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Abstract. Classical stable charge-symmetric two-component systems are discus-
sed in a fixed domain A a Rd. The limit N -> oo of the finite-TV canonical Gibbs
ensemble is compared with the results obtained from a discussion of the Gibbs
measures on the space of infinite configurations (the states). A first-order phase
transition in the Gibbs states is proved for a large class of interactions, including
regularized Coulomb interactions for d^. 3. In the latter case the transition is
isomorphic to an implosion/explosion transition in regularized gravitational
systems. Spherical symmetry is not assumed. A transition occurs for certain large-
domain/low-temperature pairs (/!,/?" *), but ceases to exist in the infinite-volume
ensemble. The phase transition supports the conjecture that the standard
thermodynamic-limit sequence can be nonuniform even for standard 77-stable
Hamiltonians. The results about the limit of the finite-TV ensemble are less
complete due to lack of sufficient control of the correlations. However, some
notable differences between both descriptions are shown, which are caused by
noncommuting limits. Possible physical consequences and open questions are
pointed out.

1. Introduction

For systems with suitably restricted interactions, e.g., stability and temperedness
may be required, equilibrium thermodynamics is normally defined'in terms of the
infinite volume thermodynamic limit. The monographs by Ruelle [Rue 1] and
Balescu [Bal], for instance, give an overview over the general ideas and rigorous
results. After many remarkable achievements about the existence of the T-limit,
e.g., [vHo, Yan-Lee, Lee-Yan, Rue2,3, Fis, Gril,2, Lie-Leb, Pro-Par 1,2], one
reasonable next step is to inquire into the fundamental problem of how big a
system must be in order to belong to the asymptotic regime of the T-limit.
According to the physics folklore, 1023^oo, emphasizing the laboratory
evidence. It seems to be a challenging task to give rigorous estimates for the
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minimum system size that is required for acceptable quantitative agreement of
finite systems' properties with their asymptotic limits.

A related but somewhat simpler question is whether any such minimum size is
sensitive to the thermodynamic parameters like particle density or temperature.
So one may ask whether a T-limit sequence is uniform. If a T-limit sequence is
nonuniform, then for any finite system of the sequence there will be a range of
thermodynamic parameters for which effects occur which are qualitatively
different from what is described by the T-limit.

In the latter case a definition of the thermodynamics on basis of the T-limit
would fall short of certain, perhaps important effects. We should not expect
anything like this to occur for systems describing normal matter under normal
conditions, however, for it would mean a violation of an empirical principle that
was discovered for systems of laboratory size. This is the principle of macroscopic
equivalence [Bal], which states that the relations between macroscopic quantities
like pressure, density and temperature of a substance in equilibrium do not depend
on size and shape of a vessel which confines the substance*. The principle is a basic
building block of standard thermodynamics. It ensures that the systems to which it
applies belong to the asymptotic regime of the T-limit.

On the other hand, an example of a nonuniform T-limit sequence is the overall
neutral point vortex model; see [Frό-Rue, Cam-O'N]. However, the vortex
Hamiltonian is quite peculiar for the finite system's total phase space mass is finite.
In this article we inquire rigorously into the possibility of a nonuniformity of the
T-limit sequence and a corresponding violation of the principle of macroscopic
equivalence for classical systems with standard Hamiltonian. The work is
motivated by the observation that in the mean-field approximation some
statistical mechanics models indeed behave characteristically different in a finite
volume versus in infinite space. In particular, in [Kie 1] the mean-field approxim-
ation for two-component systems with certain regularized Coulomb interactions
in a ball was shown to give the same equations as the mean-field limit for classical
gravitating one-component systems with regularized interactions [Kie 2] does. The
mean-field approximation in spherical geometry yields a phase transition which
seems to be incompatible with the principle of macroscopic equivalence.

In the present article we shall give the mean-field model of [Kie 1] a rigorous
meaning in terms of the Gibbs states on the space of infinite configurations in a
finite domain. We will be able to show that the principle of macroscopic
equivalence does not apply to these states because of a collapse phase transition.
The proof of the transition can be reinterpreted in terms of the mean-field states of
classical unstable systems. It seems to be the first proof of this kind that does not
assume spherical symmetry.

After discussing the Gibbs states we need inquire into the relation of the Gibbs
states with the finite system's measures. It is here where the hard work begins. We
will derive several results about the finite-TV correlations but will not be able to
control them fully. This part of the present paper should be viewed only as a first
step toward more complete results.

The problem is the following. For deN, let A c Rd be a (not necessarily
simple) connected open domain with volume \Λ\. The configuration space of a
system of 27V classical particles is ΛX2N, TVeN. The system's index set I c N

1 Clearly, this must not be taken literally; one refers to the leading digits of the measured
quantities
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contains an equal number of even and odd integers, such that card (I) = | H | = 27V.
Particle quantities of the one species have even integers as subscript, those of the
other odd ones. The location rf of the z th particle is a point in the /th copy of A. Let
further V\ R+ u {0} -> R be continuous and such that the potential energy C/(Π) of
the system is bounded from below by

Σ Σ (-ί)i+JV(\*t-*j\)*-BN. (1.1)
L i e Π jeΠ\{i}

Here, B> 0 is independent of N, and X is a configuration { r i E Λ \ i e Ί ί } . For
instance, if V is a function of positive type, (1.1) is satisfied with B = V(ϋ) [Fis-
Rue; Sect. III]. Presumably (1.1) is true for more general V\ however, here we take
V of positive type. Classical Coulomb systems with regularized singularity are
included as special case. Therefore, one may suggestively speak of a "Coulomb

system", with "positive" and "negative charges". Let dX =Y[ddri. The canonical

equilibrium probability measure restricted 2 to A x 2N is given by

μ(Π) (dX) = Q~1exp[-β C/(Π) (X)] dX, (1 .2a)

Q= J exp[-βU(V(X)]dX. (1.2b)
Λ*2N

As usual, β~1 = kBT^Q, where T is the temperature and kB Boltzmann's
constant. We will be concerned with the evaluation of the measure (1.2) and its
thermodynamic functions in the limit where I -> N with A fixed, and we will
compare the results with those obtained from a study of the Gibbs measures on the
infinite configurations. Occasionally we write μ(N) for μ(Π) to emphasize the cardi-
nality.

