
Commun. Math. Phys. 145, 195-207 (1992)

Hamiltonian Formalism of Whitham-Type Hierarchies
and Topological Landau-Ginsburg Models

B. A. Dubrovin*

Department Mechanics and Mathematics, Moscow State University, SU-119899 Moscow, USSR

Received August 15, 1991

Abstract. We show that the bi-hamiltonian structure of the averaged Gelfand-Dikii
hierarchy is involved in the Landau-Ginsburg topological models (for An-Series):
the Casimirs for the first P.B. give the correct coupling parameters for the perturbed
topological minimal model; the correspondence {coupling parameters} —> {primary
fields} is determined by the second P.B. The partition function (at the tree level) and
the chiral algebra for LG models are calculated for any genus g.

Introduction

We start with explanation of the term "Whitham-type hierarchy" and with brief sum-
mary of the Landau-Ginsburg potential formalism in topological minimal models.

Whitham-type hierarchy. Let

dtaψ = Fa(ψ,ψx, . . . ) , α = l , 2 , ... (0.1)

be a KdV-type hierarchy of pairwise commuting evolutionary systems. Let us fix a
TV-dimensional family of invariant m-tori. In other words we fix a family of exact
solutions of (0.1) of the form

Ψ = ^(ίιtt(1) + t2κ
(2) + + φ®\ u1, . . . , UN) (0.2)

(let FI = 4>x so t\ = x). Here Ψ — Ψ(φ\, . . . , φm',ul, . . . , UN) is a 2π-periodic
l Nin < £ > ι , . . . , φm function depending on the parameters u = (ul , ... , UN)\

[a= (κ[a\u), . . . , κ$(u)) 9 φ° = (<£?, . . . , φ°m) is an arbitrary phase shift. The
parameters u = (ul , . . . , UN) belong to a TV-dimensional manifold M. In the non-
linear WKB -approximation [1] ("Whitham averaging method") the hierarchy (0.2)
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in a vicinity of the invariant submanifold (0.2) can be described by an "averaged
hierarchy" of dynamical systems on the loop space SΪM of the form

N

Here X = εx, Ta = εta are the "slow variables," ε is a small parameter. Though all
the systems (0.3) commute pairwise the averaged hierarchy (0.3) is not complete (for
ra > 0). The completion of it of the form

TV

»i<">4 > *ΓA*ΓB = 9τBdτA (0.4)

we shall call a Whitham-type hierarchy. An example of the Whitham-type hierarchy
being obtained via the above procedure of averaging and extension from the Gelfand-
Dikii hierarchy will be given below (the more general case was considered in [2]).

For a wide class of local Hamiltonian structures

(x - y) (0.5)
k

of (0.1),
Fa = {ψ(x\ Ha} , Ha = f Pa(*ψ, ψx, . . . ) dx , (0.6)

the averaging procedure for the Poisson brackets { , } was proposed in [3] (see also
[4]),

averaging

{,} - >{,W (0.7)

= gis(u(X)) [%6'(X -Y)- Γ3

sk(u)uk

xδ(X - Y)] ,

= {U*(X), Slaver , (0.8)

Pα(u) = (2πΓm § PΛ(9(ψι u), . . . ) <Γφ .

("P.B. of hydrodynamic type"). Here g^(u) are the contravariant components of some
metric on M and (Γ^k(u)) is the corresponding Levi-Civita connection. It follows from

the general theory of P.B. of hydrodynamic type [3, 4] that the metric g^(u) is flat.
In the flat co-ordinates υα — vα(u), α — 1, . . . , TV, the P.B. (0.8) has a constant
form

{VΛ(X\ ^OOKver = ηαβδ'(X ~ Y) (0.9)

for some constant symmetric matrix ηαf3. In other words the flat co-ordinates for the
metric g^ are the Darboux-type co-ordinates for the P.B. (0.8). The functionals

fvαdX, α=l,...,N (0.10)

are the Casimirs of (0.8). The flat co-ordinates υα can be described in terms of the
original P.B. (0.5) as follows [3]: they are the Casimirs for {,}, action variables

Ji, ••• ι Jm (f°r (0.5) on the tori (0.2)) and the wave numbers κ[l\ . . . , κ$.

