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Abstract. String vertices, V9 are shown to satisfy a new type of overlap equation
ίdξj\p2'2

of the form Vexpfo-Q^ξ1)} = Vexp{ip Qj(ξj)} ( —-. I as well as corresponding

equations for An and Bn cycles. A special case of such an equation, when integrated,
is shown to be the Hirota equation for the K-P hierarchy.

1. Introduction

There are a number of different approaches to string theory; the dual model [1],
the light-cone string field theory [2], the sum over world sheet surfaces (the Polyakov
approach) [3], gauge covariant string field theory [4] and the new oscillator form-
alism. The latter approach was developed with the objectives of providing an efficient
method of calculating string perturbation theory and giving in some sense, a more
fundamental definition of string theory. While the extent to which the latter aim
has been achieved is not clear, it did succeed in giving perhaps the most efficient
method of computing string perturbation theory. The formalism has a number of
features in common with the original dual model approach to string theory; in
particular it works with multi-string vertices. However, in the new oscillator form-
alism ghost oscillators were introduced into the vertices [5]. Although four distinct
groups worked on different variants of the new oscillator formalism, substantial use
was made of a new kind of relations called overlap equations which were discovered
in Refs. [5-7]. These equations came in two types called unintegrated overlap
equations and integrated overlap equations. The integrated overlap equations were
often subsequently called conserved charges in the literature.

One of the new oscillator formalisms was called the group theoretic approach
[7,8] since calculations were reduced to essentially an exercise in manipulating
conformal transformations. The basis of this approach were the overlap equations
and the decoupling of zero norm physical states. The relations between the different
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new oscillator formalisms were discussed in the final parts of the papers in Ref. [9]
where many more references can be found to the Copenhagen approaches [18, 19]
as well as the Grassmannian approach [20].

Reviews of the group theoretic approach are given in Ref. [8 and 9] and so here
we limit ourselves to a very brief summary. The scattering of N physical string states
|χ> t , i = l , . . . , Λ f is of the form

where V is the N string vertex, zhi= !_,_. ..9N and υr are the Koba-Nielsen co-
ordinates and moduli respectively and / is a function of the moduli and Koba-
Nielsen co-ordinates. _

The method specifies how to calculate the function /and the vertex V. The vertex
V is determined by requiring that it satisfy overlap equations which we will specify
shortly, while the function /is uniquely determined, once we have found the vertex
V, by demanding that the zero norm physical states decouple.

The scattering vertex V for N string scattering obeys the unintegrated overlap
equation [5-7],

(1)

where R is a conformal operator of dimension d and ξl is a coordinate on the patch
which includes the point where the ith string is emitted and has its origin at that
point. If z is a coordinate system in common to a number of patches then ξl = (Vί)~1z
is an analytic function of z vanishing at the point zt where the string is emitted. The
relation between two coordinate patches ξl and ξj is then ξj = ((Vj)~ * V^ξ1). In this
paper we have changed our definition of a conformal field from those of previous
works by the substitution R(ξ)^ξdR(ξ), that is in this paper R(ξ)(dξ)d is invariant
under a conformal transformation.

Such a relation (1) is valid for the fundamental conformal operators out of which
the other conformal operators may be built. For the bosonic string, the fundamental
operator is

oo

(2)

which has conformal weight zero. One has found, however, that Eq. (1) is in fact
valid for all the conformal operators R for which it has so far been tested. For the
bosonic string, besides βμ itself these are

nβ-.^p ,3,
and

(4)
By considering the integral

Ff<M(£V (5)
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where C, is the contour around ξl = 0 and includes no other points where strings
are emitted, and deforming the contour one derives [6-8] using Eq. (1) that

, (6)
j = ι dξ J

provided φ has poles only at the points where strings are emitted. These latter
equations are called integrated overlap equations.

Equation (1) for the fundamental conformal operator provides us with a definition
of V. The above also applies to string scattering corresponding to surfaces of genus
greater than zero, but in this case one has additional overlap equations, correspond-
ing to An and Bn cycles which are discussed below and are required in the derivation
ofEq. (6).

