_m,L_n)=\frac{m^3-m}{6}\delta_{m+n,0},$$

where $\delta_{i,j}$ is the Kronecker symbol. We now embed $\text{Der}(\mathbb{C}[x,x^{-1}])$ in the associative algebra $\mathscr{D} = \text{Diff}(\mathbb{C}[x,x^{-1}])$ of all algebraic differential operators on $\mathbb{C}[x,x^{-1}]$. The set $\{x^i(d/dx)^j\}_{i\in\mathbb{Z},\ i\in\mathbb{N}}$ is a basis of the complex vector space \mathcal{D} .

In [5] Kac and Peterson proved that the Virasoro algebra is a Lie subalgebra of a central extension of \mathcal{D} considered as a Lie algebra (see also [8] for a generalization and [4] for related results). More precisely,

Theorem 1. Let φ be the antisymmetric bilinear form on \mathscr{D} defined by

$$\begin{split} \varphi \left(x^i \left(\frac{d}{dx} \right)^j, x^k \left(\frac{d}{dx} \right)^l \right) \\ &= \begin{cases} (-1)^l j! \, l! \binom{j-i-1}{\sum\limits_{p=j}} \binom{p}{j} \binom{k-p-1}{l} \right) \delta_{i+k,\,j+l} & \text{if} \quad i < 0 < k \\ -\varphi \left(x^k \left(\frac{d}{dx} \right)^l, x^i \left(\frac{d}{dx} \right)^j \right) & \text{if} \quad k < 0 < i \\ 0 & \text{otherwise}. \end{cases} \end{split}$$

Then φ is a 2-cocycle for the Lie algebra \mathcal{D} . The restriction of φ to the Lie subalgebra $Der(\mathbb{C}[x,x^{-1}])$ is the Virasoro cocycle α .

We shall first give another proof of Theorem 1 based on the following elementary observation from cyclic homology theory: any cyclic 1-cocycle (or equivalently antisymmetric Hochschild 1-cocycle) ψ on an associative algebra A, i.e. an antisymmetric bilinear form ψ on A such that for all a_0, a_1, a_2 in A we have

$$\psi(a_0a_1, a_2) - \psi(a_0, a_1a_2) + \psi(a_2a_0, a_1) = 0$$

is a 2-cocycle for the Lie algebra A with Lie bracket given by the commutators. Now cyclic cohomology is easier to compute than Lie algebra cohomology. As a matter of fact, the Hochschild and cyclic cohomology of differential operators was determined by Kassel-Mitschi (see [2]), Wodzicki [7], and Brylinski-Getzler [3]. In particular, the cyclic cohomology group $HC^1(\mathcal{D})$ of \mathcal{D} turns out to be one-dimensional. We compute a generator φ which is the desired Lie 2-cocycle. Our main construction is the commutative diagram in Sect. 2. It involves five quasi-isomorphic chain complexes and relates the standard Hochschild complex of \mathcal{D} to the de Rham complex of $\mathbb{C}[x,x^{-1}]$.

In the second part of the paper we observe that the above-mentioned diagram can easily be quantized, thus giving a non-commutative generalization of the constructions of the first part. This is done by considering a q-analogue of the algebra of differential operators, namely the algebra \mathcal{D}_q of q-difference operators generated by x, x^{-1}, ∂_q and the relation

$$\partial_q x - q x \partial_q = 1$$

which is the q-analogue of the classical Heisenberg relation. From the quantized diagram we get a Hochschild 1-cocycle φ_q on the algebra \mathcal{D}_q . It is a one-parameter deformation of the cocycle of Theorem 1. Moreover, when q is a root of unity ± 1 , we obtain an infinite family of cocycles whose cohomology classes in the Hochschild group $H^1(\mathcal{D}, \mathcal{D}^*)$ are linearly independent. Such a phenomenon is reminiscent of what happens for de Rham cohomology in positive characteristic. The Virasoro generators L_n deform to elements $L_n(q)$ whose linear span is no longer closed under the commutator operation – which is not surprising in "noncommutative geometry" –; however, they generate \mathcal{D}_q as an associative algebra. This suggests the algebra of q-difference operators as a q-analogue of the Virasoro algebra.

Let us sketch the contents of the paper.

In Sect. 1 we give a Koszul resolution for \mathcal{D} which we compare with its standard Hochschild resolution. This enables us to construct in Sect. 2 five quasi-

isomorphic chain complexes whose homology is the Hochschild homology of \mathscr{D} . Composing the homology isomorphisms connecting these complexes yields the cocycle φ (Sect. 3). We introduce the algebra \mathscr{D}_q in Sect. 4 and build up the homological machinery necessary to deal with it in Sect. 5. In Sect. 6 we give explicit formulas for φ_q and the infinite family of "exotic" cocycles arising in the root of unity case.

1. Comparison of Resolutions for \mathcal{D}

Any associative algebra \mathcal{D} has a canonical resolution by free \mathcal{D} -bimodules, namely the Hochschild resolution C'_{\star} , b' where $C'_{n} = \mathcal{D} \otimes \mathcal{D}^{\otimes n} \otimes \mathcal{D}$ and

$$b'(D_0 \otimes D_1 \otimes \ldots \otimes D_{n+1}) = \sum_{i=0}^n (-1)^i D_0 \otimes \ldots \otimes D_i D_{i+1} \otimes \ldots \otimes D_{n+1},$$

all tensor products being taken over the field of complex numbers. The Hochschild resolution is too big to allow the computation of the Hochschild groups of \mathcal{D} . In this section we construct a length-two resolution K_* , β' for \mathcal{D} . We also build a chain map

$$j': C'_{\star}, b' \rightarrow K_{\star}, \beta'$$

over the identity.

