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Abstract. We prove exponential decay of correlations for (/, μ), where / belongs in
a positive measure set of quadratic maps of the interval and μ is its absolutely
continuous invariant measure. These results generalize to other interval maps.

Consider a dynamical system generated by a map f.M^M preserving a probability
measure μ, and let φ, φ: M -> R be observables. Mixing properties of the dynamical
system are reflected in the decay of correlations between φ and φ°fn as n-» oo.
More precisely, we say that (/, μ) has exponential decay of correlations for functions
belonging in a certain class X if there is a number τ < 1 such that for every φ, ψeX,
there is a constant C = C(φ, φ) such that

\$φiψofn)dμ - $φdμ'$ψdμ\ ^ Cτn Vn ^ 0.

The main result of this paper is the following:

Theorem. Considerfa:\_- 1,1]Q defined byfa(x) = 1 -αx 2 ,αe[0 ,2] . Then there is
a positive Lebesgue measure set A in parameter space such that iff = fa for aeΔ,
then
(1) fhas an absolutely continuous invariant measure μ (this is a well known theorem
first proved by Yakobson [J]);
(2) (fμ) has exponential decay of correlations for functions of bounded variation;
(3) the central limit theorem holds for {φ° fn}n = 12,φeBV.

These results generalize to certain open sets of ϊ-parameter families of unimodal
maps.

Exponential decay of correlations has been proved for primarily two types of
dynamical systems: piecewise uniformly expanding maps of the interval with their
absolutely continuous invariant measures, and Axiom A diffeomorphisms with their
Gibbs states. (See e.g. [HK, Ry 1, Rul, Ru2].) These are by no means the only results.
(Seee.g.[BS],[Z].)

* The results in this paper are announced in the Tagungsbericht of Oberwolfach, June 1990
** The author is partially supported by NSF
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The main feature that is new here is that the maps we consider have singularities,
and that these singularities return arbitrarily close to themselves. We reduce the
problem to the^expanding case by constructing a uniformly expanding map / that
factors over / , / acting on a set J that is the disjoint union of a countable number
of intervals. We then consider a function space on J with a norm that is a weighted
combination of the L00, L1 and total variation norms, and prove the existence of a
gap in the spectrum of the Perron-Frobenius operator associated with /.

The maps for which our results hold are those studied by Benedicks and
Carleson in [BC2]. They have a very simple description, and are non-uniformly
expanding in a controlled way. We will recall in detail all of the relevant material
from [BC2] - except the proof of the theorem which says that these maps form a
positive measure set in parameter space.

This paper is organized as follows. Precise statements of our results are given
in Sect. 1. Section 2 contains some background material for 1-dimensional maps.
In Sect. 3 we prove the existence of absolutely continuous invariant measures and
their mixing properties. Sections 4 and 5 contain the proof of the decay of correlation
result.

The author thanks M. Rychlik for helpful conversations.

1. Statements of Results

We first state our results for the quadratic family xi—>1 — ax2 before proceeding to
discuss generalizations to other 1-parameter families of interval maps.

Consider fa: [ - 1,1]Q defined by fa(x) = 1 - ax2,ae[0,2]. Let α > 0 be a very

small number that remains fixed throughout, say α = —-. For ε > 0, let

4 = { ^ [ 2 - ε , 2 ] : | / ^ 0 | ^ ^ - α " and \(fn

a)'(fa0)\ £(1.9)" Vn^O}.

Benedicks and Carleson proved that Leb(Ziε) > 0 Vε > 0 [BC2]. These are the para-
meters to which our results apply.