In this paper we show that the vertex V obeys a new type of overlap equations
for the operator exp ip Q(ξ). Such a relation when integrated and applied to a special
two string vertex, with restricted loop momentum, is shown to be none other than
the Hirota equation, which determines the K-P equation. From this viewpoint the
relation between solutions of the K-P equation and Riemann surfaces becomes
intuitively clear. The result also implies that the special one string vertex is a solution
to the K-P equation, a fact which is consistent with previous empirical observations
[15, 12, 13] on the form of certain string vertices. Although we give the explicit form
of the string vertices we note that the derivation depends only on the form of the
overlap equations and does not require a knowledge of the details of the vertex.

2. Derivation of the Overlap Equation for the Operator exp ι/? •

The operator

is well known to be a conformal operator of dimension — and might therefore be

expected to obey Eq. (1). The object of this part of the paper is to prove this overlap
equation for vertices, beginning with the relation

VQμi(ξi)=VQμJ(ξJ) (8)

If p2 = 0 there is no nomal ordering required, writing

and using Eq. (8) repeatedly we find that [10]

Kexpφ ρ< (£<) = Kexpφ ρ'Of). (9)

The case p2 Φ 0 is more complicated to show, but we also begin by writing

=P» «β- Σ
n = o n\
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and use the relation

to carry out the normal ordering.
It will prove advantageous to streamline our notation, we let ip-Ql = φ9 ip-Qj = ψ

and ξl — z, ξ j = w. An obvious consequence of Eq. (8) is that

Fφ(zJφ(z2). .φ(zJ=F^(wll)^(wll

For the case of two β's, using Eq. (11), we find that

(12)

.

'/•% * * f\ ' ^ \2 2 2 \zί-z2

Taking the limit zί ->z2 = z under which wί -» w2 = w, the equation becomes

2 2 2 dz

The above equation is an example of a more general result;

=
n! ,tΌ (π-2Q! /!

(14)
V '

(15)

which we now prove by induction. The sum £' as has its upper term such that
the power of ψ is non-negative. When proving this relation we must normal order
the nφ's using the relation

Kjkϊi,

2

P

2ln(z,-Z() Π :̂ .): + - (16)

We may write this equation in the generic form

: — :=!' — - — -,-:φπ-2l:(p2lnΔz)1, (17)
n! ,tΌ(n-20!2'/! ^ ^ ^ '

where the z arguments have been suppressed and Δz is some z difference.
Applying Eq. (17) to Eq. (12) we find that

V?' - ? - -,- .φn+2-2l .(p2\nΔz)1

£o(n + 2-20!2'/! r

= VY' - l - -,- 4n+2-2l:(p2\n(Aw))1. (18)
ι-o(n + 2-2/)!21/!

Assuming Eq. (15) to hold for the integer n, we can use it to swop :φp: for :ψ": for
p ̂  n in the above equation;

(n
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^ 1 1 ι,n + 2-2l-2n.

(n + 2-2l-2n)\n\2n^

Carrying out the sum and taking the appropriate limit we find that

F:J :̂ = Fy<:J^!/ , <Λ\I f-^ ( I -Λ

(19)

By induction Eq. (15) is true for all n. Summing on n we find the desired result,

/2

, (21)

which holds for string scattering vertices corresponding to surfaces of any genus.
The reader may verify that the use of the generic formulae above for arguments

and differences is justified by the limiting procedure; essentially because — - -
z ~

dw
gives — in the limit z/->z t no matter what the initial value of z7 .

dzi
While for tree level (i.e. sphere) string scattering Eq. (8) determines the vertex;

for loop string scattering a further overlap equation is required.
Let us choose a Schottky representation of the Riemann surface. Let PM, n =

1, . . , g, be the SL(2, C) transformations whose isometric circle Cn is mapped under
Pn into C'n. The Riemann surface is the region exterior to the 2g circles. We refer
the reader to Ref. [1 1] for discussions of the Schottky representation. The Bn cycles
of the Riemann surface are any path connecting an arbitrary point z0 to the point
jPwz0. If z0 lies on the circle CM, then Pnz0 lies on the circle C'n, while if z0 lies out-
side all the circles Pnz0 will lie inside C*. The An cycle is any path encircling Cn.
The required overlap equations for the multiloop vertex [7, 8] are