We need the following notations. First, let $\partial = d/dx$ denote the usual derivation on the Laurent polynomials. Let V be a two-dimensional vector space with basis $\{dx, d\partial\}$. We denote by \mathscr{D}^o the algebra \mathscr{D} with opposite multiplication. We now introduce the chain complex K_* , β' . As a graded vector space it is defined by

$$K_{\star} = \mathcal{D} \otimes \mathcal{D}^{o} \otimes \Lambda^{*}V$$
.

The differential β' is the $\mathcal{D} \otimes \mathcal{D}^o$ -linear degree -1 map given by

$$\beta'(1 \otimes 1 dx \wedge d\partial) = (1 \otimes x - x \otimes 1) d\partial - (1 \otimes \partial - \partial \otimes 1) dx,$$
$$\beta'(1 \otimes 1 dx) = 1 \otimes x - x \otimes 1,$$
$$\beta'(1 \otimes 1 d\partial) = 1 \otimes \partial - \partial \otimes 1.$$

Before we state the main result of this section, let us adopt the following convention: if a, b are commuting elements in an associative algebra and if i > 0, we define

$$\frac{a^{i}-b^{i}}{a-b}=a^{i-1}+a^{i-2}b+\ldots+ab^{i-2}+b^{i-1}.$$

Proposition 1. The complex K_* , β' is a free $\mathcal{D} \otimes \mathcal{D}^o$ -resolution of \mathcal{D} . There exists a $\mathcal{D} \otimes \mathcal{D}^o$ -linear chain map

$$j'\!:\!C'_{\boldsymbol{*}},b'\!\rightarrow\!K_{\boldsymbol{*}},\beta'$$

such that j'_0 is the identity of $\mathcal{D} \otimes \mathcal{D}^o$ and $j'_1(1 \otimes x^i \partial^j \otimes 1)$ is equal to

$$-(1-\delta_{i,\,0})(1\otimes\partial^{j})\frac{1\otimes x^{i}-x^{i}\otimes 1}{1\otimes x-x\otimes 1}dx-(1-\delta_{j,\,0})(x^{i}\otimes 1)\frac{1\otimes\partial^{j}-\partial^{j}\otimes 1}{1\otimes\partial-\partial\otimes 1}d\partial^{j}$$

if $i, j \ge 0$ and to

$$(1 \otimes \partial^{j})(x^{i} \otimes x^{i}) \frac{1 \otimes x^{-i} - x^{-i} \otimes 1}{1 \otimes x - x \otimes 1} dx - (1 - \delta_{j, 0})(x^{i} \otimes 1) \frac{1 \otimes \partial^{j} - \partial^{j} \otimes 1}{1 \otimes \partial - \partial \otimes 1} d\partial x$$

if
$$i < 0 \le j$$
.

Proof. Let us start with the following lemma.

Lemma 1. The set $\{1 \otimes x - x \otimes 1, 1 \otimes \partial - \partial \otimes 1\}$ is a regular sequence of commuting elements in $\mathcal{D} \otimes \mathcal{D}^o$.

Proof. We compute

$$[1 \otimes x - x \otimes 1, 1 \otimes \partial - \partial] = 1 \otimes [x, \partial] + [x, \partial] \otimes 1 = 0$$

since $[x, \partial] = -1$ in \mathcal{D} and $[x, \partial] = +1$ in \mathcal{D}^o . Let us prove these elements form a regular sequence.

The algebra $\mathscr{D}\otimes\mathscr{D}^o$ has no zero divisors. The quotient $(\mathscr{D}\otimes\mathscr{D}^o)/(1\otimes\partial-\partial\otimes 1)$ is isomorphic to the algebra generated by $x, x^{-1}, x', x'^{-1}, \partial, \partial'$ and the relations

$$[x, x'] = [\partial, \partial'] = 0$$
 and $[\partial, x] = -[\partial', x'] = 1$,

which is an iterated Ore extension and therefore has no zero divisors. This proves the lemma.

It is easy to check that the complex K_* , β' is the Koszul resolution attached to this regular sequence (see [1, Sect. 9]). It remains to check that

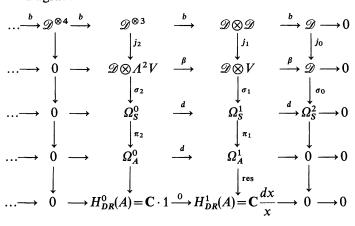
$$\beta' j_1' = j_0' b' = b'$$
,

which is done by a straightforward computation. We shall do it in the case i < 0 < j. Then in $\mathcal{D} \otimes \mathcal{D}^o$ we have

$$\begin{split} \beta'j_1'(1\otimes x^i\partial^j\otimes 1) &= (1\otimes\partial^j)(x^i\otimes x^i)\frac{1\otimes x^{-i}-x^{-i}\otimes 1}{1\otimes x-x\otimes 1}(1\otimes x-x\otimes 1)\\ &-(x^i\otimes 1)\frac{1\otimes\partial^j-\partial^j\otimes 1}{1\otimes\partial-\partial\otimes 1}(1\otimes\partial-\partial\otimes 1)\\ &= (1\otimes\partial^j)(x^i\otimes 1-1\otimes x^i)-(x^i\otimes 1)(1\otimes\partial^j-\partial^j\otimes 1)\\ &= x^i\partial^j\otimes 1-1\otimes x^i\partial^j=b'(1\otimes x^i\partial^j\otimes 1). \end{split}$$

2. A Diagram with Five Chain Complexes

Consider the diagram



which we describe now.

