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Abstract. We consider the scattering problem for the Hartree type equation in R"
with n ̂  2:

i— + -Δu = (V*\u\2)u,
dt 2

2

where V(x) = £ λj\x\~γj, ( λ ί 9 λ 2 ) Φ (0,0), ̂  eR, yj > 0, and * denotes the convolu-

tion in R". We prove the existence of wave operators in H°'k =
\x\kψeL2(Rn)} for any positive integer k under the assumption 1 < γl9γ2 < 2. This
is an optimal result in the sense that the existence of wave operators breaks down if
mm(yl9y2)^ l The case where 1 <yί <y2 = 2 is also treated according to the
sign of λ2.

1. Introduction

We consider the scattering problem for the nonlinear Schrodinger equations of the
form

ίd^+l-Δu = (V*\u\2)u, (1.1)
dt 2

where u is a complex valued function of (ί, x)eR x R" with n ̂  2, Δ is the Laplacian
in RM, V is real function on R", and * denotes the convolution in R", The nonlocal
interaction (K*|u| 2)t/ is known as the Hartree type nonlinearity and the evolution
equation (1.1) is derived from a multibody Schrodinger equation in the semi-
classical limit or in the self-consistent field approximation for a quantum field of
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bosons. A typical form of V is given by the sum of two potentials

V=V1 + V29 Vj(x) = λj\xΓ»

with ΛyeR, (λl9 λ2) φ (0,0) and y2 > 7ι > 0, which we treat in the sequel for simplicity.
Although there is a large literature on the Cauchy problem and on the

asymptotic behavior of the solutions of (1.1) (see [1, 2, 4-13, 15, 20]), there still
remains a gap between the lower bound of γί which ensures the existence of wave
operators for (1.1) and the upper bound of y2 for their nonexistence. Up to now the
former is known as | (limit excluded) [6, 7, 10, 13, 30] and the latter as 1 (limit
included) [8,13]. One of our purpose here is to fill this gap and prove the existence
of the wave operators in the lowest possible case y2 > 7ι > l To state our results
more precisely, we introduce the following notations.

Notations. dt = —, dk = —, U = U(t) = exp( -Δ\M = M(t) = exp( l-^~ ], Jk =
dt dxk \2 / \ 2t /

Jk(i) = U(t)xkl/(-ί) = x, + ίtdk = M(t)(itdk)M(-t\J = (Jl9...9Jn\ V = (dl,...,3,);
n n

(Uυ)(t)=U(t)v(t\ (U-lυ)(t)=U(-t)v(t\ (Jkv)(t) = Jk(t)v(t\ Jα= Π JΓ> ** = Π *?
k = l k = l

for multi-index « = («!,..., απ); Lp denotes the Lebesgue space Z/(R") or LP(R") ® <C"
with the norm denoted by || ||p; Hm's denotes the weighted Sobolev space defined by

Hm>s = {ψεy; \\ψ\\m,s= ||(1 + |x|2)s/2(l -AT'2ψ\\2 < oo}, m,seR,

where &" denotes the space of tempered distribution on R"; ( , •) denotes the scalar
product in L2 and various pairing of dual spaces of functions.

We now state our main results.

Theorem 1. Let 1 <y x <y 2 ̂ 2 ana n^.2. When y2 = 2, assume in addition that
λ2^0andn^3. Let fceN= {1,2,...}. Then:

(1) For any φ+ eίf°'fc there exists a unique φεH°'k such that

\\U(-t)u(t)-φ+\\0ίk->0 as ί-*oo, (1.3)+

where u is the unique solution of

u(t)=U(t)φ-i\U(t-τ)(V*\u\2)u(τ)dτ, ίeR, (1.4)
o

with t/^weCίR;//0'*).

(2) For any φ-eH0>k there exists a unique φeH°'k such that

\\U(-t)u(t)-φ.\\0^Q as ί->-oo, (1.3).

where u is the unique solution of (1.4).

Remark 1. (1) Theorem 1 extends the previous results (see [6, 7, 10, 13, 20]) and is
optimal in the sense that if y1 ^ 1, then for any nontrivial solution u, l/( — t)u(t) has
no strong limit in L2 as ί-> ± oo (see [8, 13]).