(22)

and

(23)

where Pl

n are the transformation Pn in the ξl coordinate system and similarly Al

n

for an An cycle. Differentiating Eq. (22) implies that

. (24)
(l(y

In the above and what follows we have suppressed the μ index on Qμ and Pμ.
Using the overlap equations (8), (22) and (23), the multi-spring g loop string

scattering vertex which was first found in the third work of Ref. (7) to be

K=<μ|l/ looplΓ t ree, (25)
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where

+ Σ ^(Γ(κί)-ιno))v0+ Σ β
n=ι / n 1=1

1
αχo, (26)

' = exp| - Σ <!- Σ α'^K'T1^^f L~t \ r* L-t nv v / /wm m

f f § | +

π,m= 1
V

(27)

where
m

pj —^ _ _ I / _

» /ξJ \ /ξj \
(28)

where

«: = >Afl:,»=:l and <μ| = f[ fdp i ί<0,p ί | (29)
i = l

and EJ is the prime form in the ξ j coordinate system; in other words it involves
T{ = ( Vs) ~ 1 T{ Vj rather than TΛ.

A more elegant expression can be found by recognising the appropriate Taylor
expansion; and Eq. (26) and (27) can be written as

(V\ξ)-V\ζ))}

W 1 \ Γ/ Mζ) \ Ί Ί
— (τ-1)^ §dζP\ζ) f wπ , (30)

/ \ 2 π ϊ / L \ zo / J J

2 i = ι ς

where wm; m = 1, . . . , g are the g holomorphic differentials on the Riemann surface.
In Schottky representation these are given by

(«) f 1 1
\
l

WB(Z) = V --- - dz,
- -
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(«)
where Tα is any element of the Schottky group, Σ mean a sum over all Tα except

those that have Pn or P~ 1 as their right-most factor and αM and βn are the two
fixed points of Pn. These differentials are normalized so that

Ak

~ 1In this paper, all closed contour integrals are assumed to contain a (2π/)
factor which is not explicitly shown, and, if no closed contour is indicated, it is
assumed to be around the origin.

We define the Riemann matrix, as usual, by the integral

. (34)
Bk

It will be advantageous to consider string vertices before the loop momentum
kn\n= !,...,# are integrated or summed; we denote such vertices by V(kn). The
corresponding overlap equations are slightly different. As before, we adopt Eq. (8),
and also Eqs. (23) and (24), but Eq. (22) is replaced by [12],

V$P\?)d?=Vl? n=l,...,g, (35)
An

where kn is the loop momentum. We can regard this equation as a definition of
kn. Equation (35) can be rewritten as

V{Qi(ξi)-Qi(Ai

nξ
i)}=-2πVk". (36)

Using these overlap equations which completely determine V(k) we can derive
the corresponding integrated overlap equation, in the standard way. Given a func-
tion φ which is analytic everywhere except at the points where the strings are
emitted and satisfies

φ(Paz) = φ(z) + dm, φ(Anz) = φ(z) + cn, (37)

where cn and dn are constants, then we find that the analogue of Eq. (6) is given by

Σ dn § V(k)PW? -Σcn§ V(k)P\^d^ = £ V(k) § φPj(ξj)dξi. (38)
ι ι=l An n=l Bn j=l Cj

The derivation of this equation follows a discussion in the fourth paper in
reference [7]. We have used the relation Pl

n = (Vi)~1PnV
i, and the fact that going

counterclockwise around Cn leads under Pn to a clockwise motion around C'n.
Using Eq. (35), this last equation becomes

Σ V(k) $ φPJ(ξ*)dξJ = V(k) Σkndn-Σcn V(k) j P(<Γ)^< (39)
j = 1 Cj n = 1 n = 1 An

Let us take the function

Vi(?)