1. The upper two rows are obtained from the $\mathscr{D} \otimes \mathscr{D}^o$ -linear chain map

$$j': C'_*, b' \rightarrow \mathcal{D} \otimes \mathcal{D}^o \otimes \Lambda^* V, \beta'$$

by applying the functor $\mathscr{D} \otimes_{\mathscr{D} \otimes \mathscr{D}^o} -$. Then the upper row is the standard Hochschild complex of the algebra \mathscr{D} .

2. We denote $A = \mathbb{C}[x, x^{-1}]$ and Ω_A^* , d the corresponding de Rham complex with cohomology groups $H_{DR}^*(A)$. The map $\Omega_A^0 \to H_{DR}^0(A)$ is given by $P \mapsto P(0)$ and the map $\Omega_A^1 \to H_{DR}^1(A)$ by

$$Pdx \mapsto \operatorname{res}(P) \frac{dx}{x}$$
.

3. The algebra S is the graded algebra associated to the filtration on \mathcal{D} by the order of differential operators. It can be seen as the algebra of polynomial functions on the cotangent bundle over $\mathbb{C}\setminus\{0\}$. As an algebra

$$S \cong A[\xi] \cong \mathbb{C}[x, x^{-1}, \xi].$$

The vertical map $\pi_*: \Omega_S^* \to \Omega_A^*$ is induced by the null-section, i.e. by the algebra map sending ξ to 0.

4. The maps σ_* are defined by

$$\begin{split} \sigma_0(x^i\partial^j) &= -x^i\xi^j dx \wedge d\xi\,,\\ \sigma_1(x^i\partial^j dx) &= -x^i\xi^j dx\,,\\ \sigma_1(x^i\partial^j d\partial) &= -x^i\xi^j d\xi\,,\\ \sigma_0(x^i\partial^j dx \wedge d\partial) &= x^i\xi^j\,. \end{split}$$

They are obtained by composing a generalized symbol map $\mathcal{D} \otimes \Lambda^* V \to \Omega_S^*$ with the duality isomorphism induced by the symplectic 2-form $dx \wedge d\xi$.

Proposition 2. The above diagram is commutative; its vertical maps are homology isomorphisms and for any differential operator D in \mathcal{D} , $j_1(D \otimes x^i \partial^j)$ is equal to

$$-(1-\delta_{i,\,0})\bigg(\sum_{p=0}^{i-1}x^{i-p-1}\partial^jDx^p\bigg)dx-(1-\delta_{j,\,0})\bigg(\sum_{p=0}^{j-1}\partial^{j-p-1}Dx^i\partial^p\bigg)d\partial$$

if $i, j \ge 0$ and to

$$\left(\sum_{p=-1}^{i} x^{i-p-1} \partial^{j} D x^{p}\right) dx - (1 - \delta_{j,0}) \left(\sum_{p=0}^{j-1} \partial^{j-p-1} D x^{i} \partial^{p}\right) d\theta$$

if $i < 0 \le j$.

As a corollary, we recover the Hochschild groups of \mathcal{D} , namely

$$H_i(\mathcal{D}, \mathcal{D}) = \operatorname{Tor}_i^{\mathcal{D} \otimes \mathcal{D}^o}(\mathcal{D}, \mathcal{D}) \cong \begin{cases} \mathbf{C} & \text{if } i = 1, 2\\ 0 & \text{otherwise.} \end{cases}$$

Proof of Proposition 2. Since j is obtained from a chain map over the identity between resolutions, j is a chain map and a homology isomorphism. Let us

compute j_1 when $i < 0 \le j$. We leave the other cases to the reader. We have

$$\begin{split} j_1(D \otimes x^i \partial^j) &= D \otimes_{\mathscr{D} \otimes \mathscr{D}^o} j_1' (1 \otimes x^i \partial^j \otimes 1) \\ &= \left(\sum_{p=-1}^i D(1 \otimes \partial^j) (x^p \otimes x^{i-p-1}) \right) dx \\ &- (1 - \delta_{j,\,0}) \left(\sum_{p=0}^{j-1} D(x^i \otimes 1) (\partial^p \otimes \partial^{j-p-1}) \right) d\partial \\ &= \left(\sum_{p=-1}^i x^{i-p-1} \partial^j Dx^p \right) dx - (1 - \delta_{j,\,0}) \left(\sum_{p=0}^{j-1} \partial^{j-p-1} Dx^i \partial^p \right) d\partial \,. \end{split}$$

The map $\beta = id_{\mathscr{D}} \otimes_{\mathscr{D} \otimes \mathscr{D}} \beta'$ is given by

$$\beta(Ddx \wedge d\partial) = [x, D]d\partial - [\partial, D]dx,$$

$$\beta(Ddx) = [x, D],$$

$$\beta(Dd\partial) = [\partial, D].$$

With these formulas it is easy to check that σ is a chain map. It is clearly an isomorphism, hence a homology isomorphism.