Topologίcαl Lαndαu-Ginsburg Models. We shall discuss here neither the definition of
topological conforma] field theory models nor the construction of these models by
twisting of N = 2 superconformal field theories [5]. But we give a summary of some
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important properties of these theories. The main features of a topological field theory
are the following points.
1) All the correlation functions do not depend on co-ordinates.
2) All of them can be expressed via correlators of primary fields Φi, ... , ΦN-
3) Factorization rules: let { } denote tree-level correlators,

) φ 0 , (0.1 1)

CaβΊ = (ΦaΦβΦΊ) . (0.12)

Then
(ΦaΦβΦΊΦδ) = Cε

aβCεΊδ, (0.13)

etc. Here
(ηaβΓ

l - (0.14)

In turns out that Cβfy are structure constants of a commutative associative algebra
A coinciding with the chiral ring of the primary fields. The double-point correlators
provide an invariant scalar product { , ) on A, (ab,c) = (α,6c). Also the algebra A
has a unit Φ\ such that

(ΦιΦaΦβ)=ηaβ (0.15)

We recall [6] that such an algebra A is called (commutative) Frobenius algebra.
4) One should consider a family of perturbed topological models depending on N
coupling parameters. The corresponding coupling space M should carry an affine
structure with marked direction t\. A 1-1 correspondence

{coupling space} <-> {primary fields} (0.16)

should be fixed. In affine co-ordinates t\ , . . . , IN on the coupling space one has

ίi, . . . , ί j v < - > # ! , . . - , Φ j v - (0.17)

All the correlators are functions on the coupling space. The main feature of the
identification (0.16) is in formulae of the form

(ΦaΦβΦΊ f Φδ) = dtδCaβΊ . (0.18)

Also one has
0. (0.19)

This provides a structure of (complex) Euclidean space in the coupling space M.
5) For the (logarythm of) partition function F = F(t) of the perturbed topological
theory (at the tree level) the following identity holds

= CaβΊ(t) . (0.20)

From (0.15), (0.19) one has also

= ηaβ . (0.21)

We obtain therefore the following problem of "nonlinear equations theory": how
to describe TV-parameter deformations C^β(t) of TV-dimensional Frobenius algebra
being representable in the form (0.20), (0.21), (0.14). Here we construct a "genus g"
solution of this problem using the Landau-Ginsburg (LG) potentials approach being
proposed in [7] for genus 0. That means that the partition function F having been
constructed is defined on an appropriate moduli space of algebraic curves of genus
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g. In the Appendix we give another class of deformations using the geometry [9] of
Frobenius algebras.

The LG potentials machinery was used for calculating the deformations of the
chiral algebra in [7] for the genus zero case (the equivalence of this approach to the
TV = 2 superconformal field theory approach was considered in [8]). We give here the
LG formulae for An-\-models only. The coupling space is the family of polynomials

M = {λ(p) - pn + qn-2pn~2 + - + qo} (0.22)

with non-standard affine structure. (The LG potential λ(p) usually is denoted as W(p)).
The co-ordinates t\, ... , tn~\ on M are determined from the system

3f«λ(p) - - Φα(p), α = 1, ... , n - 1 (0.23)

for Φι(p), ... , Φn_ι(p) being the polynomials of degrees 0,1, ... , n — 2 orthogonal
w.r.t. the scalar product

(0.24)

(Φa,Φβ)=6a+β>n. (0.25)

Then

ηaβ = (Φo,,Φβ), CaβΊ = res *°fff7 - (0.26)
P=OO aλ/dp

The genus zero chiral algebra coincides with truncated polynomials

ΦaΦβ = CΊ

aβ(t)ΦΊ (mod dλ/dp). (0.27)