Ψ(ξ)= ί v v m - } w w (40)
K'(«o) ^o

for which

dn = 2πiτmn and cm = 2πiδ^m. (41)
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Substituting into Eq. (39) we find that

2πi§V(k)Pt(ξ')dξi=V(k)\ + Σ km2πiτmn- }
Bn I m = l 7 =

(42)

To determine V(k\ we take as our set of functions

(43)

where E(z, w) is the prime form:-

E(Z, w) = - (Z~
2 Jdϊfa V (z - Γ.(z)) (w - Γ»)

* α=£/

Although the prime form is inert under any An cycle it transforms as

E(Pnz, w) - - E(z, w) exp] - πhm - } wn

I w

under a £„ cycle and hence for φn we have

wm\w=0. (45)

The Taylor expansion of φn around the emission points of the strings can be
taken as

-— + Σ Enm(fim around ξ* = 0
M (ti\n ^—' nm\^> ' ^

1 " = ° oc ' (46)

Σ tym(ξJΓ+ Σ E'^ξγ around ξj = 0
m = 0 m = 0

where

1 J_ = y t« ίfΛ. = y , f (47)

"mtCJ

around ξj = 0.
Substituting the </>„ of Eq. (39), the multi-string g loop vertex is

K(fc) = <Ju|ί/loop(fc)(7tree, (48)

where Uίτee is as in Eq. (31) and

ι oo -
- Σ Σ*iEiJ

o ^̂  "̂̂
^ n,m = 0 ί'J

•expjj Σ /cm2πiτmn/c"lexpf- X f α^f>*»)/(*"). (49)
L ^ m , « = l J \ » = l m = l /
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The αjjα^ piece is not determined by the above calculation, but is found from
Eq. (8) as in Ref. [7]. The dependence on km is also not completely determined as
one can multiply Uloop by an arbitrary function f(km\ as indicated, and it is still
a solution of all the overlap conditions.

Using the appendix of Ref. [13] we can rewrite Uloop as

g N Vl(ξ)

k" - £ £ §dξP'(ζ) J wm/cm

m = l i = l ZQ

- Σ m d ζ P \ ζ , ) \ n ή Q f ( k n ) . (50)
T " "

We note that provided we take the additional function f(k) = 1 in the vertex
V(k), then Eq. (41) can be written as

V(k) { - Q'(?) + βTO') } = - i -?- V(k\ (51)
OK

When kn are real numbers, as for the bosonic string, we may integrate the
vertex with respect to the loop momentum, where upon the right-hand side of
Eq. (51) vanishes and we recover Eq. (22) as we should. One can reverse the above
steps and demand Eq. (22) for the integrated vertex. This would then fix the loop
momentum dependence of the vertex as it is in Eq. (49) or (50) with f(k) = 1.

Since the vertices V(k) obey Eq. (8) they will also obey Eq. (21). For later consi-
derations we will require the analogue of Eq. (21) for An and Bn cycles. Equations (36)
and (51) can, using Eq. (8), be written in the form

V(k)Qi(ξi)=V(k)(Qj(ζj) + Δ\ (52)

where for an An cycle, ζj = Aj

nξ
j and Δ = - 2πfc", but for a Bn cycle, ζj = Pj

nξ
j and

We note that Δ commutes with Ql and Qj. Examining the previous argument
and identifying φ = ip-Q\ z = ξl, ψ = ip-(Qj + Δ) and w = ζj the previous argument
leads to the results

V(k)eip Ql(ξi) = V(k)eίp Q'(A»ξl)exp(- 2nip-kn)( Λ^J. \ (53)

and

Γ *fi ϊ /drΛ'^ϊV 2 / 2

(54)—n

after using Eq. (21). The extra factor (i.e. exp(- 2πip-kn) in Eq. (53) will vanish if

p-knεZ. (55)

The effect of the additional factor in Eq. (54) is to shift km to km - pδm^n. Upon
summing over km this factor will disappear by reordering the sum if km - pδn,m is
in the same set as /cm, i.e. if /cmeS then

(56)
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For the usual bosonic string /cmeR and clearly (56) holds for any peR. Provided
Eq. (55) and (56) hold then for the summed or integrated vertex V, Veip'Ql(ξl) is inert
under all An and Bn cycles and in this case we can integrate Eq. (21) to find the
corresponding integrated overlap equation,

Σ$Velp QJ(ξJ>dξJφ = 0, (57)
j=ι

where φ is any form of degree I -- 1 1 having poles only at string emission points.

A case which will be of interest to us is when p2 = 2 for which φ is a function, a
particularly important example being φ=l.