Finally, π is a homology isomorphism because of Poincaré's lemma.

3. Proof of Theorem 1

We now prove Theorem 1. We define $\varphi: \mathscr{D} \otimes \mathscr{D} \to \mathbb{C}$ as

$$\varphi = \operatorname{res} \circ \pi_1 \circ \sigma_1 \circ j_1$$
.

Since the diagram in Sect. 2 is commutative, we have $\varphi \circ b = 0$, which means that for any triple (D_0, D_1, D_2) of differential operators,

$$\varphi(D_0D_1\otimes D_2) - \varphi(D_0\otimes D_1D_2) + \varphi(D_2D_0\otimes D_1) = 0.$$

In other words, φ is a Hochschild 1-cocycle. By Proposition 2, φ is an homology isomorphism. Therefore, its cohomology class generates $H^1(\mathcal{D}, \mathcal{D}^*) \cong \mathbb{C}$.

We now compute φ . We need the following well-known formula.

Lemma 2. Let $P \in \mathbb{C}[x, x^{-1}]$. Then in D

$$\partial^n P = \sum_{r=0}^n \binom{n}{r} P^{(r)} \partial^{n-r},$$

where $P^{(r)}$ is the r-th derivative of P.

Lemma 3. Let $i, k \in \mathbb{Z}$ and $j, l \in \mathbb{N}$. Then $\varphi(x^i \partial^j \otimes x^k \partial^l)$ is equal to

$$(-1)^{l}j! \, l! \begin{pmatrix} \sum_{p=j}^{j-i-1} \binom{p}{j} \binom{k-p-1}{l} \end{pmatrix} \delta_{i+k, j+l}$$

if i < 0 < k, to

$$-(-1)^{j}j! l! \binom{\sum\limits_{p=k}^{-1} {j-p-1}}{j} \binom{l-k+p}{l} \delta_{i+k, j+l}$$

if k < 0 < i and is zero otherwise.

Proof. Firstly, by definition of res $\circ \pi_1 \circ \sigma_1$ we have

$$(\operatorname{res} \circ \pi_1 \circ \sigma_1)(x^i \partial^j dx) = -\delta_{i,-1} \delta_{j,0}$$

and

$$(\operatorname{res} \circ \pi_1 \circ \sigma_1)(x^i \partial^j d\partial) = 0.$$

In order to compute $\varphi(x^i\partial^j\otimes x^k\partial^l)$ we have to express $x^{k-p-1}\partial^l x^i\partial^j x^p$ in the basis $\{x^i\partial^j\}$ of \mathcal{D} . Now by Lemma 2,

$$\begin{split} x^{k-p-1} \partial^{l} x^{i} \partial^{j} x^{p} &= \sum_{r=0}^{j} \sum_{s=0}^{l} \binom{j}{r} \binom{l}{s} x^{k-p-1} (x^{i} (x^{p})^{(r)})^{(s)} \partial^{l+j-r-s} \\ &= \sum_{r=0}^{j} \sum_{s=0}^{l} \binom{j}{r} \binom{l}{s} p(p-1) \dots (p-r+1)(i+p-r)(i+p-r-1) \dots \\ &\dots (i+p-r-s+1) x^{i+k-r-s-1} \partial^{l+j-r-s}. \end{split}$$

We have to look for all monomials whose degree in ∂ is zero. These are the terms with r = j and s = l. Hence

$$(\operatorname{res} \circ \pi_1 \circ \sigma_1)(x^{k-p-1}\partial^l x^i \partial^j x^p dx) = -(p(p-1)...(p-j+1)(i-j+p)(i-j+p-1)...(i-j+p-l+1))\delta_{i+k,\ j+l}.$$

Now there are three cases:

- (a) If k=0, then $j_1(x^i\partial^j\otimes\partial^l)=0$ and therefore $\varphi(x^i\partial^j\otimes\partial^l)=0$.
- (b) Let $k-1 \ge p \ge 0$. Then

$$Z_p = (\operatorname{res} \circ \pi_1 \circ \sigma_1)(x^{k-p-1}\partial^l x^i \partial^j x^p dx) = 0$$

if p < j-1. If $p \le j$, then

$$i+p-j-l+1=p-k+1 \le 0$$
 and $i+p-j \ge i-1$.

Therefore, if i>0, $Z_p=0$. If i=0, then k=j+l and $i+p-j\geqq-1$. Then $Z_p=0$ if $p-j\geqq0$. It remains to consider the case p=j-1 for which $Z_p=0$ again. The conclusion is that for k>0, $\varphi(x^i\partial^j\otimes x^k\partial^l)=0$ unless i<0 in which case it has

the desired form.

(c) Let $k \le p \le -1$. Then necessarily i = j + l - k > 0 and

$$\varphi(x^i\partial^j\otimes x^k\partial^l)=-(-1)^jj!\,l!\binom{\sum\limits_{p=k}^{-1}\binom{j-p-1}{j}\binom{l-k+p}{l}}{\delta_{i+k,\,j+l}}.$$

Lemma 4. The Hochschild cocycle φ is antisymmetric and hence defines a 2-cocycle for the Lie algebra underlying \mathcal{D} .