The limit envisaged above is an infinite-density limit in a finite volume, in
contradistinction to the usual infinite-volume limit at finite density. The limit is
suggested by the fact that it keeps the length scale

λ[nh = (ε0kBT\Λ\/q2^2 (1.3)

fixed, which occurs naturally in the formal mean-field model discussed in [Kie 1].
Here, ε0 is the vacuum permittivity and q the modulus of the electric charge of a
particle. Moreover A needs be close to ball shape. The scale (1.3) measures an
inhomogeneity of the one-particle mean-field density. Notice that λίnh -> oo as
M|->oo.

An infinite-density limit is not so unusual as it might appear at first sight.
Recall that an infinite-density limit in a finite volume is appropriate for the
discussion of classical systems with unstable interactions [Mes-Spo, Kie 3], for
which either the coupling constant in the interactions is rescaled ~ TV" 1 at fixed
temperature or, what is equivalent, the temperature is scaled ~ TV at fixed coupling
constant. 3 The novel feature is that our interactions are stable and no scaling of
the temperature is required. This brings about some interesting new phenomena,
as well as new technical problems.

2 The momentum space contributions to the canonical Gibbs measure factor out in the usual way
and are discarded here
3 See, however, the article by Compagner [Com] for a scaled finite-volume limit for stable
interactions which is equivalent to the T-limit
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The space of infinite configurations will be studied first. The Gibbs hypothesis
for the mean free-energy functional on the space of infinite configurations defines
the infinite configuration Gibbs measures (states). In the next section we show that
any state on the space of infinite configurations is necessarily a convex linear
combination of product states, i.e., uncorrelated states. It will also be shown that
these Gibbs states are locally charge neutral, and that they satisfy the mean-field
model that was obtained in [Kie 1] only by a heuristic variational principle. The
discussion of this mean-field model, which was started in [Kie 2] in the different
context of spherically symmetric gravitational-like systems in R3, will then be
considerably expanded in Sect. 3. In particular, a first-order phase transition will be
proven without the restriction to spherical symmetry, for a much wider class of
interactions [see (Rl) and (R2) in Sect. 3], and for all space dimensions d > 2. It
will be shown that the transition ceases to exist in the subsequent limit \Λ \ -> oo.
Some possible physical applications are outlined at the end of that section.

In subsequent sections we shall study the relation to the finite-TV problem in
more detail. It is easily shown that the finite-TV confϊgurational free energy per
particle -(27V^)~1log(MΓ2N0 has a limit/*(£ A) as TV->oo in Λ (Sect.4).
Some of its basic properties are listed, which follow by simple convexity
arguments. It will then be shown that/* does not satisfy the Gibbs variational
principle for the mean free energy of the infinite configurations, and in Sect. 5 the
discrepancy will be located in the (finite-TV) correlations. Although we can prove
that any weak limit μ of (1.2) is an average of locally charge-neutral correlation-
free states, the finite-TV correlations give a negative contribution to the free energy
which has a nonvanishing limit φ (β) as TV -> oo. Thus, for μ a weak limit of (1.2),
/* =/(//) + Φ> where f(μ) is the mean free-energy functional at μ, and φ < 0 is a
temperature-dependent shift. Note that φ is not a functional of//. Due to lack of
sufficient control of φ, we cannot (yet) prove that the weak limits of (1.2) coincide
with the Gibbs states on the space of infinite configurations, as was expected in
[Kie 1]. In this sense the validity of Gibbs' hypothesis for/(μ) has to be postulated
in the present work.

2. Permutation Invariant Probability Measures on Infinite Cartesian Products

2 a. Representation of States

The space of infinite configurations [i^-^τ^A | /eN} in the infinite Cartesian
product ΛN is considered here with the additional constraint that the even integers
are mapped to one species, the odd ones to the other. A state on the space of
infinite configurations is given by any probability measure on ΛN which is
permutation invariant against any finite permutation of indices within each
species separately and also invariant against the complete exchange of all even
against all odd integers. The space of these charge-symmetric states is denoted
& (ΛN). It is compact in the weak topology induced by the Borel sets of Λ,
moreover a convex set with invariance group. As such it has an integral
representation over the extremal invariant states <ί[^(ΛN)]. The charge-
symmetric states are a subset of the probability measures that are just permutation
invariant within even and odd integers separately, denoted here by $ (Λ™).
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Proposition 2.1. Denote Jhe even positive integers by 2N and the odd ones
by 2N — 1. Then ^[^(A^)] consists of all product measures of the type
ρf 2 N®ρf ( 2 N~ 1 } with Q^2eJί+Λ(Λ) arbitrary.

Proof. Consider the infinite group of all finite permutations on N, with elements
π:N3iΊ->π(z')eN 1-to-l onto. The special elements that leave the odd integers
unpermuted are abbreviated as πe . Let further f ) : N x N -> N; (2i — 1, 2i) h-> / be
the natural neutral pairing. Clearly, φ °πe means (2i— 1, πβ[2/])ι-»/. The
measures in 3P (ΛN) form a subspace of every space of probability measures on ΛN

that consists of measures which are invariant only under all permutations π on the
pair-index set induced by tf °πe, for given πe. Let these spaces of probability
measures be denoted by ̂ po πe (ΛN). Clearly, one can generate all possible pairings
by keeping the odd integers fixed and permuting only the even integers over all
possibilities. Thus,

The elements of ^oπe(yiN) may be recognized as permutation-invariant
probability measures of one-component systems, the "particles" being the f ) o πe-
generated pairs. Thus ^oπe(/ίN) ̂  ̂ 07ΐe([Λ x Λ]N), where & means the permu-
tation invariant probability measures for a one-component system. Clearly, the
elements of & (ΛN) can be generated from a subset of measures in ̂ po πe ([A x Λ]N)
by reinterpretation.