(2) By Theorem 1, the wave operators W+: φ + h-> φ are well defined maps from H°tk

into itself for any /ceN.
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Theorem 2. Under the assumption of Theorem 1, the wave operators W+ are
continuous injection from H°'fc to H°'k. Moreover, W+ are isometric in the sense that
foranyψeH0'1,

\ \ W ± ψ \ \ 2 = \ \ ψ \ \ 2 . (1.5)

Remark 2. In the case of repulsive interactions λ 3 ̂  0, combining the result in [10]
and Theorem 2, we see that the scattering operators S:φ-\-^φ + is well defined as
a map from HQΛ into L2 and isometric in the L2 norm, i.e., || Sψ\\2= \\ ψ \\ 2 for

In the case where y2 = 2 and λ2 < 0, we construct scattering theory in H°'k with
small data.

Theorem 3. Let 1 < y^ < y2 = 2, λ2 < 0, and n^.3. Let Q be a nontrivial solution of
the elliptic equation

ΔQ-Q = 2(V2*\Q\2)Q (1.6)

such that

\\Q\\2

2= inf

= inf . (1.7)
*6Hi(iR»)(^2*l</ΊM</Ί2)

ΦΦo

Let /ceN. Then:

(1) For α/ry φ±eH°'k with \\φ + ||2 < I I 6 U 2 there exists a unique φeH°'k satisfying
(1.3)± with the unique solution of (1.4) and \\φ\\2= \\Φ± I I 2-

(2) Suppose in addition that λ^ ^ 0. Then for any φeH°Λ with \\ φ \\2 < \\ Q ||2, there
exist unique φ±eL2 such that \\φ\\2= \\Φ±\\2 an^

\\U(-t)u(t)-φ+\\2 ^Q as ί^±oo,

where u is the unique solution of (1.4).

(3) Suppose in addition that λl = 0. Then for any φeH°'k with || φ \\2 < \\ Q ||2, there
exist unique φ + eH°'k satisfying (1.3)+ with the unique solution u of (1.4) and"

Remarks. (1) Equation (1.6) is a time-independent version of (1.1) and arises in
various domain of physics. See [15-17] for the existence of positive solutions of
(1.6) and for the associated minimization problems. The existence of nontrivial
solutions of H1>0 for (1.6) with (1.7) is proved by the same method as in [18]. The
standard argument shows that Qeέf.
(2) Theorem 3 clarifies the size of the ball where scattering theory for (1.1) is
constructed in the critical case y2 = 2. In the case of Cauchy problem in the energy
space /f1 > 0 for the nonlinear Schrδdinger equation with the critical power
nonlinearity, the use of stationary solution in the description of the size of data can
be traced back to Weinstein [21]. See [15, 19, 22] for related results.
(3) The condition || φ \\2 < \\ Q \\2 in part (3) is optimal. If φ = β, then φe f) H°'k
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and u(t) = eit/2φ is the unique solution of (1.4), while U(-t)u(t) = eit/2U(-t)φ has
no limit in L2 as ί -> ± oo.
(4) Let A! = 0. Bk = {^e//°'fc; || ψ ||2 < || Q ||2}. By Theorem 3, the wave operators
W±:φ + \-^φ and the scattering operator S = W~ 1 ° W_ :φ _ (-»</> + are well defined
maps from Bk into itself for any /ceN.

Theorem 4. Lei A! = 0, λ2 < 0, y2 — 2 and n ̂  3. T/ie/t ί/ze wαi e operators W+ and
scattering operators S are homeomorphisms from Bk to Bk. Moreover W+ and S are
isometric in the sense that for any \l/eBί9

(1.8)

We consider the small data scattering in L2.

Theorem 5. Let λ± = 0, λ2 ^ 0, y2 = 2 and n^3. Then there exists a constant ε0>0
with the following properties. Let B(ε0) = {ψeL2; \\ ψ \\2 < ε0}

(1) For any φEB(ε0) there exists a unique solution u of (1.4) such that κeC(IR;L2)n
L2 +(4/»)(R; L2 + (4/»)j and || uφ || 2 = || </> || 2. Moreover the map φ^uis continuous from

(2) For any φ+eB(e()) there exists a unique φeB(ε0) such that

\\U(-t)u(t)-φ+\\2^0 αs ί^ + TO, (1.9)+

where u is the unique solution of (1.4) given by part (I). For any φ-EB(ε0) there exists
a unique φeB(ε0) such that

\\U(-t)u(t)-φ-\\2-+Q as f->-oo, (1.9) _

where u is the unique solution of (1.4) given by part (1).