Proof. It is enough to consider the case i < 0 < k. Then by the previous lemma

$$\varphi(x^k\partial^l\otimes x^i\partial^j) = -(-1)^lj!\,l!\left(\sum_{q=i}^{-1}\binom{l-q-1}{l}\binom{j-i+q}{j}\right)\delta_{i+k,\,j+l}\,.$$

Setting p = j - i + q = k - l + q, we get

$$\varphi(x^{k}\partial^{l} \otimes x^{i}\partial^{j}) = -(-1)^{l}j! \, l! \left(\sum_{p=j}^{j-i-1} {k-p-1 \choose l} \left(\frac{p}{j} \right) \right) \delta_{i+k, j+l}$$
$$= -\varphi(x^{i}\partial^{j} \otimes x^{k}\partial^{l}),$$

which proves the antisymmetry of φ .

We now complete the proof of Theorem 1 by showing that φ restricts to the Virasoro cocycle α .

Lemma 5. $\varphi(x^i\partial \otimes x^k\partial) = \alpha(x^i\partial \otimes x^k\partial)$.

Proof. Let i < 0 < k. Then

$$\begin{split} \varphi(x^i\partial\otimes x^k\partial) &= -\left(\sum_{p=0}^{k-1}p(k-p-1)\right)\delta_{i+k,\,2} \\ &= \left((1-k)\left(\sum_{p=0}^{k-1}p\right) + \left(\sum_{p=0}^{k-1}p^2\right)\right)\delta_{i+k,\,2} \\ &= \left(-\frac{k(k-1)^2}{2} + \frac{k(k-1)(2k-1)}{6}\right)\delta_{i+k,\,2} \\ &= -\frac{k(k-1)(k-2)}{6}\delta_{i+k,\,2} = \alpha(x^i\partial\otimes x^k\partial)\,. \end{split}$$

The other cases follow by antisymmetry.

4. The Algebra of q-Difference Operators

Let q be a complex number $\pm 0, 1$. The q-analogue of the algebra \mathcal{D} is the algebra \mathcal{D}_q of q-difference operators on $\mathbb{C}[x,x^{-1}]$. By definition \mathcal{D}_q is the algebra of all linear endomorphisms of $\mathbb{C}[x,x^{-1}]$ generated by multiplications by Laurent polynomials and by Jackson's q-differentiation operator ∂_q defined for any polynomial P by

 $\partial_q(P) = \frac{P(qx) - P(x)}{qx - x}.$

As a complex associative algebra \mathcal{D}_q is generated by x, x^{-1} , and ∂_q and the relation

$$\partial_q x - qx \partial_q = 1$$

which is the q-analogue of the Heisenberg relation for differential operators. The family $\{x^i\partial_q^j\}_{i\in\mathbb{Z},\ j\in\mathbb{N}}$ is a basis of \mathscr{D}_q . It is convenient to introduce the algebra automorphism τ_q of $\mathbb{C}[x,x^{-1}]$ defined by

$$\tau_q(x) = qx.$$

Since $\tau_q = 1 + (q-1)x\partial_q$, the automorphism τ_q belongs to \mathcal{D}_q . We have the additional relations

$$\partial_q x - x \partial_q = \tau_q$$
 and $\tau_q x = q x \tau_q$.

The q-differentiation operator is not a derivation, but a τ_q -derivation; namely for all P, Q in $\mathbb{C}[x, x^{-1}]$ we have

$$\partial_q(PQ) = \tau_q(P)\partial_q(Q) + \partial_q(P)Q$$
.

It is easy to check that $\{x^i\partial_q\}_{i\in \mathbb{Z}}$ is a basis of the vector space $\operatorname{Der}_q(\mathbb{C}[x,x^{-1}])$ of all τ_q -derivations of $\mathbb{C}[x,x^{-1}]$.

For integers $n \in \mathbb{Z}$ and r > 0, set

$$(n)_q = 1 + q + \dots + q^{n-1},$$

 $(r!)_q = (1)_q(2)_q \dots (r)_q,$

and

$$\binom{n}{r}_q = \frac{(n)_q(n-1)_q \dots (n-r+1)_q}{(r!)_q}.$$

It is well-known that $\binom{n}{r}_q$ is a polynomial in the variable q. Therefore, $\binom{n}{r}_q$ is well-defined for all complex numbers q. We have the following identities

$$(-n)_q = -q^{-n}(n)_q$$
, $\binom{n}{r}_q = (-1)^r q^{r(2n-r+1)/2} \binom{r-1-n}{r}_q$,

and

$$\binom{n}{r}_q = \binom{n-1}{r}_q + q^{n-r} \binom{n-1}{r-1}_q$$

with the convention $\binom{n}{0}_q = 1$. Notice also that if q is a root of unity of order d, then $\binom{n}{q} = 0$ for all multiples n of d. Using the above identities, we have the following q-analogue of Lemma 2.

Lemma 6. Let $P \in \mathbb{C}[x, x^{-1}]$. Then in \mathcal{D}_q ,

$$\partial_q^n P = \sum_{r=0}^n \binom{n}{r}_q (\tau_q^{n-r} \partial_q^r)(P) \partial_q^{n-r}.$$

5. Homology of \mathcal{D}_{a}

Under the hypotheses of Sect. 4 we define a complex $K_*(q)$, β_q' which is a deformation of the Koszul complex K_* , β' of Sect. 1. Let V_q be a two-dimensional vector space with basis $\{dx, d\partial_q\}$. As a graded space

$$K_*(q) = \mathcal{D}_a \otimes \mathcal{D}_a^o \otimes \Lambda^* V_a$$

The differential β_q' is the $\mathcal{D}_q \otimes \mathcal{D}_q^o$ -linear map given by

$$\begin{split} \beta_q'(1\otimes 1dx \wedge d\partial_q) &= (1\otimes x - qx\otimes 1)d\partial_q - (q\otimes\partial_q - \partial_q\otimes 1)dx\,,\\ \beta_q'(1\otimes 1dx) &= (1\otimes x - x\otimes 1)\,,\\ \beta_q'(1\otimes 1d\partial_q) &= (1\otimes\partial_q - \partial_q\otimes 1)\,. \end{split}$$

We have $\beta_q^2 = 0$ because of the q-Heisenberg relation $\partial_q x - qx \partial_q = 1$.