The extreme points of $ίoo Ke ([Λ x Λ]N) are known from Theorems 5. 1,5.2, and
5.3 of [Hew-Sav], stating that δ (&QQ πj consists of infinite products of measures in
the pair variables, denoted by A®N, where λe(J(+^® ^+,1) (Ax A). By the
above inclusion, each μe^(ΛN), interpreted as measure on [A xΛ]N, is in any
$p0πβ([Λ Xyi]N). By the representation theorem of de Finetti, each μe^(ΛN)
interpreted on [A xΛ]N has a unique integral representation μ = Jvμ(ίtt)i®N,
where v is a probability measure on (^f+ίί ® ̂ +,1) (A χ Λ), for any arbitrary
φ o πe-ρairing that determines the argument sequence of A®N. By [Hew-Sav] this is
the extremal decomposition.

The decomposition measure v does not depend on the particular choice of πe .
Since μ is also invariant against permutations of f ) o ^-generated pairs, with
πeή= π'e, it follows that v is concentrated on those Λ,@N which are invariant against
any transformation πe-+π'e. The only elements of the form Λ®N that satisfy these
invariance requirements are infinite products of one-particle measures of the form
(ρ1®ρ2)

(S>N on (AxA)^. Let inj be the natural injection; i.e.,
my.^oπe([AxA]r-+^oπβ(A^' Then injj^ ® ρ2)®N] = ρf 2 N® ρf^'1).
These products are exactly (°)πβinj[<f (^poπβ)], and thus elements of
δ (P|πe inj [̂  0 πβ]). By applying now Hewitt-Savage's Theorem 9.4 we see that any
element of ^(ΛN) has a unique integral representation over the products
ρf 2N ® ρf (2N~ », which are extreme points of ̂  (ΛN), thus all of β [0 (ΛN)]. D

By Proposition 2.1, any μ in 0>(A^} can be uniquely represented in the form

^ = Jv f,(*ι®*2)βf2 N®ί?2β ( 2 N"1 ) (2-1)

with vμ concentrated on ^®,2j (Λ x Λ) and satisfying the symmetry condition
1). (2.2)
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This guarantees the symmetry under exchange of both species.
It should be noticed that (2.1) is in general not the extremal decomposition on

9 (ΛN) but on ̂  (ΛN). We shall see in a moment, however, that the Gibbs states of
the Coulomb-like systems are averages over the ρ®N which are extremal states of

2b. Thermodynamic Functions for the States

For μe^(ΛN), a marginal measure μm^ of μ is defined by specifying its total
number of coordinates m = n+ + τz_ and its charge number q = n+ — n, .

Let N c: N contain an equal number of odd and even integers, such that
card (N) = | N | = 2n. Given μe& (ΛN), the //-entropy Sμ (N) of the set N is defined
in terms of the neutral marginal μ2n\o as

Sμ (N) = - oo μ2n , 0 is singular (2.3 a)

and

-kB J f/2 B,0log(M|2"ί72 l,,o) l\ddrl (2.3b)
Λ*2n ϊeN

ifdμ2n\o <^ dά2nr. In(2.3b),^2/ ίj0is the density of //2 r t |0, with variables indexed by
N. Permutation invariance of μ gives Sμ(N) = Sμ(N*) for all neutral sets N,N*
which have the same cardinality. The μ entropy has the following important
properties:

Proposition 2.2.
Non-positivity of Sμ (N):

Monotonic decrease of Sμ (N): If\ N | ̂  | N'| , then

Strong sub-addίtίυity of Sμ(

Proof. For the proof of Proposition 2.2 the reader may wish to reformulate Sect. 2
of ref. [Rob-Rue] (proof of Proposition 1) for the finite-volume case studied here.
A proof based entirely on Jensen's inequality is given in [Kie3]. D

This allows us to define for each μ the mean entropy s (μ) via

Definition 1.

s(μ)= l im|NΓ 15μ(N)
N-»N

with ran(s) = [— oo,0].

Remark. The limit is well defined and yields s(μ) = infN |N|"1Sμ(N). See, e.g.,
Lemma IX.2.4 of Ref. [Ell].

Proposition 2.3. The mean entropy is affίne upper semi-continuous on
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Proof. The proof that s(μ) is affϊne is elementary. The proof of upper semi-
continuity proceeds by noting that s(μ) is the lower limit of upper semicontinuous
functions, all of which are lower limits of some sequence of continuous functions.
As such one can construct a sequence of continuous functions of which s (μ) is the
lower limit, hence s(μ) is upper semi-continuous. See the corresponding proof in
[Rob-Rue]. D

Since s(μ) is affine, by (2.1) we find

with «9"(ρ) = -kB $ plog(\Λ\p)ddr for ρ(ddr) = p(r)ddr, and -oo else.
A

The energy of a set of particles N consists of two contributions, the one that
comes from the interactions among the 2n particles in N and the one that comes
from the interactions of the particles in N with the other particles of the infinite
system represented by μ. It must be defined in terms of a limiting procedure. Let
M n N = 0, with |M| = 2m. Then

£μ(N) = /μ(N)+ lim Cμ(N|M) (2.5a)
M^N\N

with the internal energy

^(N)= ί Σ (-υ'^dΓί-Γjl) 02.10 (ΓKO (2 5b)
Λ*2n i < j e N \ i e N /

and the coupling energy

i J £ £ (-iΓ' Fdi i-r j i )

ί e N j e M

The factor 1/2 in (2.5c) comes from splitting the coupling energy evenly between
the system N and the system M.