The vertex with only one leg K(1)(/c), for the local coordinate choice V\z) = z,
can be written in the form

f ^2niτmnk
n - £ $dzP(z) \ wm

m,n= 1 m= 1 ZQ

(58)

The identities of Eqs. (53) and (54) will hold regardless of what choice of km

we take. Let us in particular assume that the space-time has two Euclidean
dimensions (i.e. the μ indices have been suppressed).

Let us also suppose that

km = n(m) + α(m)? n(m) ̂  α<"Oe]Rφ (59)

Now if pμ = (p,-p), then p.k = p(n™ - rc(

2

m)) and Eq. (55) will hold if
Further, if we sum the vertex over all such kμ then k™ - δm-ppμ is of the same form
as k™ and Eq. (56) holds. If we now demand that p2 = 2 then the only possible
value for pμ is up to a sign, pμ = (1, — 1).

As a consequence, taking the function φ = 1, we may conclude that

$dξV{eiQl(ξ>-eίQ2(ξ>}=Q, (60)

where

y= Σ

3. Relation to the Hirota Equation

The special example of an integrated overlap of Eq. (60) is none other than the
Hirota Bilinear equation [14]. We now explain this connection.

Consider a one string vertex, denoted V(k\ for a string propagating in one
dimensional space whose loop momentum are as in Eq. (59). We take the scalar
product of such a summed vertex with the coherent state

0,0> (62)
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and define the function

τ(ί) =
keS

The function τ(ί) is then given by Eq. (58) with the substitution,

P(z)= f>Mz-"+ .., (64)
«=ι

where + stands for derivatives of t which do not contribute in V(k). We observe
that the vertex of Eq. (61) in terms of coherent states is

K|ί 1> 1 | ί 2> 2 = τ(ί1)τ(ί2), (65)

where the 1,2 indices refer to the two components of αJJ. The operator Qμ(z) in a
coherent state basis takes the form

β(z) = g- ϊ α 0 lnz + i Σ tnz-n-i Σ ~^ (66)
n=l ι ι = l H dίπ

Taking into account momentum conservation, we saturate Eq. (60) with the
Oί t

state exp Σ ——10, —/?> to produce its coherent state analogue:
« = ι n

( t . a - t .vexp- " - r ^ 1 K ( i 2 ) = 0. (67)
π π

This equation is clearly recognisable as the Hirota equation. In carrying out

this last step we have made the replacement u = -.

In fact τ(ί) is not quite the τ function which is often defined by

τ(r) = exp z^wί(z)ln φv) 0 $dz wmί(z) (68)Γ" Y $dz
|_PJ\

where t(z)= Σ ntnz~". Recalling that
N=l

= Σ
N^elR m,n=ι „=!

(69)

and identifying km = Nm -f αm we recognise that the object in the sum is V(k) times
the additional factor

exp Σ (Nm + ocm)2πiβm (70)
m = l

which does not depend on tn or equivalently αJJ. Clearly, the overlaps of Eqs. (36)
and (42) are still valid for the corresponding vertex with this additional factor, but

when writing this latter equation in the form of Eq. (51) we must replace — by
dk"
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h 2πiβn. It is straightforward to verify that the conditions of Eqs. (55) and (56)
dkn

are met and the Hirota equation also holds if we replace τ by τ.
It has been recognised as an empirical observation that the one string vertex

for the closed string [15,12,13] on a torus is related to the τ function. In general,
we find a sum of terms bilinear in τ functions of different kinds [12], however for
one particular choice of radius the sum reduces to one term. Within such a context
the Hirota equation was discussed in Ref. [15] and also within the context of the
relation between Sato's Grassmannian approach and free fermions on a Riemann
surface of reference [16].

For the sake of completeness we sketch the well known path from the Hirota
equation to the K-P hierarchy. Changing variables by t{ = x — y, t2 = x + y and
introducing the Schur polynomials Sk9

00

fceZ k = 1

Eq. (67) becomes

00 _

Σ Sj( ~ 2y)Sj+ j_ (dy)τ(x — y)τ(x + y) = 0, (72)

where

' " (73)

Changing the y dependence in the τ functions to y -> y + u and differentiating with
respect to u instead of y we find

3=ι
S/-2jOexp Σ yssj+1(du)τ(x-u)τ(x + u)\u = o = V. (74)

This equation is a polynomial in ys; s = 1, 2, . . . , and each coefficient must there-
fore vanish leading to a hierarchy of equations. The first such non-trivial equation
occurs as the coefficient of ^3, and upon substituting

W = 2 1 n τ , (75)

it is found to be the K-P equation.
It is straightforward to define τ functions associated with vertices involving

more than one external string. We begin by constructing the corresponding Hirota
equation. Let us consider in two Euclidean dimensions a N string vertex V whose
loop momentum are such that Eq. (57) holds.