Proposition 3. The complex $K_*(q)$, β'_q is a free $\mathscr{D}_q \otimes \mathscr{D}_q^o$ -resolution of \mathscr{D}_q .

Proof. Filter \mathcal{D}_q by the powers of ∂_q . The associated graded algebra $S_q = \operatorname{gr}(\mathcal{D}_q)$ is the algebra generated by x, x^{-1}, ∂_q and the relation

$$\partial_q x = q x \partial_q$$
.

The filtration on \mathcal{D}_q induces a filtration on the chain complex K(q), β'_q . In the resulting spectral sequence we have

$$E^0 = S_a \otimes S_a^o \otimes \Lambda^* V_a,$$

the differential d^0 being given by the same formulas as β'_q . Now the acyclicity of E^0, d^0 is proved in [6]. The lemma follows by a standard spectral sequence argument.

Corollary 1. The Hochschild homology groups of \mathcal{D}_q are the homology groups of the complex

$$0 \longrightarrow \mathscr{D}_a \otimes \Lambda^2 V_a \xrightarrow{\beta_a} \mathscr{D}_a \otimes V_a \xrightarrow{\beta_a} \mathscr{D}_a \longrightarrow 0$$

defined for any $D \in \mathcal{D}_a$ by

$$\begin{split} \beta_q(Ddx \wedge d\partial_q) &= (xD - qDx)d\partial_q - (q\partial_q D - D\partial_q)dx \,, \\ \beta_q(Ddx) &= [x, D] \,, \\ \beta_q(Dd\partial_q) &= [\partial_q, D] \,. \end{split}$$

Moreover, there is a homology isomorphism $j_*(q)$ from the standard Hochschild complex of \mathcal{D}_q to the complex $\mathcal{D}_q \otimes \Lambda^* V_q$, β_q such that $j_0(q)$ is the identity on \mathcal{D}_q and for any $D \in \mathcal{D}_q$, $j_1(q)(D \otimes x^i \partial_q^j)$ is equal to

$$-(1-\delta_{i,0})\left(\sum_{p=0}^{i-1}x^{i-p-1}\partial_{q}^{j}Dx^{p}\right)dx-(1-\delta_{j,0})\left(\sum_{p=0}^{j-1}\partial_{q}^{j-p-1}Dx^{i}\partial_{q}^{p}\right)d\partial_{q}$$

if $i, j \ge 0$ and to

$$\left(\sum_{p=-1}^{i} x^{i-p-1} \partial_q^j D x^p\right) dx - (1 - \delta_{j,0}) \left(\sum_{p=0}^{j-1} \partial_q^{j-p-1} D x^i \partial_q^p\right) d\partial_q$$

if $i < 0 \le i$.

Proof. The first assertion is a straightforward consequence of the lemma. By the comparison theorem of resolutions there is a homology isomorphism $j'_{*}(q)$ from the standard Hochschild resolution to the resolution $K_*(q)$, β_q' such that $j_0(q)$ is the identity. Since β_q' has the same form as β' on $\mathcal{D}_q \otimes V_q$, we may take $j_1'(q) = j_1'$. By tensoring with \mathcal{D}_q over $\mathcal{D}_q \otimes \mathcal{D}_q^o$, we get $j_1(q)$ which is the same as j_1 in Sect. 2. We proceed now as in Sect. 2 and compare the complex $\mathcal{D}_q \otimes \Lambda^* V_q$, β_q with a q-analogue of the de Rham complex of $S = \mathbb{C}[x, x^{-1}, \xi]$. Let us define a degree +1

differential on Ω_s^* by

$$\delta_q = \sigma_* \beta_q \sigma_*^{-1},$$

where $\sigma_p: \mathcal{D}_q \otimes \Lambda^p V_q \to \Omega_S^{2-p}$ is the linear isomorphism given by

$$\begin{split} \sigma_0(x^i\partial_q^j) &= -x^i\xi^j dx \wedge d\xi\,,\\ \sigma_1(x^i\partial_q^j dx) &= -x^i\xi^j dx\,,\\ \sigma_1(x^i\partial_q^j d\partial_q) &= -x^i\xi^j d\xi\,,\\ \sigma_2(x^i\partial_q^j dx \wedge d\partial_q) &= x^i\xi^j\,. \end{split}$$

A straightforward computation yields

Lemma 7. We have

$$\begin{split} \delta_q(x^i\xi^j) &= (q(i)_q x^{i-1}\xi^j + (q^{i+1}-1)x^i\xi^{j+1}) dx \\ &\quad + (q(j)_q x^i\xi^{j-1} + (q^{j+1}-1)x^{i+1}\xi^j) d\xi \,, \\ \delta_q(x^i\xi^j dx) &= -((j)_q x^i\xi^{j-1} + (q-1)x^{i+1}\xi^j) dx \wedge d\xi \,, \\ \delta_q(x^i\xi^j d\xi) &= ((i)_q x^{i-1}\xi^j + (q-1)x^i\xi^{j+1}) dx \wedge d\xi \,. \end{split}$$

We shall not compute the Hochschild groups of \mathcal{D}_q , i.e. the cohomology groups of the twisted de Rham complex Ω_S^* , δ_q . Instead we map the latter onto the q-de Rham complex Ω_A^*, d_q , where

$$d_a(P) = q \partial_a(P) dx$$

for $P \in A = \mathbb{C}[x, x^{-1}]$. The cohomology of Ω_A^*, d_q is easy to compute.