(3) For any φeB(ε0) there exists unique φ±εB(ε0) satisfying (1.9)±, where u is the
unique solution of (1.4) given by part (I).

(4) The wave operators W±\φ± H*φ and the scattering operator S = W~+*° W_ are
homeomorphisms from B(ε0) to B(εQ) and isometric in the L2 norm.

Remark 4. (1) The assumption on V is weakened as follows. It suffices to assume
that V is a real function on 1R" satisfying \x\2 FeL00.
(2) If the initial datum φ takes the form φ = U(±s)φ±s for some ψ + eL2 with s > 0

4
sufficiently large, then || U( )φ HL^R+ L^ are sufficiently small, where σ = 2 + -, so
that the solution u of (1.4) exists on 1R+ (see [3] and the proof below).
(3) There are related results for small data scattering for (1.1) in the spaces strictly
smaller than L2, see [13, 20].

Remark 5. Theorems 3,4 and 5 are optimal in the sense that the L2 scattering theory
for (1.1), even restricted in the small data, is impossible in the case where λί = 0,
λ2 < 0 and 0 < y2 < 2. Indeed, let β satisfy

ΔQ-Q = 2(V2*\Q\2)Q

and let φε(x) = ε1+(n~n)/2Q(εx) for ε>0. Then uε(t) = eίε2t/2φε solves (1.1) and
I I u e ( t ) || 2 = β 1 "" ( 7 2 / 2 ) II β I I 2 -»0 as ε-»0, while U(-t)uε(t) = eiε2t/2 U(-t)φε has no limit
in L2 as ί-> + oo.
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In Sect. 3 we prove Theorems 1 and 2. The main point of the proof is to solve
the integral equations

±00

u(t)=U(t)φ±+i f U(t-τ}(V*\u\2)u(τ}dτ, ίeR, (1.10)
t

for given data φ± at infinity. We solve (1.10) near t= ± oo by a contraction
argument. For this purpose we define a suitable function space and a metric in order
that the right-hand side of (1.10) defines a contraction map on that space. The choice
of suitable function spaces depends on how the solutions of (1.10) should behave in
the space and time, which is measured by the space-time integrability. We have
found the best possible choice of the admissible pairs for indices [1] for the space-
time integrability. With this choice, the space-time estimate of Strichartz type work
well to play a crucial role. We then extend the solution of (1.10) to the whole time
interval by the standard continuation procedure.

In Sect. 4 we prove Theorems 3 and 4. We make use of the pseudo-conformal
identity to obtain decay estimates of solutions to (1.4). The assumption \\φ\\2 <
|| Q || 2 leads to a priori estimates for || Ju(t) ||2. The method here is comparable with
thatofWeinstein[21].

In Sect. 5 we prove Theorem 5. The nonlinearity in the assumption proves to
admit a special function space where (1.10) is solvable globally in time by a simple
contraction technique without any continuation argument.

2. Preliminaries

We collect here some preliminaries. Following [1,3], we say that a pair (σ,p) of
indices is admissible if

2 n p~2

and
Λ

σ 2 q

Lemma 2.1. (1) For every φeL2 and for every admissible pair (σ,p), the function
t\-+U(t)φ belongs to C(R;L2)nLσ(R;Lp) and satisfies

\\U( )Φ\\L.(*.LP)£C\\φ\\2,

where C is independent ofφεL2.