Theorem 1 (Existence of Invariant Measures). 3ε1 > 0 such that VaeΔεi,f=fa has
an invariant probability measure μ with a density p that can be written as

where pι has bounded variation and

0 ^ p ,(s) ̂  const

The existence of absolutely continuous invariant measures under similar
conditions has been proved many times. See e.g. [J, BC1, CE plus N, Ry2, BY],
etc. The nature of the density can be understood as follows. The dynamics of /
consists essentially of an expanding part and a contraction due to the quadratic
singularity. The expanding part gives rise to pl9 while the contraction together with
its subsequent iterates account for the inverse square-root singularities in p2-
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Theorem 2 (Properties of the Absolutely Continuous Invariant Measure). 3ε2 > 0,
possibly < εl9 such that VaeΔE2,f = fa has the following properties:
(a) μ in Theorem 1 is the only absolutely continuous invariant measure;
(b) (fμ) is exact;
(c) supp μ = [/20, /0] and inf p(x) > 0.

xe[/20,/0]

We remark that (/, μ) being exact in this setting is equivalent to (/", μ) being
ergodic Vn > 0. It is also equivalent to the natural extension of (/, μ) being isomorphic
to a Bernoulli shift. (See [L].)

Theorem 3 (Decay of Correlations). Let f be as in Theorem 2. Then 3τe(0,1) such
that Vφ,ψ: [— 1,1] ->IR with bounded variation, there is a constant C = C(φ, φ) such
that

Exponential decay of correlations has been proved for various classes of interval
maps. The piecewise uniformly expanding case is treated by Hofbauer and Keller
[HK] and extended to allow for infinitely many branches by Rychlik [Ry2].
Ziemian [Z] proved the same result for a class of maps satisfying what is sometimes
called "the Misiurewicz condition" [M]. Our aim is to relax this condition sufficiently
so that our results hold for a positive measure set of parameters in the quadratic
and other families.

Our proof of Theorem 3 consists of constructing an extension of / : ([— 1,1], μ)Q
and analyzing the spectral properties of the Perron-Frobenius operator associated
with this extended map. As noted in [K], this knowledge of the spectrum gives us
immediately the following theorem.

Theorem 4 (Central Limit Theorem). Let f be as in Theorem 2, and let φ: [ - 1,1] ->
R be a function with bounded variation and jφdμ = 0. Then

1 / 2

is well defined, and ifσ > 0, then VxelR

ί 1 n - 1

as n-» oo.

Theorem 4 is proved in a similar setting in an unpublished work of Collet [C]
using the approach of [BS]. [C] also contains a slightly weaker version of
Theorem 3.

We now mention some generalization of our results. Let / be an interval, and
let /*: / O be a unimodal map satisfying the Misiurewicz condition. That is, /* has
negative Schwarzian, it has no sinks, and if c is the critical point, then
inf \fnc — c\ > 0 . Let End3(/) denote the space of C 3 endomorphisms of /. It is

known that there exist constants α* > 0 and λ^ > 1 (depending only on f^) such
that for "most" smooth 1-parameter families η:(— 1, l)->End3(/) with η(0) = / * , if

Δε(η) = {ae(- ε,ε)| if/ = η(a\ then \fnc - c\ ^ e~a*n and \{f")'(fc)\ ^ λ\ Vn ^ 1},
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then Leb(4(*/)) > 0 Vε > 0. (See [TTY] for details.) Our results carry over directly
to η. That is, Theorem 1 above holds (with different constants), and if /* satisfies
(P3) in Sect. 2, then Theorems 2,3 and 4 are valid also.

In the rest of this paper we will consider only the quadratic family XH-»1 — ax2.
This avoids carrying around constants that depend only on /„,.

2. Some Properties of 1-Dimensional Maps

In this section we try to isolate those properties of / = fa that are relevant to our
discussion. These are essentially the only properties that will be used.

The specific formula of / is immaterial to us, but we will use the fact that it is a
C3 unimodal map with negative Schwarzian and nondegenerate critical point. The
fact that / is symmetric about 0 simplifies our notation a little, but this is a totally
unnecessary assumption. What is important is that / has certain expanding
properties, which we summarize below as properties (PI) and (P2).

Let (— (5, δ) be a small neighborhood of the critical point. We distinguish between
the dynamics of / outside of (— δ, δ) and that of orbits beginning in (— δ, δ). (PI)
concerns the former:

(PI) 3MeZ+ andλ>\ such that
(i) ifxJx,...JM-ιxφ{-δ,δ\then\{fM)'x\^λM;

(ii) for any keZ+, ifx,...Jk~ιxφ(- δ,δ) andfkxs(- δ,δ\ then \(fk)'x\ ̂  λk.
(PI) holds for fa for all a sufficiently near 2. First notice that it is satisfied by f2.