Using the representation (2.1) for μ, (2.5) is readily rewritten into a
superposition of bilinear forms involving the one-particle measures ρ1 and ρ2 . By
the symmetry condition (2.2) one finds that Cμ(N | M) is an average over terms of
the form

nm\ f V(\τ-ϊ\)(Qι-Q2)*2(dάrdάr'). (2.6)
Z Λ*2

Since V is of positive type, each term of the form (2.6) diverges to + oo as m ->oo,
unless the decomposition measure v is concentrated on those ρ1 ® ρ2 which satisfy
Q i = Q2 - In the latter case we may call μ locally charge neutral. For a locally charge
neutral μ the contribution Cμ to the energy of N vanishes. Rewriting lμ in terms of
the marginal μ2 \ 0 , we get

ι J K(|r-rΊ)/ι 2 | 0(d*rrfV) (2.7)
Λ2

for a locally charge neutral state.
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Since (1 /2ri) Eμ (N) is thus either independent of n and finite or else + oo , a mean
ideal energy of μ can now be defined by

Definition 2.

if Vμ( ) is concentrated on products of the form ρ®2, and e(μ) = + oo else.
For all μ with a decomposition measure concentrated on the charge-symmetric

product measures, the representation (2.1) gives

e(μ) = \vμ(dQ)e(Q^) = -lvtί(dβ)\ J K(|r-r'|) Q92(ddrd'r') (2.8)
Z Λ2

with the measure vμ living on ^+>1(y4). Clearly, this is a superposition of mean-
field energies, which is characteristic of ideal systems [Bal].

From (2.3) and (2.7) one can construct an ideal μ free energy for a set N via

Fμ(N) = Eμ(N)-TSμ(N). (2.9)

For e (μ) < oo the corresponding mean ideal free energy of μ is given by

Definition 3.

and /(μ) = oo else.
Proposition 2.3 implies that the mean ideal free-energy functional/(μ) is affine

lower semi-continuous on έP(A^). This means that/(μ) takes its infimum on a
subset of <ί[^(vlN)]. Moreover, since /(μ) is affine, if μ has a decomposition
measure concentrated on the charge-symmetric product measures ρ®^ one has
the useful representation

/(μ) - f vμ (rfρ)/(ff **) = J vμ (dρ) * (p) (2.10)

or else /(μ) = + oo. The functional 3P is defined by (2.10) and reads

= -i Πp(r)p(r') V(\r-t\')ddrddr'+kB f p log(|Λ|pKr (2.11)
Δ A A

for dρ <^ rfdr, and ̂  = 00 else. From (2.10) it follows that any global minimizer μ*
of/(μ) has its decomposition measure vμ* (dρ) concentrated on the §QlJί%Λ (A) of
global minimizers of 3P (p). The infimum is finite, for 0 ̂  e (μ) ^ — (1/2) F(0) and
the negativity of s(μ) imply that the functional /(μ) is bounded below.
Furthermore, any global minimizer is a solution of

P = ̂ (βV*p)H^(βV^p)ddr. (2.12)
A

The Gibbs' hypothesis for the ideal mean free energy of states μ e 9 (ΛN) naturally
leads to the mean-field picture anticipated in [Kie 1].
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3. Phase Transitions of Gibbs States and the Principle
of Macroscopic Equivalence

In the present section we study the qualitative behavior of the Gibbs states on the
infinite configurations. Notice that the mean free-energy functional (2.11) is
identical in structure to the corresponding functional constructed in the mean-
field limit for unstable systems. Unstable one-component systems have been
studied analytically in various classical [Thi, Mes-Spo, Kie 2, 3] and quantum
systems [Her-Thil, H-N-T, Pfl, Mesl-4]. For numerical evaluations see [Her-
Thi2].

This section also improves considerably on the results obtained in [Kie 2]. A
broader class of interactions is covered; a phase transition is now proven in all
space dimensions d > 2; spherical symmetry is not assumed; some regularity
results state piecewise C°° instead of the previous C2 for certain thermodynamic
functions.

Let R f-» A (R) be an increasing sequence of open domains c Rd, such that for
each R there exist open ^-dimensional balls BR and BR, with BR, <=. Λ (K)
c: BR , with fixed ratio of the radii, R'/R = h e (0, 1]. By translation invariance of
the problem, we may assume that BR is always centered at the origin.

The interaction potential V(r) will now be subject to the following additional
requirements:

(Rl) 0 ̂  V(r) ^ κr~d+2 = Vc(r)

for all r ̂  R, with J* = d- 2, and with κ~v = q

(R2) F(r)^K(2α0); r ̂  2a0 .

Here, a0 is a typical microscopic length. The charge q and the dielectric
constant for d-dimensional space, ε(

0

d), are included merely for convenience. This is
to facilitate the quantitative interpretation of the results in the special but
physically important case of Coulomb systems in three space dimensions, where
we have ε(

0

3) = ε0 . This special case was discussed under more restrictive
assumptions in [Kie 1].

Given these hypotheses, the existence of a phase transition for pairs [/?, Λ (R)]
can be proved in two main steps. The first one is to show that there are high-
temperature states, the free energy of which is bounded below independently of R.

Proposition 3.1. For Λ = Λ (R) there exists aβ* (R), with β^ (R) -> oo for R -» oo,
and a unique right-C00 mapping of [O,/?^) into a subset {p(/)(/0} of the local
minimizers of ^(p), with the special case Q\-+\Λ\~l. Moreover there exists
a β> 0 which depends on supr V but not on Λ, and for each βe[Q,β) there exists a
unique global minimizer of^(p) such that the local minimizers p(/) are global for
β < β. The corresponding mapping β H> [3? (p(/))](/?) is right-C00 on [O,/?*), and it is
bounded below by a bound J% (β) that is independent ofa0 and R.

We see that eventually [0, β) <= [0, /?„,), and the densities p(/) need not be global
minimizers on (/?,/?*). Indeed, the second step is to prove that for R and β big
enough, with β < β^ , there are other states, of type 77, say, which yield a free
energy & (p(//)) that is lower than & (p(/)).