Proposition 4. (a) If $q \neq 0$ is not a root of unit,

$$H^{i}(\Omega_{A}^{*},d_{q}) \cong H^{i}(\Omega_{A}^{*},d) \cong \begin{cases} \mathbf{C} \cdot 1 & \text{if} \quad i=0 \\ \mathbf{C} \cdot \frac{dx}{x} & \text{if} \quad i=1 \\ 0 & \text{otherwise} \,. \end{cases}$$

(b) If q is of order d > 1, we have

$$H^{i}(\Omega_{A}^{*}, d_{q}) \cong \begin{cases} \mathbf{C} \cdot 1 \bigoplus_{N \in \mathbf{Z} \setminus \{0\}} \mathbf{C} x^{Nd} & \text{if } i = 0 \\ \mathbf{C} \cdot \frac{dx}{x} \bigoplus_{N \in \mathbf{Z} \setminus \{0\}} \mathbf{C} x^{Nd} \frac{dx}{x} & \text{if } i = 1 \\ 0 & \text{otherwise} \end{cases}$$

We denote by res_q the projection of Ω^1_A onto $C\frac{dx}{x}$ and $\operatorname{res}_q^{(Nd)}$ the projection of Ω_A^1 onto the summand $Cx^{Nd}\frac{dx}{x}$. The generalized residue maps $\operatorname{res}_q^{(Nd)}(N \neq 0)$ vanish unless q is a root of unity ± 1 .

Consider the projection $\pi_*: \Omega_S^* \to \Omega_A^*$ defined in Sect. 2.

Lemma 8. The projection π_* is a chain map from Ω_S^* , δ_q onto Ω_A^* , d_q and induces a surjection from $H^1(\Omega_S^*, \delta_q) = H_1(\mathcal{D}_q, \mathcal{D}_q)$ onto $H^1(\Omega_A^*, d_q)$.

Proof. The first assertion follows from a simple computation. As for the second one, it is easy to lift the generators of $H^1(\Omega_A^*, d_q)$ into 1-cocycles for Ω_S^*, δ_q . To sum up we have the following commutative diagram which is the q-analogue

of the diagram in Sect. 2.

6. A q-Analogue of the Virasoro Cocycle

As in Sect. 3 we define a Hochschild 1-cocycle φ_a on \mathcal{D}_a by

$$\varphi_q = \operatorname{res}_q \circ \pi_1 \circ \sigma_1 \circ j_1(q).$$

Since $\pi_1 \circ \sigma_1 \circ j_1(q)$ induces surjections on homology, the cohomology class of φ_q in $H^1(\mathcal{D}_1, \mathcal{D}_q^*)$ is not zero. If moreover q is a root of unity of order d > 1, the 1-cocycles

$$\varphi_q^{(Nd)} = \operatorname{res}_q^{(Nd)} \circ \pi_1 \circ \sigma_1 \circ j_1(q)$$

represent an infinite family of linearly independent cohomology classes.

We give now explicit formulas for these quantum cocycles.

Theorem 2. (a) We have

$$\begin{split} \varphi_{q}(x^{i}\partial_{q}^{j},x^{k}\partial_{q}^{l}) \\ &= \begin{cases} (-1)^{l}(j!)_{q}(l!)_{q} \binom{j-i-1}{p-j} q^{l(l-2k+2p+1)/2} \binom{p}{j}_{q} \binom{k-p-1}{l}_{q} \end{pmatrix} & \delta_{i+k,\,j+l} \\ &= (j!)_{q}(l!)_{q} \binom{j-i-1}{p-j} \binom{p}{j}_{q} \binom{i-j+p}{l}_{q} \delta_{i+k,\,j+l} & \text{if} \quad i < 0 < k \\ &- \varphi_{q}(x^{k}\partial_{q}^{l},x^{i}\partial_{q}^{j}) & \text{if} \quad k < 0 < i \\ 0 & \text{otherwise} \,. \end{cases} \end{split}$$

(b) If q is a root of unity of order d > 1 and N is an integer ± 0 , then $\varphi_q^{(Nd)}(x^i\partial_q^j, x^k\partial_q^l)$ is equal to

$$\begin{pmatrix} \displaystyle \sum_{p=j}^{\min(k-1,d-1)} \left[(p)_q (p-1)_q \dots (p-j+1)_q \right] \\ \\ \times \left[(i-j+p)_q (i-j+p-1)_q \dots (i-j+p-l+1)_q \right] \end{pmatrix} \delta_{i+k,\; j+l+Nd}$$

if $k \ge 1$, to 0 if k = 0 and to

$$\begin{pmatrix} \sum\limits_{\max(k,\;j-d)}^{-1} \left[(p)_q(p-1)_q \ldots (p-j+1)_q \right] \\ \times \left[(i-j+p)_q(i-j+p-1)_q \ldots (i-j+p-l+1)_q \right] \end{pmatrix} \delta_{i+k,\;j+l+Nd}$$

if k < 0.