One way of seeing this is to conjugate f2 to its piecewise linear model. (For a more
general approach see [M] and the appendix of [CE].) The rest follows because (PI)
is an open condition.

For xe(- δ, δ\f'x can, of course, be arbitrarily small. (P2) guarantees a period
during which (fj)'x recovers. Suppose δ = e~ko. Let Ik = (e~ik+1\e~k) for k ̂  fc0, and
—/_kfor fc^ — fc0.

(P2) There is a function p: (— <5, δ) — {0} ->Z + , constant on Ik and increasing with
|fc|, such that

(ϋ) ί(/5(/*)l « const \(fjf(f0)\ ^ const(1 9)* V/ < p(x);
(iii) \{fp)'x\ ^ λp for some λ > 1 (independent ofx).

(P2) holds for all fa with aeΔε,ε sufficiently small. This property is due to
Benedicks and Carleson, and the assertion in the last sentence is proved in [BCl]
and [BC2]. Since the main construction in our paper is based on this property, let
us recall the ideas in their proof:

For xΦθe(-δ,δ\ let po(x) = max{peZ:\fjx-fj0\ <e-lOaNj<p). First we
claim that 3C0 (independent of δ) such that V>;G[/X,/0] and j < p(x\

(fj)'y

j

This is true because the quotient in question is ~ exp £ θ(k\ where
fc=l

e-lθoik
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Using this distortion estimate, we see that

2(\SY°-1 ^ | / p [ 0 ] | ^ 1

giving po(x) ̂  4k for xel±k provided k is sufficiently large. The lower bound for
po(x) is obtained from

Finally, at time p 0 , we must have

ax2'\

for some ye[/x,/0]. This gives

1 e~
lθΛpo 2

which is ^ λpo for some λ > 1 provided p0 is reasonably large. For xelk, let

p(x) = inϊ po(y).
yelk

The number p(x) is called the "bound period" of x. In Sect. 4 we will use the
notion of "total bound period," which is defined as follows: For x e ( - δ,δ),p(x) is
the smallest; > 0 such that Vi with 0 ^ i <j, if/'xeί — <5> <5)> then p(fιx) <j. It is easy
to see that p(x) g 6k for xel±k, because if / fxe(— δ, δ) for some i < p(x), then

Γ 1 Ί 1 / 9

L Co J

so p{px) S k.
(PI) and (P2) together are sufficient for proving Theorem 1. For Theorems 2-4

we need an additional topological mixing condition:
(P3) For every interval I c [ - 1,1], In = n(I) such thatfnl ZD [/ 2 0,/0].

Lemma 2.1. (P3) holds for allfa with aeΔε9 ε sufficiently small.

Proof. Let f = fa,aeΔε. First we prove that V/ cz [— 1, l],3n 0 = no(I) such that
fn°IzDlko or I_kp. In light of (PI), some fjl must intersect (~δ,δ). If fjl is
completely contained in two adjacent /fc's, keep iterating, and note using (P2) that
| / P ( / J / ) | » | / J 7 | , p = p(x) for xefjl. After finitely many returns to (-(5,(5), there
must exists and/c 1eZ+ such t h a t / J 7 =>/ki or/_ f c i. Consider fjlkι, j= 1,2,..., and
let 7*2 be the first time (after the bound period of xslki) such that fjlkί => some Ik.
Since |/ 7 2/Λ l | »|/ f c l |,/J2/fc, must contain some Ik2 or /_fc2 with 0 < k2 < kγ. We then
consider fjlk2 and repeat the argument until some fjlkn => /ko or /_ k o.