Proposition 3.2. Let the ball Bao be contained in Λ. By p0 denote the probability
density which is homogeneously Concentrated on Bao . Then there exists a R^ such
that for R> R* there exists a fie (β, βj such that & (p0) < J% for β> β.
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This implies that, if the volume is big enough, for a huge class of interactions
there is a transition between two mappings /?ι— >[p(/)(r)](/?) and /?ι— >[p(//)(r)](/?)
which generate different types of global minimizers of 3F. The transition must take
place at a βl e [/?, /?). The next proposition shows that this transition corresponds
to a jump in the derivative of the mapping β\-+ [infρ ̂  (p)](/?)

Proposition 3.3. Letβ+ be the value of β for which a phase transition occurs between
a global minίmίzer p(/' of the high-temperature regime and at least one different
global minimizer, say p(//), of!F (p). Then the left derivative ofβ ι-> [infρ 3F (p)] (β) at
β = /?j is strictly greater than its right derivative.

According to Ehrenfest's classification the transition is of first order. Notice
that, since the densities of type p(/) are at least local minimizers of ̂  (p), a
bifurcation is excluded. Generically this rules out a phase transition of order 2 or
higher.

To simplify notation, we will write J/ for \fdάr etc.
A Λ

Proof of Proposition 3.1. The global minimizers of 3F are solutions of the Euler-
Lagrange equation (2.12), which is equivalent to

with Ψ = βV*p, and * means convolution via integration over A. Given a
solution Ψ, the corresponding density p obviously is given by eψ/§Λe

ψ . Solution
properties of this equation for Ψ are conveniently estimated with the help of the
comparison problem

with Vc defined in (Rl), and means convolution via integration over BR . Let us
refer to these equations for Ψ and Φ just by (psi) and (phi), respectively.

For BR a ball of radius R in d > 2, and for β = β(s\ with

(phi) admits the weak solution

φ(*\r) = -21og(r/Λ)

for which eφ(s) is in all LP(A) with/? < d/2. Define //(s) = /?(%Rexp(Φ(s)). Then,
for any η ̂  η(s\ the iterational sequence

χ(0) _ φ(s)

converges monotonically decreasing to a positive solution of the equation
χ = τ/F*exp(#), referred to by (chi) from now on. This follows from η ^ η(s\
Λ c BR , (R 1), and from monotonicity of exp. In particular, for every such η there
exists a pointwise minimal positive solution/, of (chi). It is obtained as limit of the
monotonically increasing iteration that starts with χ(Q) = 0 instead of Φ(s\ The
mapping η*-+χη is (obviously) pointwise monotonically increasing. It is also
arbitrarily right-differentiable on [0,τ/(s)) This follows from the implicit func-
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tion theorem together with a stability argument [Ama]. The mapping
η\-*B(η) = >/JΛ exP (#»/) is thus also right-C00 and monotonically increasing on
[0,τ/(s)), hence B has a unique inverse B'1. Abbreviate B(η(s)) by β^. (Note that
β^^β(s\ See also below.) For /?e[0,/y, the mapping β^Ψβ=χB-^β) is
pointwise monotonically increasing, furthermore right-C00 on the corresponding
open interval, and it generates uniquely solutions of (psi). These solutions of (psi)
now uniquely define solutions pβ = exp(Ψβ)/§Λexp(Ψβ) of (2.12). Obviously we
have Oh-> Ψ0 = 0, which corresponds to 0(->y30 = M Γ1.

The mapping β\-* p^ goes into the local minimizers of ̂  (p). This is proven just
in the same manner as in [Kie2, Sect. 4], there for the special case d = 3.

For /?</?= 1/2F(0), the solutions of (2.12) are unique by [Mes-Spo,
Theorem 3]. So for any β < /?the solution of (2.12) is also the global minimizer of
3F. The ordering β < β^ for R big enough follows from /?„. (R) -» oo for R -»oo,
which is shown as follows. We have β# = c(R)β(s\ with /?(s) ~ Rd~2 (see above),
and with

c(R) = f expθe,(s))/ J exp(Φ(s)) ̂  hd(d*/d) exp(-2/</*)
A BR

which follows from

fexpC^O^IS'- 11 (**)'/</
A

[recall that χ > 0 and BR, c yl (Λ)], and from

j exp(Φ(s)) = | Sd~i | Rd exp (2/d*)/d*.
BR

Consequently, on [O,/?) the mapping /?H-> p^ generates the global minimizers. The
densities p^(r) will be called to be of type /, and they get the symbol [p(/)(r)](/?).

The free-energy mappingβ\-^> 2F (p(/)) is readily shown to be bounded below on
?^) by a bound that is independent of α0 and R. Using (2.12), one shows that

for solutions of (2.12), with

[The identity between the two free-energy functionals is generically true for
solutions of (2.12), and false for general p.] The integral for the interaction energy
is positive, since V is positive. To get a lower bound it can be dropped. This and the
equivalence of (2.12) with (psi), monotonicity of β\-^Ψβ, and finally

yield

- β^ log M| > -/Γ1 log J exp (Ψβ)

J exp(Φ(s))
BR
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With BR, c:Λ(R)c: BR and R'/R = h for all R we find

for allβ^β*. D

This establishes the existence of a high-temperature phase. The solution branch
of (2.12) whose existence has just been proven carries the global minimizers of 3F
at high enough temperatures, up to infinity.

Proof of Proposition 3. 2. By (R2),

ί
A A

Furthermore,

by direct calculation. Consider 3F (p0) and J% as functions of all β e R + . Thus one
finds that ^(ρ0) ̂  ̂ * if β > β, with

To conclude the existence of a phase transition β must be smaller than /?„, . Indeed,
since β^ ^ cRd~2 (see above) and/} ~ dlog(R/ao) asymptotically, there exists R%
such that β < β^ for R > R* . D

Propositions 3.1 and 3.2 imply now the existence of β$ for which at least two
different global minimizers of & exist, provided R is big enough. This means a
phase transition at β$ for all positive bounded interactions of positive type that
satisfy (Rl) and (R2).