For generic t the Frobenius algebra (0.27) is isomorphic to the trivial decomposable
Frobenius algebra

eaeβ = δaβea , (ea, eβ} = δaβ . (0.28)

But for some special points t in the coupling space (e.g., for λ(p) — pn, t = 0) the
Frobenius algebra (0.27) is indecomposable. The partition function F(t) was calcu-
lated by Krichever [10]. He showed that it coincides with logr(ί), where τ(t) is the
r-function for some particular solution of the averaged Gelfand-Dikii hierarchy

dtaL = [L, [£α/n]+], a φ kn, (0.29)

L = dn + qn-2dn-2 + ...qQ. (0.30)

The averaging procedure is applied to the family M of all constant solutions of (0.29)
(i.e. ra = 0).

In this paper we extend the LG formulae [7, 10] to the nonzero genus case via
averaging of (0.29) over the family of #-gap solutions. We show that the averaged
bi-hamiltonian structure of the averaged Gelfand-Dikii hierarchy is strongly involved
in the An-\ - LG formalism for arbitrary genus g. More precisely, the coupling
space is the variety of parameters of all #-gap solutions of (0.29). The Darboux co-
ordinates for the first averaged Gelfand-Dikii P.B. [11] provide the affine structure in
the coupling space M. The double-point correlator (0.11) coincides with the metric on
M determining via (0.8) this averaged P.B. The correspondence (0.16) is determined
by the second averaged Gelfand-Dikii P.B. [11] (the averaged classical W-algebra).
Also we calculate the genus g partition function via r-function of the corresponding
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Whitham-type hierarchy. Because of the extension (0.4) new 2g primary fields should
be added for nonzero genus.

The paper consists of two sections. In the first one we describe the completion of
the averaged GD hierarchy to obtain the corresponding Whitham-type herarchy. We
describe bi-hamiltonian structure of the hierarchy and calculate the r-function for it.
In the second section the developed formalism is applied to LG topological models
of any genus g. All the proofs can be found in [2]. But some of the statements were
not formulated in [2] explicitly.

1. Bi-Hamiltonian Structure
and Completion of the Averaged Gelfand-Dikii Hierarchy.
r-Function of Whitham-Type Hierarchy

The space M — M9)H of parameters of g-gap solutions of the GD hierarchy (0.29)
coincides [12] with the moduli space of algebraic curves C of genus g with a marked
point Qoo £ C and with a meromorphic function λ of degree n (being equal to the
order of L) with a pole only in Q^. The dimension N of the moduli space M equals

N = 2g + n-l. (1.1)

If PI , ... , PN are the branch points of C,

d\\Pί=Q, (1.2)

then local co-ordinates on M can be constructed as

ui = X(Pi), i = l , ... , 7 V . (1.3)

The one-dimensional affine group λ ι—> aλ + /?, a ^ 0, acts on M as

ui*-+aui + β, i=l,...,N. (1.4)

Let M be the covering of M being obtained by fixation of a symplectic basis
αi, ... , dg, &ι, ... , bg G H\(C, Z). Let SM be the loop space of the functions
ul(x), ... , UN(X) having their values in M, x e 51. The averaged GD-hierarchy on
SM can be written in the Flaschka-Forest-McLaughlin (FFM) form [13]

dTadp = dxdq(a\ α = l , 2 , . . . . (1.5)

Here d<?(α) and dp = dqw are the normalized1 Abelian differentials of the second
kind on (7,

q(α)=Q, α=l,...,g (1.6)

1 Strictly speaking for the operators L with real smooth coefficients the averaged hierarchy can be
written in the FFM form with another normalization condition [14],

Im A dq(α) = 0

7

for any cycle 7 on C. Here we consider the averaged complexified GD-hierarchy being well-defined
only after fixation of a basis in H\ (C, Z)
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with the principal parts in Q^ of the form

dq(a} = d\a/n + regular terms (1.7)

(a branch of λ1//n for λ —> oo should be marked on M). Equivalently, (1.5) reads as

?4, * = ! , . . . , T V . (1.8)
dp

So the variables ul, ... , UN are common Riemann invariants for the averaged GD-
hierarchy.