Next we argue that there is an nt eZ+ such that for all a sufficiently near 2, if xa

is the fixed point of fa in (0,1), then f"aΊko3xa. This is obviously true for a = 2 and
is an open condition. Finally, observe that for / = any fa if /is an interval containing
x, then 3n2 = n2(/) such that / n 2 / =3 [/ 2 0,/0]. This completes the proof. •
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3. Existence and Properties of Absolutely Continuous Invariant Measures:
Proofs of Theorems 1 and 2

Our first goal in this section is to prove Theorem 1 assuming (PI) and (P2). The
proof is straightforward: Extend p to p:\_- 1,1]-»Z+ by defining p(x)= 1 for
xφ{-δ,δ). Consider the return m a p # : [ - 1,1]Q given by R(x) = fp(x)(x). Then
some power of R is piecewise uniformly expanding. Piecewise uniformly expanding
maps have absolutely continuous invariant measures (acim) because their Perron-
Frobenius operators do not increase total variation by very much. An acim for /
is then constructed from that for R.

More formally, let β be the coarsest partition of [ — 1,1] into intervals on which
p is constant. Define g\\_— 1,1] -»IR by

/ v_ j n// if xe interior (£), some £ e β

I
otherwise.

The Perron-Frobenius operator associated with R, written 0>R or simply & when
there is no ambiguity, is defined to be

yeR~ιx

Note that if βn:= β v R~^ v ••• v R~n + 1β9 and gn(x):= g(R"-1x)--g(x% then

yeR ~ nx

Lebesgue measure is denoted by m throughout this paper. L1, || ||A etc. in this
section refer to L x ( [ - 1,1], m). If/ is an interval, let Vj(φ) denote the total variation
of φ on /. If / = [ - 1,1], then we simply write V(φ). Say φeBV if V(φ) < oo. It is
notationally convenient to assume that each Beβ or βn is closed, for this allows us
to write

V{&nφ)^ Σ VB{φgn)=V{φgn).
Beβ"

Lemma 3.1. (1) || gn || ̂  -*0 as n -»oo.
(2) Vgn < oo Vn.

Proof. (1) follows immediately from (PI) and (P2). We prove (2) with n= 1. Let
B = [bl9b2]eβ. Since Sf < 0,g\{bι b2) has exactly one minimum. So

g(x) + lim g(x)

Recall that on {p = j}, \R'\ ̂  λj for some λ > 1. So

It is easy to check inductively that Vg < oo => Vgn < oo Vn.
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The idea that the Perron-Frobenius operator shrinks variation for piecewise
uniformly expanding maps is due to Lasota and Yorke [LY]. Assuming the
additional condition that Vg < oo, Rychlik [Ryl] extended their result to the case
where / may have an infinite number of uniformly expanding pieces.

Lemma 3.2. {following [Ryl]). Let φeBV. Then

Proof. Choose JV such that || gN \\ „ < ^ . Since the local oscillation of gN at each
point is < j and VgN < oo, we can choose a finite partition β' such that

max VBgN <
Beβ'

Then

= Σ VB(ΨGN)
Beβ'

Σ
Beβ'

Using the fact that

we get

m(B)
\ψdm VBφ,

jφώm

which is < \V{φ) + C\\ φ \\ x with C = m a x - ^ ^ . Since ||0>φ \\x ̂  || φ \\l9 it follows

from this that

for all k.

m(B)

V(0>kNφ) g ( -

Proof of Theorem 1. Let φ = \. Since Vl - ]Γ 0>\φ) I ̂  some CVn, a subsequence

of these functions converges in L1 to some φ1eBV. Clearly, φ^mis an R-invariant
probability measure. Let &f denote the Perron-Frobenius operator associated with
/, and let

k 0k = 0

Then φodm is a finite /-invariant measure, finite because Σ II Ψi II oom{P > fe} < oo.
k=l
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(See (P2).) Normalizing φodm, we obtain our desired acim μ. To see that the density

of μ has the properties as claimed, let pγ = φγl\φodm. Since

(P2) (ii) tells us that for k> 1,

Next we prove Theorem 2 assuming (P1)-(P3). Note that (PI) and (P2) imply

that / has a positive Lyapunov exponent at μ-a.e. x. First we recall a theorem of

Ledrappier:

Theorem [ L ] . Let h:[— 1 ,1]Q be a C1+ε piecewise monotonic map with nonflat

critical points, and let v be an acim with a positive Lyapunov exponent a.e. Then a.e.

ergodic component of v is an acim. Moreover, if (hn, v) is ergodic Vn > 0, then the

natural extension of (h, v) is isomorphic to a Bernoulli shift.