(2) Let I be an interval I c R and let t0ef. Let (/c, θ) be an admissible pair and let vεLκ'

(/; Lθ/), where — + - = — + - = 1. Then, for every admissible pair (σ, p), the function
t K1 K θ' θ

tM> J U(t - φ(τ)dτ = (Gv)(f) belongs to C(7; L2) n Lσ(7; Lp) and satisfies
to

|| Gv | |Lσ//.Lp) ̂  C || f l|L/<v/.L(? ),

w/iere C is independent of veLκ (I;LΘ).
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(3) Let 7 = (ί0, oo) with f0elR. Let (κ,θ) be an admissible pair and let ι;eLκ'(/;ίf).
00 ^

Then, for every admissible pair (σ,p), the function ίι-> J U(t — τ)v(τ)dτ = (G)(t)

belongs to C(Γ; L2) n Lσ(/; Lp) and sαίis/ies r

where C is independent ofveLκ'(I;Lθ').

For Lemma 2.1, see [1, 3, 14, 23].
We now consider the Cauchy problem for (1.1) in the weighted L2 spaces.

Proposition 2.1. (1) Let ! < 7 1 < y 2 ^ 2 and n^2. When y2 = 2, assume in addi-
tion that λ2^0 and n^3. Let /ceN= {1,2,...} and ί0e!R. Let φεL2 satisfy
U( — t0)φEH°'k. Then there exists a unique solution u of the integral equation

U(-t)u(t)=U(-t0)φ-i\U(-τ)(V*\u\2)u(τ)dτ (2.1)
ίo

such that MeC(R;L2)nL^oc(R;Lp) for every admissible pair (σ, p) and that
H0*). Moreover, u satisfies

I I «(ί) I I 2 = 11 Φ\\ 2, teR, (2.2)

| |Ju(t)| |^+t2(F*|u(t)|2,|u(t)|2)=l|Ju(s)| |^ + s2(K*|u(s)|2,|u(s)|2)I I 2

t

+ 4|τ(K*|M(τ)|2,|u(τ)|2)dτ, t,seR, (2.3)
S

w/iere K=K + |x VK Furthermore, the map φ\-+u is continuous from J^k

to C(R;H°'fc), w/zβrβ ^ffe - {φeL2; U(-t0)φeH0>k} with the norm \\\φ\\\k =

(2) Let I <yί<y2 = 2, λ2^Q and n^3. Let Q be as in Theorem 3. Let /ceN and
ί0eJR. Let φ eL2 satisfy U(-to)φ€H°'k and \\φ\\2 < \\Q\\2- Then there exists a unique
solution u of (2.1) such that weC(R;L2)nL5Γ

oc(R;Lp)/or every admissible pair (σ,p)
and that U'^eC^R H0^). Moreover, u satisfies (1.2) and

(2.4)

where V± = V± -^-^x-W^. Furthermore, the map φ\-^u is continuous from <&k to
C(R;//°'Λ), where &k = {φeL2; U(-t0)φeH°>\ \\ φ \\2 < \\ Q ||2} with the norm \\\φ\\\k =

Proof. Part (1) can be proved in the same way as in the proof of Theorem 5 in [1 1]
if we use the space-time estimate in the most general situation, as described in parts
(1), (2) of Lemma 2.1. We shall prove part (2). By the standard method we obtain a
unique local solution u of (1.1) such that weC(/;L2)nLσ(/;Lp) for every admissible
pair (σ, p) and V~lueC(I\ L2), where / = [ί0 - Γ, ί0 + T] for some Γ > 0 depending
only on |||φ||| fc. Moreover, we see that u satisfies (1.2) and (1.4) on /. In order to
extend u to the whole time interval, we need a priori estimates for u. In a way similar
to [6], we see that || U( — t)u(t)\\0tk is bounded uniformly for ίe/ in terms of |
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and sup || U( — t)u(t)\\Q ^. Therefore we are reduced to obtaining from (2.2) and (2.4)
tel

on / the following a priori estimate

s u p l l l / ί - O i i W U o ^ C d l l ^ H l ! ) . (2.5)
ίeJ

By (2.2) and (2.4) on / and (1.7), we have

2

2

\\Q\\l

+ 4}τ(F1*|"(τ)|2,|M(τ)|2)ίίτ, te/\{ίo},
ίo

so that, for any ε > 0

+ 4jτ(K 1*|w(τ) | 2, |w(τ) | 2)rfτ, ίe/\{ί0}. (2.6)
ίo

Thus the required estimate (2.5) can be obtained in the same way as in the proof of
Lemma 3.5 in [11]. The remaining statement follows by the standard method.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. We shall prove part (1) only. One can prove Part (2)
analogously. We first consider the case k = 1. Let PJ and θj satisfy