Let us consider φ = 1, that is the equation

Σ§Veip Qi(ξJ)dξj = Q, (76)
j=ι

and apply to V the coherent state |ί>ι on leg one, but states |<Aj)j on ^e other
legs such that

\ψjyj = 0. (77)
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A particular, example of such a state is the tachyon state |0,p7>, provided
P'pje% and P'PJ^ — 1. In view of the forthcoming decomposition of the two
dimensional vertex into the one dimension vertex used to define the τ functions
we let p? = (pj9 PJ) in which case p-pj = 0. Applying the states |0, p, > J = 2, . . . , N + 1
and the coherent state on leg one we recover the Hirota equation (60) for the τ
function,

N+ί

τ*(ί)=K|ί>ι Σ |0,ftX (78)
;=2

where F is the one dimensional vertex.

Momentum conservation implies that £ /?7 = 0. Examining the vertex of
;=2

Eq. (31) which for convenience is simplest when ζ l = (V1) 1(z) = (z — z1), one sees
that having 2M tachyonic states 10,^) is equivalent to starting with a one leg

N

vertex and inserting γ[ eip'Ql(Zi} on the external leg.
1 = 2

One way to ensure momentum conservation is to take N = 2M + 1 and add
external states pairwise with momenta p2j= — l»P2j+ιJ = = 1, ,M. Adding only
one such pair is equivalent to inserting the operator

. - iQ(z2) . . iQ(z3) . = ___L_ . i(Q(z2) - <2(z3)) .

and the new τ2 function of equation (78) is related to τ by

One of the simplest M soliton solutions is to take the tree vertex of Eq. (31)
where N = 2M + 1 and saturate pairwise. Taking the simple cycling ξ1 =(Vi)~1z =
(z — z1) one readily finds that the resulting τ function is

ΣΣα<-«) Π ^ - - . (80)
. / = l ι ι = l ίί

where z2 / = — , z 2 /+ 1 = — 7 = 1, . . . , M in agreement with the well-known M soliton

" ^solutions corresponding to a sphere.
Since the τ functions are defined in terms of the 0-loop N string vertex they

will inherit the properties of the string vertex. In particular, the τ function will
obey overlap equations and their integrated analogues for all conformal operators
for which they are valid. The resulting equations are readily found by the replace-

ments α£-»nίn and αί. -> — ,n^ 1 in the relevant expressions for β(z),P(z) and

L(z) = ̂ :P(z)2:. We can write such equations for the unintegrated overlap equations
for the integrated vertex. Recalling that km = N(m) + α(m) and inserting the factor
of /?, Eqs. (51) and (36) for the integrated vertex are

(81)
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and

V(Qί(ξf}-Qί(Aί

nξ:))=~i~. (82)

Taking one leg and inserting the coherent state we obtain the above two
equations, but with the replacements mentioned above and K->τ(f). From the
point of view of this paper it is natural to take the above equations to define the
τ functions. Differentiating with respect to ξl we find that F(£l) obeys

VPW=VPi(ζi)^j .9 (83)

where ζl — A^ξ* or ζl = P^ξ1 depending on which equation we take. These equations
in turn lead to an equation on the τ function. As a consequence, one can derive
the overlap equations for L(ξ) of Eq. (4), using the same techniques as we used for
Eq. (21). One finds

(84)

as well as the analogous equations for An and Bn cycles and the integrated overlap
equation

N ίd&\d~l

VΣ$dξ*U(ξ>)φ -| =0. (85)
j=ι \"s /

Since L(ξ) is not quite a conformal operator, the above equation can, for sur-
faces other than the sphere, acquire constants; we refer the reader to ref. [7] for
a discussion of these overlap equations. Taking only one leg, and placing upon it
a coherent state, we find the τ function obeys the Virasoro conditions

τ{$dzL(z)φ(z) + constants} = 0, (85)

where φ is a vector field which is analytic except at the point where the string is
emitted. Such equations and their interpretation in terms of induced representations
are the subject of Ref. [9]. The τ function will also inherit the modulus chainging
equations of the one vertex. For string vertices the Virasoro condition equations
are simplified by the introduction of ghosts into the vertex and Lπ's which then
become true conformal operators. One can imagine introducing Grassmann fields
into the τ function by sandwiching the vertex with ghosts with a corresponding
coherent state to obtain a τ function with simpler Virasoro properties.