Our next proposition probably has some independent interest. It is a corollary
to the proofs in [L].

Proposition 3.3. Let h: [— 1,1]Q be a C1 +ε piecewise monotonic map with k critical

points, all of which are nonflat. Let v be an acim with a positive Lyapunov exponent

a.e. Then

(1) v is the sum of at most k ergodic acim's;

(2) each ergodic component ofv is supported on a finite number of intervals, on which

the density is > 0 a.e.;

(3) ίfh is topologically mixing, then (h,v) is measure-theoretically mixing, and hence

Bernoulli.

Proof of Proposition 3.3. Let J0,...,Jk be the intervals of monotonicity of h. It is

shown in [L] that if we view the natural extension (h, v) of (ft, v) as living on

Ω = {(x,q)e[-l,l]x{0,...,k}**\3xo,xι,...e[- 1,1] with xo = x,

= xi-1 and X/eJα.},

then local unstable manifolds of ft are canonically identified with subintervals of

[— 1,1] and acim's on [— 1,1] with positive Lyapunov exponents correspond to

measures on Ω with smooth conditional measures on unstable manifolds.

Let vt. be an ergodic component of v. It follows from the discussion above that

at v ra.e. x, there is an interval Jι

x containing x on which the density of vt is > 0 a.e.

Let J\, J\,... be the maximal intervals on which the density of \t is > 0 a.e. By the

ergodicity of vi9 there can only be a finite number of these. Moreover, it is not

possible for h\ J\ to be 1 — 1 for all j , because h has a positive Lyapunov exponent

and the J^.'s cannot grow indefinitely in length. So at least one of them must get

"folded," i.e. 3/ =j(i) such that J j contains a critical point in its interior. This puts

a bound on the number of ergodic components.

Assertion (3) follows from what we have said and the last statement in the

theorem we quoted from [ L ] . •
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Proof of Theorem 2. Since pίeBV, there is an interval / < = [ — 1,1] such that
inf ρ(x) > 0. By virtue of (P3), we have inf p(x) > 0. The rest follows immediately
xel jce[/20,/0]

from Proposition 3.3 and (P3). •

4. Decay of Correlations: Main Steps in the Proof of Theorem 3

Let / be as in Theorem 2.

Step I. Construction of an extension of/:([—1, l],μ)Q. Recall that there is a
function p: [ — 1,1] — {0} ->2£+ with the following properties:
* p(x)=lVx#-5,5),
* f/c^p(x)^4/cVxe/±k,
* p(x)tas|x|J0,
* 3Λ > 1 such that Vx Φ 0e(- δ,δ\ \(fp)'x\ ^ λp.
For reasons to become obvious shortly, we will choose λ with λe~llAr < 1.

Our new space J is the disjoint union of a countable number of intervals
Ju J2,..., where J1 = [- 1,1] and for k> 1,Λ has length λik-1)/2m{p^k}. Note
immediately that

£ 1 + Σ λ(k-1)l2'2mm{δ,e-k/*} < oo.
1 k>l

We now define a map/: J Q . Let

On J~uJf, let / = / in the sense that f(Jf)aJ1. The interval J? is mapped
afϊϊnely onto J2, with a magnification of λί/2. Assume now that / has been defined
on Ji,...,Λ-i We again write Jk = Jfc~ uJk°uJ fc

+, where J^ = 7fc~1{P>^c} The
map/ then takes j£ affinely onto Jfc+1, magnifying it by λ1/2, and takes j£ into Ji
in such a way that Vxe{p = k} cz J?,/Px = /px. Note that oπ^J*,|/' | ^ λk/2.