In the following it is shown that the transition proved in Propositions 3.1 and
3.2 is associated with a jump in the potential energy per particle

ir-r 'Drf ' rr fV (3-1)
A A

and in the entropy per particle

= -kB lplog(\Λ\p)ddr. (3.2)
A

Provided the derivative of the mapping /?h->/?[infρ^"(p)](/?) exists, it gives the
potential energy per particle. Hence, the jump in energy and entropy means a
discontinuity in the derivative of the free energy.

Proof of Proposition 3.3. Consider the functional $ given in the proof of
Proposition 3.1. Recall that for solutions p of (2.12) we have ̂ (p) = «F(ρ). Now
assume the energy of the global minimizers depends continuously on β. Then,
since the free energies of both minimizers at the phase transition are equal, it
follows from inspection of $ that
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where p(////) are now solutions of (2.12) at β$. This implies that β$ V* p(/) and
βl V* p(//) are solutions of the auxiliary equation (chi) for the same value ofη. But
since V* p(/) is pointwise smaller (as minimal solution for this η) than V* p(//) (see
the proof of Proposition 3.1), this gives a contradiction.

Therefore the energy and the entropy, and thus the derivative of inf 3F, all must
be discontinuous. Since the energy is always a decreasing function of β (a general
fact), further it follows that <f (p(/)) > <?(p(//)), where <?(p(////)) is the left/right
derivative of β inf ̂  at β% . D

Remark 1. The condition (Rl) can obviously be relaxed to 0 ̂  V < Cr~d+2 for
any positive C. Presumably it can be relaxed to | F(r)| < Cr~d+2.

Remark 2. The proof obviously fails for 2-dimensional systems. For certain non-
Coulomb interactions in two space dimensions one can argue in favor of a finite-
volume phase transition of first order just by noting the identity of the
mathematical problem to the corresponding one for one-component unstable 2-D
systems. Dynamical computer simulations indicating phase transitions for such
systems have been studied recently in [C-B-R], [P-N-T].

Because of the jump in the energy we call the new phase below the high-
temperature regime the collapsed phase.

The phase transition disappears when one passes over to the infinite-density
infinite-volume ensemble. The appropriate objects to study are now the measures
| Λ | p. If A (R) is some increasing sequence of domains which converges to Rd any
Λ' will eventually be contained in Λ(R). On any fixed Λ' we have

Lemma 3.1. For β < oo any equilibrium density \A\p converges pointwise to the
constant value 1 as R -> oo.

Proof. Let | Λ | h - > | y ί | ρ ( | Λ | ) be any sequence of solutions of the family of
equations (2.12) (viewing Λ as a parameter), with β given. Taking the convolution
product of (2.12) with V, observing (Rl) as well as V < K(0) < oo, one finds

and furthermore

for K some fixed positive constant that depends on h. Recall that oo means
convolution over BR . Thus p*F-»Oas, f t ->oo. This estimate can be combined
with Jensen's inequality to yield

as R -> oo. Here, J^] is the homogeneous mean of g over Λ. On the other hand,
applying the above estimate for p * V to the normalizing integral in (2.12) we find
that on any A' <= A (R)

\A\p ^ exp {-/?exp[£K(0)] KR2~d} / 1

as R-^co. D

Remark 1. By Lemma 3.1 the homogeneity of the one-point density in the T-limit
is recovered for the Gibbs states.

Remark 2. The recent review article by Bavaud [Bav] gives further results
regarding the infinite- volume limit of similar equations.
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Lemma 3.1 leaves open what happens at β = oo. For any finite A, i.e., not
necessarily a ball, (2.12) converges to (5(r — r0) as β -> oo, with r0 some point in A
(see [Kie 2] for a proof). In this sense the delta function is a zero-temperature fixed
point, and one may conjecture that the phase transition is shifted to zero
temperature as Λ -> IRA We are now able to address the question of uniformity
of the T-limit sequence. Theorem 3.1 summarizes what happens if one fixes β and
takes A -> Rd in the infinite-density ensemble.

Theorem 3.1. There exists at least one βfor which the infinite-density Gίbbs states
and corresponding mean thermodynamic functions of the finite-volume canonical
ensemble undergo a phase transition when R is varied for this value ofβ. Either the
transition occurs at a discrete value R^ (β) or for all R in some interval there exists a
line of multiple phases. On the other hand, if β < β, which defines the high-
temperature regime, no phase transition occurs in the measures if R is varied. A
discrete transition corresponds to a jump in the mean ideal energy and entropy.

Proof. Obvious. D

Remark. Presumably a jump occurs in the pressure, counted per particle. The
jump in the pressure means that the transition is anomalous.

Under the hypotheses that the Gibbs states, defined by the Gibbs postulate for
the mean free energy on the space of infinite configurations, represent the
physically relevant equilibrium states at sufficiently high density, and with the
assumptions on the interaction V as above, it follows that the T-limit sequence is
nonuniform for at least one β. Presumable this is true for a whole interval of β
values beyond the critical β. Starting with a finite system in some finite domain at
sufficiently low temperature in the collapsed state, passing over to bigger domains,
keeping the temperature and the average density fixed (the usual T-limit
sequence), results in a drastic change in the density profile to an almost
homogeneous state in a region of big domains. Only after that happened the
system settles down in accord with the principle of macroscopic equivalence and
approaches the state predicted by the T-limit. This might have some consequences
in situations in which (Coulomb) systems have extremely high density. Presum-
ably such densities are only available in the interior of stars [Sha-Teu]. One can
conceive of some internal collapse which may ignite some bigger spectacle.

Whether the Gibbs states are indeed the physically relevant states is, however,
an open question so far. In the next sections we investigate the relation with the
finite TV problem in some detail.