? HH i)
1+ Ίj- < — + -<!. (3.2)

* Pi ΘJ
Let σ, and κj satisfy

where δ(q) = . Then (σ, , PJ) and (κ. , θ,) become admissible pairs.
2 q
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For R > 0 and T ̂  1, we define
2 2

n f| ^(T, oo L^); JWeCw([Γ, cx));L2)n f| L«(T,<x> 9lfJ)9

j=ι ;=ι
2

H " l l L - < 7 oo L') + l|Λ|lL- ( ϊ i G O;L*) + Σ (NW.αo;L*) + II ̂ IW.oo W^
^1

Then Jf is a complete metric space with respect to the metric d given by

2

(3.4), ,
7=1

For φ + eHOΛ and we A* we define Φ(w) by

(Φ(u))(t) = U(t)φ+ + i J U(t - τ)(V*\u\2)u(τ)dτ, t ̂  T. (3.5)
r

Let p, and ̂ . satisfy - = 2 - '̂ - ( - -h — ) and - = 1 - ( — + —). By the Holder
Pj n \θj PjJ qj \θj PjJ

y
inequality and the Hardy-Littlewood-Sobolev inequality with — = — h i — -,

Pj 4j n

2 1 y
ith — = — h i — -,

Pj 4j n

u\2\\Ju\\ (3.6)

— -.
2 n Ό: 2J

We see from (3.2) that --- < — < -. Therefore we use the Gagliardo-Nirenberg
tinequality to obtain

| |M| | p

= CΓδ(pj}\\Ju\\δ

2

(pj)\\u\\1

2-
δ(pj}

(3.7)

By Lemma 2.1, (3.6), (3.7) and the Holder inequality with — = --- ,
'

j = l T

2

. T

2

C X"1 T'ίl/V;) ~ 2δ(pj) n 3 /"3 o\
L l R ' (3 8)

1 2
where we note that (3.2) implies — >2 ^0 and 2vjδ(pJ}> 1. Putting ε7 =

vy ^j
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2δ(p,) -- > 0, one can rewrite (3.8) as
vj

2 2

l |Φ(«)IWoo L')+ Σ \\ΦM\\L.j(Ta0.w^C\\Φ+\\2 + C £ R3T~v. (3.9)
j=l ' J=l

Next we have

and therefore in the same way as in (3.6),

M>)||̂J ' '
, (3.10)

where we note that (3.1) implies --- >— - >0 and that --- = I — H — ) - 1 +
ffj PJ 2n θ'j PJ \Pj PJ/

— > 0. Letting J act on (3.5), we proceed as in (3.8) and obtain from (3.10)
n

IUΦ(«)Wco L*)+ Σ \\JΦ(u)\\L,J(T^LPJ^c\\χφ+\\2 + c £ R3τ-^. p.ii)
j=l j=l

Let u, υeX. As in (3.10), we have

ι/pj) || „ ||pj. + || K,*((ΰ - v)v) || ι/(i/(), _ ̂  || « ||pj

p.

p||w> (3.12)

'

so that in the same way as in (3.8),

2

||Φ(u)-Φ(»)||tX(Γjβ).LΪ)+ Σ \\Φ(u)-Φ(v)\\L,J(Ttaι,LPJ

J = l

2 //«. v/v,- /°° \1 / V

^ c Σ ί ιι « HP;JΛ + u i i » ιip2;j

j = l \ \ T / \ T

R 2 j

We choose C | | < £ + | | 0 1 ^ — and CR2 Σ τ~εj^-> we see that Φ'u\-^Φ(u) is a
2 j z z i 2

contraction on J f̂ and hence Φ has a unique fixed point u. u satisfies

u(t) = U(t)φ+ -h i. ] U(t - τ)(V*\ u\2)u(τ)dτ, t ̂  T, (3.14)
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which implies as before

\\U(-t)u(t)-φ+\\2 + \\x(U(-t)u(t)-φ+)\\2

= || «(ί) - U(t)φ + || 2 + || Ju(t) - U(t)xφ + || 2

Jt/(ί-τ)(F*|«|2)κ(τ)dτ

as

Moreover, it follows from (3.14) that for all t ̂  T,

(3.15)

Since l/(- T)u(T)eH°Λ

9 Proposition 2.1 proves that the solution u of (3.14) extends
to all times and satisfies (3.15) for all ίeR with U~lueC(^H°^).