Clearly, there is a projection π: J->[— 1,1] such that π°/ = /°π.
Next observe that μ lifts to an /-invariant probability measure μ on J with

density

where pj is as in Theorem 1. We mention a few relevant properties of p. For a
function φ: J->1R or C, let us use the notation φk to denote φ | J k . Then pkeBVVk
and IIΛIloo ^^" ( Λ ~ 1 ) / 2 IIP ί i lloo Since p > 1 on {-δ,δ\ the support of p is contained
in [/2<5>/<5] u U Jfc. Henceforth let us change Jx to [/2(5,/<5]. Moreover, if / cz J1

k>l ^ ^

is an interval, then 3n = n(I) such that /"/ contains the fixed point of / in J +. (This
follows from the corresponding statement for /.) So the same argument as in the
last section tells us that inf Pi(x)> 0.

xeJi

Lemma 4.1. (/,μ) is exact.

Proof. Let β be the partition of J into {Jk

±f0} We have H~(β)<oo because
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const e~2 f egμ(j£)g const e~k/4\/k, and μ{J£) is either 0 or hassimilar bounds.
Since / is essentially expanding, β is clearly a generator. So if Γ: (/, μ) -• (/, μ) is the

natural extension of(/,μ), and 0b is the Borel σ-algebra on «/, then Γ I Λ / ",

is contained in the Pinsker σ-algebra of (/,μ) (£Ro] 12.3). It therefore suffices to
prove the triviality of the Pinsker σ-algebra of (/, μ).

We will show that (/, μ) is measure-theoretically isomorphic to (/, μ), thejnatural
extension of (/, μ). (See Theorem 2.) Let x = (x0, xί9...) be a history of (/, μ) and
define Φ(x) = x = (x0,Xi,...) by letting xf = πxt . Clearly Φ*(μ) = μ, since Φ*(μ) is
/-invariant and projects onto μ. So all we have to do is to verify that Φ is 1 — 1 a.e..

Let x = (x0, x l 9...) be a typical element of (/, μ). We say that xt is a "marker"
for x if XjG(— (5, δ) and $j > i such that p(x; ) >j — i, p being the total bound period
defined in Sect. 2. If xf is a marker, and Φ(x) = x, then the only possibility for xf is
that xt = XieJγ. Hence Φ ~ι{x} contains at most one point if x has infinitely many
markers.

Assume for simplicity that xoe(—β,δ). From Theorem 1 we know that
Σjμ(-e'j/6,e~j/6)<oo, so by the Borel-Cantelli Lemma, 3/c(x)eZ+ such that
Xjφ(- e~j/6,e~j/6)Vj > k(x). This guarantees that for; > k(x),p(xj) <;. Suppose that
x0 is not a marker. Let Ί >0 be such that x^eί— δ9δ) and p(x7l) >;V Then either
xh is a marker, or 3;2 >;Ί such that xJ2e(—δ,δ) and p(xJ2) >j2 —Λ ϊf ^ s process
continued, there would be a;π > k(x) such that p(xjn) >;„, contradicting our choice
offe(x). •

Step II. The Perron-Frobenius operator. For the rest of this paper let m denote
Lebesgue measure on J, and let || || ί9 \\ || ̂  denote the L1 and L00 norms with respect
to m on J. For φ: J -> C, we define

where K(φk) is the total variation of φonJk. Consider the function space

X = {φ:J^C|F(φ)<oo, | |φ | | 1 <oo, | |φ | | o o <oo}

with norm

\\φ\\:=V(φ)+\\φ\\1+ε\\φ\\009

where ε > 0 is a small number to be determined later. (X, || ||) is a Banach space.
As usual, the Perron-Frobenius operator & associated with / is defined to be

= Σ <p(y)§(y)>

where

\fy\

except possibly at the end points of β = {J*'°}. For purposes of estimating variation
it is convenient to adopt the following convention. For Beβn and aedB, we consider
a as belonging in B if for some;, O^j <n, JjB a some J * and fjaedj£ otherwise
we say aφB. The advantage of this convention is that if we let g = 0 on dJ* and
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§n{x) = g(fn~ 1x)'''§(x\ then we can estimate V($nφ) by

(which is clear), and at the same time have

Σ VB{gn) < oo.
Bφ

(See Sublemma 5.1 and cf. [Ryl].)
The next lemma contains the main estimates in this paper. Its proof is postponed

to Sect. 5.