In a situation for which a W algebra is present one will find by the same logic
that the vertex, and so the τ function, will obey W conditions analogous to those
of the Virasoro conditions.

4. Conclusion and Discussion

In this paper, we have shown that the string vertices obey the overlap equation (21),
(53) and (54) for the conformal operator :exp ip-Q(z):. In view of the other known
examples it would seem likely that the string vertex satisfies overlap equations for
any conformal operator. The overlap equation for exp ip β(z): is likely to be useful
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in the many contexts in which this operator arises such as the coulomb gas re-
presentation of minimal models and the symmetries of compactified strings. The
latter is discussed in Ref. [10].

As we have seen, a particular use of this overlap equation leads to the Hirota
equation once we define τ functions in terms of certain string vertices. Although,
we have given the explicit form of the vertices, the derivation of the Hirota equation
does not rely on the explicit form of the vertex, but follows in a rather straight-
forward way from the overlap equations which define the vertex. Thus, given any
Riemann surface, the overlap equations provide us with a string vertex which in
turn allows us to define a τ function which automatically satisfies the Hirota
equation.

The overlap equations for the g loop, N string vertex can be thought of as
arising from the three string vertex out of which the former vertex can be constru-
cted by repeated sewing. The overlap equations for the three vertex may be envisaged
as a result of the fact that strings interact by joining at their end points and identify-
ing the third string from the original two at the moment they join. The sewing
procedure leads in an obvious way to overlap equations for the resulting vertex
[7,17]. Since the sewing procedure corresponds to the joining of "pants" to build
up the Riemann surface, the relation between Riemann surfaces and the Hirota
equation becomes intuitively self evident through the use of the overlap equations.

It might be hoped that the string vertices can play a useful means of deriving
other results in Riemann surface theory. We observe that given any string vertex,
we can derive its overlap equations and so construct the Riemann surface to
which it corresponds. Certain aspects of the Riemann surface are readily apparent
from the vertex point of view. One such aspect is the moduli of the surface which
are a simple consequence of the sewing procedure. Another possible application
may be a vertex derivation of the Θ function identities using sewing and the overlap
identities.

The derivation given in this paper provides a setting for the Hirota equation
within a formalism which would seem more general than that of the Grassmannian
approach, in that it involves more general vertex operators than those associated
with fermions. One may hope that it may lead to generalisations of the Hirota
equation. In view of the use of the g loop vertex with one arbitrary leg and an
even number of tachyons, it might be desirable to consider the full N string #-loop
vertex which for the appropriate internal momenta will satisfy Eq. (57) and define
an extended "τ" function of tl

n, i = 1,..., N and the momentum pl. When saturating
Eq. (57) with states, care must be taken with momentum conservation; in particular,
the states momenta pjj = 1,..., N must sum to - p. It would seem that the resulting
Hirota type of equation will involve "τ functions" at different momenta, although
the number of different values of momenta involved may be chosen to be small.

Another approach would be to consider a compactified string with left moving
states only on a lattice which is a direct sum of two identical lattices. Such a require-
ment is necessary for the vertex involved in the Hirota type of equation to split
into the product of two vertices.

Yet one further avenue of development concerns relating other aspects of K-P
equations to string theory. While the wave function w^z"1) has a simple inter-
pretation in terms of a two string vertex, one of which is saturated with a coherent
state | f w ,0> and the other is saturated with a tachyon state at point z. The wave
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function is normalised such that at z = oo it is one and so can be thought of as
the partition function for the tachyon state in the presence of a background coherent
state. It is obvious, from this viewpoint, that z is a point on the Riemann surface;
less obvious is the role of the pseudo-differential operator Q and the corresponding
formalism.
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