We now prove the uniqueness. It suffices to prove that if u satisfies (1.4),

||U(-ί)tt(ί)-0+ | |0fl->0 as f->oo, (3.16)

then HEX for some R, T > 0. By (3.16) we have u, JweL°°(T, oo; L2) for T sufficiently
large. As in (3.7) we see that for any t > T,

|| u \\p. ̂  CΓδ(p*C || Ju ||*"> || u \\ I2~
δ(^ ^ CRΓδ("\ (3.17)

2 2

which implies we f| Lσj(T, oo;Lpj). By Proposition 2.1, JUG f| LJ^.(R;LW) and for

anyί>T, j=1 j=1

Ju(t) = U(t - T)(Ju)(T) - i } U(t - τ)J((V*\u\2)u)(τ)dτ.
T

In the same way as before, we obtain from (3.17),

.j(T,t.LPj} < C || (Ju)(T) \\2 + C X T-^ || Ju 11̂ ,

and therefore for T large enough

Σ

where C is independent of ί. By the Fatou lemma, Jue Q Lσi(T,ao',Lpj). This

proves we Jf and hence the required uniqueness. j=1

We next consider the case k ̂  2. For # > 0 and T ̂  1, we define
2

2)n f| L*'(T9av9W)\
7 = 1

2

, c»);L2)n f) L^(T, oo;
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/ 2 \ ι

Then Xk is complete with respect to the metric d given by (3.4). For φ + eH°tk and
ueXk we consider Φ(u) given by (3.5). We prove that Φ\u\-*Φ(u) is a contraction
on Xk for some R and T. Let α satisfy |α| = / ̂  k. We have

J*((V*\u\2)u)(τ) = (V*\u\2}J«u + (V*(ΰJ*u))u + (-\)\V*(uJ*ϊι)u

+ Σ ^—(K*(J^Jα2M))Jα3M,

V?t°*αα Π α !otl,c*2>ι*3 α J. J. J

7=1

so that in the same way as in (3.10),

(3.18)

By the Gagliardo-Nirenberg inequalities, for β with | β\ ̂  / — 1,

')
t\β\-ι*W9 (3.19)

ίl"l -'W (3.20)
\ | y | = ί /

where

n 2n

and

l^i+ι_l
. - 2

We note here that a(β), ft(j8)e[0, 1) if | )8| g / - 1 and that φj + α(α2) + ί>(α3) = 1
if |α1 + α2 + α3 | = / and |α ι | , |α2 | , |α3 | ̂ /- 1. Collecting (3.7), (3.18), (3.19) and
(3.20), we have

X \\W(Vj*\u\2)u)\\ £ C \ \ u \ \ 2

p J Σ ll^nll^gC^r2^ Σ H^llp,- (3.21)
|α |=l J \y\=l \y\=l

This leads to

||JβΦ(u)||L.(Γiβ) :La)+ Σ l|Jβ*MHw(Γ.co;
7=1
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/oo \ l / v j / o o \

Σ ί r2v^dt) j μ uiβΛ
\ϊk\T J \T J

2

7 = 1

Therefore Φ maps Xk into itself and is a contraction in the metric d provided
R 2 \

C || ψ+ H o fc^ - and CK2 £ T~£ j ̂  -. This shows that Φ has a unique fixed point
2 ;=! 2

u in Λ^. Exactly as in the preceding estimate, we have
2

\\U(-t)u(t)-φ+\\0k^CΣ ί~ε^0 as ί^oo.
7=1

The remaining statement of the theorem follow in the same way as in the case k = 1.

Proof of Theorem 2. We consider the + case only, since the other case can be
treated similarly. We first prove that W+ is injective. Let φ + ,ψ + eH°'k satisfy
W+(φ+) = W+(ψ+) = φ. Let u be the solution of (1.4). Then

+ 0 f k - > as ί-.oo.