Lemma 4.2. &\ X -+X is a bounded linear operator whose spectrum

where σ0 a {\z\ ^ τ0} for some τ0 < 1 and ξiSS1 Vi. Moreover, each ξt is a simple pole,
and the corresponding projection has a finite dimensional range.

Step III. Finishing the proof. First we use the exactness of (/, μ) to prove that
σffinS1 = {1}. Let φeX be such that &(φ) = ξφ for some ξeS1. Since β > 0, we
can write φ = θp for some θ. Note that 0eL2(μ), for

mmpk

so that

which is < oo by the upper bound we imposed on λ.
The rest of this argument is quite standard (see e.g. [HK]). We let U = Uj be

the operator on L2(μ) defined by U(ψ) = ψ°f. Then U*θ = ξθ (in the sense oί L2)
because

< U*θ,ψy = ϊ(ψ°f)θpdm = lψ'P(θp)dm = /

for every φeL2(μ). From this and | ξ | = 1 we deduce that Uθ = ξθ, which means that
θ = ξnUnθ is measurable with respect to f~n$. Hence θ = some constant c a.e. by
Lemma 4.1. Thinking of & as an operator on L}(m), one sees immediately that

We have shown that φ = cρ a.e. To see that φ = cpjίs elements of̂ X^ use
Lemma 5.1. This together with Lemma 4.2 proves that 9 = ̂ 0 + ̂ i , where ^ 0 ^ i =
gp^Q = 0,σ($0) c {\z\ S τ 0}, and &γ(φ) = cφp for some cφe<C. In fact, cφ = \φdm,

^ ^ large n ^

because $0>

ίφdm = $0>n

1φdm « \0>nφdm = \φdm.

Finally we return to the original dynamical system / : ( [ - 1, l],μ)O Observe
that φeBV([- 1,1]) lifts to φ: J ^ R with φpeX:
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We have thus shown that Vφ,φeBV{\_- 1,1]),

\l(ψof»)φdμ-$φdμ'$ψdμ\ = \j(ψof»)φdμ- $(pdfi-$dfi\

= \]ψί^n(Φp) ~ (]φρdm)p']dm\
^ m(J) || ιA II oo * C{<P> Ψ)τ" f°Γ s o m e τo < τ < 1

This completes the proof. •

5. Spectral Properties of the Perron-Frobenius Operator

The purpose of this section is to prove Lemma 4.2. Recall that our norm consists
of a total variation part, an Z^-part, and an L°°-part. Roughly speaking, the variation
part is contracted by 2P\ the ί^-part does no harm; and the L°°-part is needed to
control what happens on the Jfc's for k large.

From here on we will be workingjexclusively with / : J Q . So for notational
simplicity let us drop all the ~'s in /, /?, 0* etc. The following line of argument is also
fairly standard:

Lemma 5.1. (1) ̂  is a bounded operator on X;
(2) 3NEZ+ andR^O such that VφeX,

Using Lemma 5.1, and remembering that \SPφ\χ ^ I I Φ I I I , one deduces im-
mediately that sup || &n || < oo. This gives σ ( ^ ) c {|z| ^ 1}.

Lemma 5.2. For N sufficiently large, there is a finite rank operator Ά with

This second lemma tells us that outside of some disk of radius < 1, σ(^) consists
of at most a finite number of points ηl9*..9ηl9 and that the projection corresponding
to each ηt has a finite dimensional range ([DS] VIII 8). No ηteS1 can be a pole of
order > 1, for that would violate sup || SPn || < oo. This completes the proof.

n

Sublemma 5.1a. sup VB(gN) < oo VW.
BeβN

Proof. Since \f'x\ ^ δVx and / maps each element of β to at most 3 elements of /?,
we have

BeβN ~
BczJi

(See the proof of Lemma 3.1.) Next consider BeβN with B<^Jk9k>\. If fjBcz

U Ji )Vj ^ N, then VBgN = 0. If not, then |(/")'x| ^ δNλik-1)/2VxeB, giving

Beβ"
BczJk

We now choose and fix an NeZ+ with II qN | L ^ T L and λ~N/2 < 777.