4. The Limit N -» oo of the Thermodynamic Functions

We now come to the discussion of the limit 7V-»oo, A fixed, of the finite-Λf
thermodynamic functions. The free energy of the measure (1.2) is

,β)], (4.1)

where Q is given in (1.2b). The configurational energy is

E(N,Λ,β)= J U*>μ®(dX) = df[βF(N,Λ,β)]. (4.2)
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The configurational entropy is given by

S=-kB J log(\Λ\2Ndμ<V/dX)μW(dX)=kBβ
2dβF(N,Λ,β). (4.3)

Λ*2N

We first prove that the free energy per particle (l/2N)F(N,Λ,β) has a limit
f*(Λ, β). For β \ 0, it is readily shown that F^-NV, where

V=\ΛΓ2 J V(\r-τ'\)ddrddr' (4.4)
A x

and the existence of lim F/2 N is trivial for β = 0. Let therefore β > 0 from now
on. °̂°

Proposition 4.1. For β > 0, lim (1/2 TV) F(#, /I, j f f ) =/* (Λ, β) exists, with
N-+OO

f*(Λ, β)= m f ( l / 2 N ) F ( N , Λ , β ) . The mapping β^>βf*(Λ, β) is strictly decreas-
NeN

ing, concave, nonpositive, and right continuous on [0, oo). The mapping β\-^f*(Λ, β)
is nonincr easing, negative, and left continuous on (0, oo].

Proof. The existence of a limit of (ί/2N)F(N,A,β) follows from Griffiths'
argument [Gri2, Sect. Ill B], which shows that the free energy of a charge-
symmetric system is subadditive with respect to the number of particles. The free
energy per particle is bounded below by —B/2, by stability. It follows that
(ί/2N)F(N,Λ,β) converges to its infϊmum (e.g., [Ell, Lemma IX.2.4]). This
concludes the existence part of the proof.

From dβE = E2-IU2μ®(dX)£0 for T V < o o , and from

E(N,Λ,β)-^>-NV< 0, it follows now with (4.2) that β^βf* is a limit of
concave, strictly decreasing mappings on [0, oo). Concavity over [0, oo), continuity
on (0, oo), and strict decrease on [0, oo) follow. This implies right continuity at
β = 0. Nonposίtivity ofβt-+βf* follows from the decrease and from/?/* \β=0 = 0.
The latter follows from the Gibbs inequality for the canonical free energy [Gib,
Ch. XI, Thm. Ill] with a homogeneous probability measure as trial measure. This
gives F(N,Λ,β)^-NV. Together with F/2N^-B/2 it now follows that
βF\β=Q = Q for all TV.

This also proves F/2N < 0, hence /* < 0 strictly. Continuity of β^f* on
(0, oo) is obvious. Left continuity at β = oo follows from the Gibbs inequality by
choosing as trial measures products of identical measures with compact support a
ball with radius shrinking ~β~ l. As β -> oo, the free energy per particle of such
molified Dirac measures converges to minF/2TV, from which left continuity

β
follows. Nonincrease of /?h-»/* follows from the second equation in (4.3) and the
fact that (4.3) takes its maximum value 0. D

As corollary follows:

Corollary 4.1. The limits lim (ί/2N)E(N,Λ9β) and lim (1/2 TV) S (N, A, β) exist
ΛT-» oo ΛT-» oo

simultaneously except for an at most enumerable set of values of β. The limit
functions, where they exists, are given by e*(Λ,β) = dβ[βf*(Λ9βy\ and
s*(Λ,β) = kBβ

2dβf*(Λ,β). The mapping β\-+e*(Λ,β) is negative, nonincreasing
and almost everywhere continuous. The mapping β±-+s*(Λ,β] is nonpositive,
nonincreasing, and almost everywhere continuous.
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Proof. The claim follows from concavity of β\-+βf*. See, for instance, [Gril,
Appendix A]. D

The above results follow from standard arguments. What makes the problem
challenging is the following.

Proposition 4.2. For any admissible Λ9 the strict inequality f* < inf 3F (p) holds
for allβe(0,oo).

Proof. By Proposition 4.1 and Gibbs' variational principle,

with λe(M(x)M~)+Λ(Λ*2) absolutely continuous, and

1 ,

the Gibbs free-energy functional per particle for TV = 1 (one pair). The unique
global minimizer λ* of φ is given by λ* = μ(N=i). Obviously, μ(1) is not a product
measure. Since φ(λ)\λ=Q®ρ = &(p) for absolutely continuous ρeJK+fί(Λ)9

Proposition 4.2 is proved. D

The procedures of taking the limit of infinitely many variables and of
minimizing the free energy obviously are noninterchangeable at the level of the
thermodynamic functions. The differences are rooted in the correlations of the
finite-TV systems, into which we have to inquire next.

5. Some Results about Correlations

Let us begin with a discussion of the energy functional. The energy (4.2) of a
system of 27V particles can be rewritten in terms of expectations taken with the
second marginals (both neutral and non-neutral) of μ(N\ It becomes a sum of a
term proportional to N and another one proportional to TV2.

E(N,Λ,β) = -N f V(\*-r'\)μ^\(ddrddr')
Λ*2

+ 7V2 f V(\τ-rt\)[μ^2^μ^0\(ddrddrf). (5.1)
Λ x 2

(The appearance of μ(^2 is of course by choice, since μ^ 2 = /4T-2 •) Let the first
integral in (5.1) be abbreviated by

-\ J K(|r-rΊ)M?2(rf<WV) = e<*> (5-2)
L Λ*2

and the second one by

N f F(|r-rΊ)[/Λ?2-/Λ7oK^V) = ε<">. (5.3)
Δ Λx2

To discuss their behavior as TV -> GO one needs the following lemma.
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Lemma 5.1. The decomposition measure v of any weak limit point μ of {μ(N)} is
concentrated on the charge-symmetric product measures ρ®N.

Proof. If μ(N[k])^μ for a subsequence N(k) -> oo, then

^ = fvμ(*ι®*2)ρf2 N®ρ?2 N-1.