This proves φ+ = ψ+ as required. We next prove that W+ is continuous from H°'k

into itself. Let φ + 9ψ+eH°'k and let φ = W+φ + ί ψ = W+ψ+. Let u and v be the
corresponding solutions of (1.4) with initial data φ and ψ9 respectively. By the
argument in the proof of Theorem 1, there exist T ̂  1 and R > 0 such that w, v'eXk,

J«u(t) = U(t)x*φ+ + ΐ J U(t - τ)J"((V*\u\2)u)(τ)dτ,
t

Jxυ(t) = C/(ί)xV+ + i J U(t - τ)J"((V*\υ\2)u)(τ)dτ,
t

Subtracting the equations above and estimating the resulting equation in Xk in the
same way as in the proof of Theorem 1, we obtain for any t ̂  T,

Σ IIA«-»)lU ί l0θ;1

v)\\Laj(tao.LPiΓ (3.22)
\a\Zk j=l

By (3.22) there exists ί0 ̂  T such that

^ll^..;!.,^ Σ l|7β(«-f)llLM.o.»;L
j=l

-^+ | |0tk. (3.23)

Proposition 2.1 and (3.23) imply that W+ is continuous from HQ'k into itself. We now
prove (1.5). Let ^efl0*1, let φ=W+φ and let u be the solution of (1.4). Then
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II u(t) || 2 = || φ || 2 for any ίeR By (1.3),

g| |I7(-f)fi(f)-^| |2->0 as ί->oo,

which proves (1.5).

4. Proof of Theorems 3 and 4

In view of Proposition 2.1, part (1) of Theorem 3 follows in the same way as in the
proof of Theorem 1 and part (2) follows in the same way as in [10]. We shall prove
part (3) of Theorem 3 and then Theorem 4 in the + case. The other case can be
proved analogously. Let φeHQ* satisfy || φ ||2 < || β ||2 and let u be the solution of
(1.4). We shall show that JαweL°°(]R+;L2)nLσ(R+;Lσ) for all α with |α| g fc, where

We note here that

- = δ(σ).
σ

By Proposition 2.1, u satisfies

II M(0 I I 2 = 110112, teR. (4.1)

μu(ί)||2 + ί2(F2*|u(ί)|2,|M(ί)|2) = H * 0 l l 2 > teR. (4.2)

By (1.7), (4.1) and (4.2), we obtain

| |Ju(() | lHll^0ll2 + t2(^2*|M(-t)u(t)|2,|M(-t)M(ί)|2)

* n e i i i
and therefore

\\*Φ\\l feR (4.3)

As in (3.7), for any qel 2,—— we have by (4.1) and (4.3),
\ —i

, ί>0. (4.4)

Since --- < - < 2, as in (3.21), we have
2 n σ

Σ \\JΛ((V2*\u\2)u)\\σ.^C\\u\\2

p Σ \\J*uL,
l α l ^ f c |α |gk

where - = --- + - . By Lemma 2.1, (4.4) and (4.5), we estimate

J*u(τ) = U(τ - T)(J*u(T)) - i } U(τ - s)J*((V2*\u\2}u)(s)ds
T
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in L°°(T, ί; L2)nLσ(Γ, ί; Lσ) for t > T > 0 to obtain

/ / ί \2/(n + 2) \

^C Σ k(l^X^)ll2 + (^ί^(/l + 2)'(<r)^J II^Wr LoJ

T-2("-1)/(" + 2)||Jαu||Lff(Γ>ί;Lff)). (4.6)

Choosing T > 0 large enough, we have

Σ (\\J*U\\L«(Tt L>)+\\J*U\\L*(Tt L°^C Σ \\Jau(T)\\2 (4.7)
'

Since the right-hand side of (4.7) is independent of t > Γ, the Fatou lemma proves
that JαweL°°(T, oo;L2)nLσ(Γ, oo;Lσ) for all α with |α| ̂  k and therefore our claim
follows. In the same way as in the proof of Theorem 2, it follows that for any α with
|α| ̂  k the map φ\-*J*u is continuous from H°'k into L^R+ L^nL'ΐlR+ L'7). By
(4.6), we have for τ > T > 0,

||l7(-τ)u(τ)-C7(-T)u(r)||0ik

^C X ||xα(L/(-τMτ)-[/(-ΓMT))||2

ί[/(τ-5)Jα((K2*|w|»(5)d5
Γ

gCΓ-2(»-i)/(.+2) ^ ||J««||^Γf0θ;Lff)-»0 as Γ^oo. (4.8)