Decay of Correlations for Certain Quadratic Maps 135

Sublemma 5.1b. For every ε > 0,3R ί = R^N, ε) such that VφeX,

Proof.

BeβN B B

The first term is ^ || gN || ̂  V(φ\ and the second term is estimated as follows. For

Σ
BeβN

B c:\JkZKJk

mB
\φάm VB(φ)

\ B

where R1K is a constant depending on K. Choose K such that

Σ VB{gN)<±-ε. M
» 10

Sublemma 5.1c. V sufficiently small ε > 0,3R2 = R2(N9 ε) such that

Let us explain the idea of the lemma, assuming N = 1. A formal proof will follow.

We wanted to say that ||0>φ \\ m < || φ | | „ . Clearly, (&φ\ 1 y Jfc g λ~1/21| φ \\„,

but for (^>φ)1 all we can say is that ||(0>φ)1 \\n ^ C || φγ | |„ + 2 Σ A" ( f c~1 ) / 21| φfc | |^

for some C. Choose K o such that 2 Σ A" ( k " 1 ) / 2 is small. For 1 < k ^ Ko, we can

write || φfe || ̂  ^ V(φk) -f I Jφfc|/m(Jfc). Together this gives us

|| SPφ | |„ ^ const (K(φ) + || φ \\x) + {λ~1/2 -h small)-1| φ | | n 9

which explains the ε-weight in the L°°-part of the norm || ||.

Proof of Sublemma 5.1c. Since
1

AH <;-*/2ιsup ^ 1 1 | φ || „,
10

we only have to consider (^Nφ)k for fc = 1,..., N. Let No be a large number to be



136 L.-S. Young

specified shortly. Define

M2{φ) = max{\\φ1\\009...,\\φNo\\00}9

and

M = m a x { M 1 ? M 2 } .

One verifies inductively that V;, k£N9\\ {^jφ)k || «, ^ DjM, where

D = —
α<5

For instance,

the three terms being contributions from (0>jφ)ί9 Σ (^V)i a n d Σ (^JV)» respectively.
We have proved that 2 ι > >

If ToIIΨII oo is bigger, we are done. So suppose DNM(φ) dominates. We choose No

and ε such that

DN(2 γ <l_ a n d ioθεD^< —
No / 1 0 " 1 0 0

and consider the following possibilities:

Casel: M = MX. We have
2: M ^ 1007(φ). We have ε \ ^
3: M = M2 and M 2 > 1007(φ). Let k<>Nobe such that | |φk\\O 0 = M. Since

it follows that

and

99 1
M <

100 " m J

Proof of Lemma 5.1. We fix ε acceptable with regard to 5.1c and take R = R1+R2 + 1.
(Note that if we had defined || || = V{ ) + || || u then P could be unbounded. Take
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Proof of Lemma 5.2. Let NeΈ+ be as in Lemma 5.1, and let E = EβN be the
conditional expectation with respect to the σ-algebra generated by βN on J. Define

and

We claim that for sufficiently large;,Ά = J , has the desired property.

Sublemma 5.2a. || &" - i || ^ ^ .

Proof Let θ = φ - Eφ, so that (0>N - £)φ = 0>NΘ.
(i) K^flJgll^lL Σ Kβ(0) +max Fβ(0N) Σ 110-1* | |,.

Since VB(Θ) = KB(φ) and || Θ\B \\«, g Kβ(0), we conclude that

(ii) || ̂ ^0II x g X mB VB(Θ) ί ^ j

(iii) The same argument as in 5.1c (Case 3 cannot occur) gives

To complete the proof of Lemma 5.2, consider an arbitrary φeX. Write

|| 0>Nφ - 2jΨ || ^ || ( ^ - M)(φί y Jk) ||

The first term is ^ -^ || φ || by 5.2a, and the second term is

by Lemma 5.1. Since

j ε\k>j

we have ||0>Nφ — Ά}φ || ^ ^|| φ || for sufficiently large/ •

Note added after completion of manuscript. The author has heard that G. Keller
and T. Nowicki recently obtained some related results.
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