Proof. As in Sect. 3 we have to compute

$$(\operatorname{res}_q^{(Nd)}\circ\pi_1\circ\sigma_1)(x^{k-p-1}\partial_q^lx^i\partial_q^jx^pdx).$$

Firstly, we have

$$(\operatorname{res}_q^{(Nd)} \circ \pi_1 \circ \sigma_1)(x^i \partial_q^j dx) = -\delta_{i, Nd-1} \delta_{j, 0}$$

Now by Lemma 6 of Sect. 4,

$$\begin{split} x^{k-p-1} \partial_q^l x^i \partial_q^j x^p &= \sum_{r=0}^j \sum_{s=0}^l \binom{j}{r}_q \binom{l}{s}_q (p)_q (p-1)_q \dots (p-r+1)_q \\ & \times (i+p-r)_q (i+p-r-1)_q \dots (i+p-r-s+1)_q \\ & q^{(j-r)(p-r)+(l-s)(i+p-r-s)} x^{i+k-r-s-1} \partial_a^{l+j-r-s}. \end{split}$$

We have to look for all monomials whose degree in ∂_q is zero. These are the terms with r=j and s=l. Hence

$$\begin{aligned} &(\operatorname{res}_{q}^{(Nd)} \circ \pi_{1} \circ \sigma_{1}) \left(x^{k-p-1} \partial_{q}^{l} x^{i} \partial_{q}^{j} x^{p} dx \right) \\ &= -((p)_{q} \left(p-1 \right)_{q} \dots \left(p-j+1 \right)_{q} (i-j+p)_{q} \\ & \times (i-j+p-1)_{q} \dots \left(i-j+p-l+1 \right)_{q}) \delta_{i+k,\,j+l+Nd}. \end{aligned}$$

Composing with $j_1(q)$ yields Part (b) of the theorem. Using the same arguments as in Sect. 3, we deduce Part (a).

We conclude this paper by evaluating the cocycles $\varphi_a^{(Nd)}$ on the q-analogues

$$L_n(q) = x^{n+1} \partial_q$$

of the generators of the Virasoro algebra. These elements form a basis of the vector space $\operatorname{Der}_q(\mathbb{C}[x,x^{-1}])$ of the τ_q -derivations of $\mathbb{C}[x,x^{-1}]$. In the associative algebra \mathscr{D}_q we have

$$L_m(q)L_n(q) = q^{n+1}x^{n+m+2}\partial_q^2 + (n+1)_q x^{n+m+1}\partial_q$$

which shows that $\operatorname{Der}_q(\mathbb{C}[x,x^{-1}])$ is not closed under ordinary commutators. Nevertheless, we have the following q-commutator relations

$$L_m(q)L_n(q)-q^{n-m}L_n(q)L_m(q)=(n-m)_qL_{n+m}(q).$$

The reader may check the following formulas.

Proposition 5. For all pairs (m, n) of integers, we have

$$\begin{split} \varphi_{q}^{(Nd)}(L_{m}(q),L_{n}(q)) \\ = \begin{cases} \frac{q^{-n}(n+1)_{q^{2}}-(q^{-n}+1)(n+1)_{q}+(n+1)}{(q-1)^{2}}\delta_{m+n,Nd} & \text{if} \quad n \geq 0 \\ -\frac{q^{n+2}(-n-1)_{q^{2}}-q(q^{n}+1)(-n-1)_{q}+(-n-1)}{(q-1)^{2}}\delta_{m+n,Nd} & \text{if} \quad n \leq -2 \\ 0 & \text{otherwise} \,. \end{cases} \end{split}$$

One verifies that the above fractions tend to the "classical" $-(n^3 - n)/6$ when q tends to 1. The special case

$$\varphi_q^{(2Nd)}(L_{Nd}(q), L_{Nd}(q)) = \frac{Nd}{(q-1)^2} \pm 0$$

shows that the exotic cocycles $\varphi_q^{(2Nd)}$ are not antisymmetric when $N \neq 0$.

References

- 1. Bourbaki, N.: Algèbre, Chap. 10. Algèbre homologique. Paris: Masson 1980
- 2. Brylinski, J.-L.: Some examples of Hochschild and cyclic homology. Lecture Notes in Mathematics, vol. 1271, pp. 33-72. Berlin, Heidelberg, New York: Springer 1987
- 3. Brylinski, J.-L., Getzler, E.: The homology of algebras of pseudo-differential symbols and the non-commutative residue. K-Theory 1, 385-403 (1987)
- Getzler, E.: Cyclic homology and the Beilinson-Manin-Schechtman central extension. Proc. A.M.S. 104, 729–734 (1988)
- Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. USA 78, 3308-3312 (1981)
- 6. Takhtadjian, L.A.: Noncommutative homology of quantum tori. Funkts. Anal. Pril. 23, 75-76 (1989); English translation: Funct. Anal. Appl. 23, 147-149 (1989)
- 7. Wodzicki, M.: Cyclic homology of differential operators. Duke Math. J. 54, 641-647 (1987)
- 8. Beilinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys. 118, 651-701 (1988)

Communicated by J. Fröhlich