This implies that there exists a unique φ + eH°'k such that

||l/(-t)«(t)-(/>+|lo,,->0 as ί^ + oo, (4.9)

which in turn shows that Range (W+) = H° k. Moreover,

φ+ = U(-t)u(t)-i]u(-τ)(V2*\u\2)u(τ)dτ. (4.10)
ί

Since φ±-+J*u is continuous from #°'fe into L^R+ L^nL^+ L*) for any α with
| α | g fc, we see from (4. 1 0) that φ ι-> φ + is continuous from H 0>k into itself. This proves
that VΓ+ is a homeomorphism from H0jk into itself. Therefore (1.8) follows from (1.5).

5. Proof of Theorems 5

4
Let σ = 2 H- - as in the preceding section. For R0 ^ R > 0 we define

n

Then Y is a complete metric space under the metric d(u, v) = || u - v \\L,(R.L,r For
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φeL2 and we 7, we consider Φ(u) given by

(Φ(u))(t) = U(t)φ - i\U(t - τ)(V2*\u\2)u(τ)dτ. (5.1)
0

As in (3.6), we have

\\(V2*\u\2)u\\a.^C\\u\\l\\u\\a

g C || « \\l~Wn) || u ||W")+1 g CR2

0-
(4M || u ||W">+ ', (5.2)

where - = ---- 1 -- , where is decomposed as - = -- 1 -- . By (5.1) and (5.2),
p 2 n n+2 p nσ 2

we have

(5.3)

and

For u,veY, as in (3.2) and (5.2), we have

By (5.5),

>( || u ||̂ R;L., + II f HίW)) I I " - " lli-W)

H-»||tnR!^. (5.6)

We now choose \\φ\\2^ — and CR^ " w»~>R*ι» ̂  - with R e(0, R0) sufficiently small.

ra

If II ̂ ( )ΨIIL'(R;L )^- il Allows from (5.3), (5.4) and (5.6) that Φ:u\-+Φ(u) maps

7 into itself and is a contraction in the metric d. By Lemma 2.1, the condition
n

II ΪJ(')0 IlL'dR L*) ̂  — is always accomplished by choosing || φ \\2 to be small enough.

We have thus proved that for any φeL2 with \\φ\\2 sufficiently small, Φ has a
unique fixed point u in Y. Similarly, we see from (5.6) that φ\->u is continuous
from a small L2 ball centered at the origin into L°°(lR;L2)nL<Γ(R;Lσ). By
approximating φ by sequence in H1 in the same way as in [1, 14], we conclude
from the continuous dependence above and from the L2 conservation for the
corresponding H1 solutions that | |w(ί) l l2= I I 011 2- This proves part (1). We next
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prove part (3). Let φ and u be as above. Fort t > s, we have

U(-t)u(t) = U(-s)u(s) - i\V(-τ)(V2*\u\2)u(τ)dτ, (5.7)
s

and therefore by (5.2),

\\U(-t)u(t)-U(-s)u(s)\\2 =
2

1-σ

^C\\φ\\2

2-
(4ln)n\\u(τ)\\σ

σdτ\ ->0 as £>s->oo.
\s /

(5.8)

This proves part (3). We proceed to part (2). We treat the + case only. The other
case can be proved similarly. For φ + eL2 and ue Y we consider

(Φ(u))(i) = U(t)φ+ + i] U(t- τ)(K2*|«l2Mτ)dτ. (5.9)
ί

In the same way as in the proof of part (1), we find that Φ has a unique fixed
point in Y if || Φ+ \\2 is small enough. As in (5.8), that solution u satisfies (5.7) and
the wave operator W+ is given by

φ = w+φ+ =φ++ί] U(-τ)(V2*\u\2)u(τ)dτ. (5.10)
o

This proves part (2). Part (4) follows in the same way as in the proof of Theorems 2
and 4.
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