By (2.2) one finds

ί Vμ2\2 = R(*ι ® <4?2) ̂  Vρf 2 + f Vρf 2] ^ 0

which together with V ̂  B implies

0^ \ime(N[k])^-^V(Q).
fc-»oo 2

This and - V ̂  N~ 1 E(N9 Λ, β) ^ - V(ϋ) implies that ΛΓ 1 ε(N) -> 0 for ΛΓ -> oo .
After rewriting μ with the aid of the representation (2.1), we find

Since F is of positive type, it follows that jF[μ2 |2 — A^IO! ^ 0 with equality
holding only for v concentrated on charge-symmetric products. D

This establishes local charge neutrality of the weak limit points of the
measures. The analog for the Gibbs states on the infinite configurations was
proved in Sect. 2.

An immediate consequence of Lemma 5.1 is

Corollary 5.1. If μ(N[k]} -^μ for a subsequence N(k) -> oo, then e(N[k]} -» e(μ).

Proof. Follows from the definition of weak convergence. D

Since the correlations contribute in the limit to the energy, this must happen
through the integral (5. 3). By Corollaries 4.1 andS.l it follows that, given β and Λ,
for any subsequence {ΛΓ[fc]|fceN} such that (2N[k])~1 E(N[klΛ,β) -+e* and

μ, there exists a limit

Since for almost all β the limit of (27V) x E(N, Λ, β) exists, the index (e; μ) can
be replaced by a single index (μ) for almost all β.

Proposition 5.1. Any limit point of the correlation energy per particle is strictly
negative, i.e., ε(e;μ)< 0.

In order to prove Proposition 5.1 one needs a bound that relates the limit
points of the entropy per particle to the mean entropy of the corresponding weak
limit points μ of the measures. The definition of an entropy of a neutral marginal
μ(2n\o is analogous to (2.3b),

WN) = -*B ί 9Sίo logtMi^io) ΓΊ d'rl9 (5.4)
Λ*2n

where η(^ 0 is the density (with respect to Lebesgue measure) of μ^i o
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Lemma 5.2. Let β be given, and let lim (2N[k])~1 S(N[k],Λ, β) exist. Then the
fc-» oo

mean entropy of any μe limpt {μ(N[k])} obeys the inequality

lim (2N[k]Γ' S(N[k],Λ, β) ̂  s(μ) .

Proof of Lemma 5.2. Let I and N be finite sets, with 1 1| = 27V > 2n = |N|. Let
{N} be the set of sets with cardinality 2«, and let M = (J Γ= i N/ be a union of m
pairwise disjoint elements of {N} which is contained in I, with m (N, n) the greatest
possible number. Finally, pick a subsequence {TV'fA;]} <= {7V[A;]} such that
μ(N>m^μ.

An analog of Proposition 2.2 holds for (5.4) as well and yields, with
I = Mu(I\M),

S(N, Λ9β)= Sμ(W)(Π) ̂  m(N,n) SμW(N) + Sμ(W,(I\M) ̂  m(N,n) Sμ(»,(N)

(sub-additivity of the entropy and permutation invariance of μ(N) giving the first
inequality; non-positivity the second). With m (TV, ri)/N > ί/[n + n/m (N, n)] -» ί/n,
and noting upper semi-continuity of the entropy functional, taking limits now
gives

lim (2N[k]ΓlS(N[k],Λ, β)= lim (2Nf[k])~ΐ S(N'[k],Λ, β)

^ lim sup

^ (l/2/ι) 5̂  (N)

for all N. Thus

lim (2N[k]Γ1S(N[k],Λ, β)£ s(μ)
fe->00

for any μ e limpt {μ(N[k]}}. D

What we need below is a weaker form of Lemma 5.2,

Corollary 5.2. For given β and A,

lim sup (27V) ~ x S(N, Λ, β) ^ sup s (μ) .
μ e limpt {μ<N>}

Proof. Trivial. D

Remark. The lim (1/2 TV) S(7V, . ) always exists, which follows from the sandwich
bounds for the free energy and for the energy (see [Kie 1]). For almost all β this lim
sup is actually a limit; see Corollary 4.1.

Proof of Proposition 5.1. To show that any limit point of {ε(Λr)} is negative, assume
that lim sup ε(ΛΓ) ̂  0. In that case there exists a subsequence {Λf [&]} such that

μ(N[fc])-/Γand (ί/2N[k]) E(N[k],Λ,β) -> e*, and the inequality

lim (27VIMΓ1 E(N[k],Λ,β) ^e(μ)^ inf e(μ')
fc->oo μ'e limpt {μ(^>}

holds. Combining this with Corollary 5.2, and using the equality F(N9Λ9β)
= E(N,Λ,β) - TS(N,Λ,β), one gets



Finite-Volume Statistical Mechanics of Two-Component Coulomb-like Systems 329

f * = ] i m ( 2 N [ k ] ) - 1 F ( N [ k ] , Λ , β ) £ inf f(μ) ^ inf f(μ) = inf&(p)
fc-*oo μelimpt{μ(N>} μe@> p

in contradiction to Proposition 4.2. Consequently,

lim (2N[kί)-1E(N[k]9A9β) < e(μ)
k-» oo

strictly for any convergent subsequence. D

The physical picture (usually stated in plasma physics textbooks) that a
charged particle is on the average closer to particles of oppositely signed charge
than to particles of the same sign is recovered in the high-density limit at all finite
temperatures and for all two-component systems with positive type interactions as
described in the introduction. The contribution of the correlations to the total
energy integral produces negative limit points.

However, the limit of (5.3) cannot be written as a functional of the limit
measures, which is manifest from the proof of Lemma 5.1. In so far the correlation
energy only contributes a shift to the standard Definition 3 of the mean free
energy. It is nevertheless conceivable that, although all limit points of the measures
are superpositions of locally charge-neutral correlation-free states, the finite-TV
correlations may be "visible" in the sense that they may forbid certain of the
correlation-free states. In particular, this means we need to take the results of
Sect. 2 and 3 with a grain of salt since the Gibbs hypothesis for the states on the
space of infinite configurations need not yield the weak limit points of the finite-TV
measures. One or the other surprise may be waiting here.
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