To describe the bi-hamiltonian structure of the hierarchy (1.5) let us define two
metrics ds2 and ds2 on M:

N N

i=l i=l

(L10)

(cf. [15]).

Theorem 1. #6tf/z ί/z^ metrics (1.9) are flat. The metric ds2 is well defined and non-
degenerate globally on M. The corresponding flat co-ordinates ί1, ... , tN for ds2

have the form

χ(n-ϊ)/n

tl — — n res - dp, i = 1 , . . . , n — 1 ,
Qoo n — z

r^ well-defined globally on M. The metric ds2 in the co-ordinates (1.11) has
the form

-n(dt\ dtj) = δl+j>n , (dtn~l+a, dt9+n~{+β) = δaβ , (1.12)

otherwise zero.

Corollary. M w aw unramified covering over some domain in CN .

For genus zero the degree of this covering equals 1.
The generators

N ^

n
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of the affine group (1.4) act on the co-ordinates (1.11) as follows:

df = 0 , iφ\,

dtl = --,
n

Df = (n- i+l) f , i = l , ... , π - l , (L14)

Df = (n + 1) ί* , i = n, . . . , n + g - 1 ,

Dt* = tl , i = n + g, . . . , N .

Remark. The variables ί1, . . . , in-1 are the Casimirs for the first GD P.B., tn, . . . ,
tg+n-i are the action variables for the GD-hierarchy w.r.t. the first P.B. (see [16])
and tg+n, ... , tN are the components of the wave number vector.

Since M carries two flat metrics ds2 and ds2 the corresponding loop space 5§M
carries two P.B. structures { , }~ respectively (see Introduction above). It can be
shown that { , } coincides with the first averaged GD P.B. and { , }~ coincides with
the second averaged GD P.B. In the flat co-ordinates (1.11) the P.B. { , } has the form

{ta(X), tβ(Y)} = ηaβδ'(X - Y) (1.15)

for the TV x TV-matrix (ηaβ) being defined by (1.12).
Let M be any Euclidean space with a scalar product ηaβ in flat co-ordinates

ί1, . . . , tN. Then the formula (1.15) determines a P.B. on

Theorem 2. Lagrangian planes 3$ <^ Funct(^M) of functionals of the form

3% = S h(t(X))dX} (1.16)

are in 1-1 correspondence with curvilinear orthogonal co-ordinate systems in M.

Remark. S?M is not a symplectic manifold due to degeneracy of P.B. (1.15). Never-
theless Lagrangian planes can be defined as maximal isotropic subspaces of functionals
Funct(^M) on

Theorem 2 is a reformulation of Tsarev's results [17]. For given curvilinear or-
thogonal co-ordinates ul , ... , UN in M the densities h of the functionals H G 3@
are determined from the diagonality of the covariant Hessian

0, ί^j. (1.17)

For the moduli space M = M9^n

 we have a canonical curvilinear orthogonal local

co-ordinate system u1, . . . , UN (the branch points of the Riemann surface C — > C).

Corollary. The loop space J^M of the moduli space M = M9,n carries a canonical
Lagrangian plane 3$ c Funct(^M) of the form (1.16).

Definition. The commuting family of Hamiltonian systems

&ru
i = {ui(X),H}, H^3% (1.18)

is called the Whitham-type hierarchy on

We shall show that this is an extension (and, therefore, a completion) of the
averaged GD hierarchy (1.5).
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Theorem 3. 1) The functionals with densities h(u), u G M, of the form

h(u) = res \k/ndp, k ̂  In, (1.19a)
Qoo

1 Γ χkj _ , Λ Γ
= Φ A op, h(u) = φ

2τπ / /
α= 1, ... , #, fc = 1,2, ...(1.

span the canonical Lagrangian plane 3$ C Funct(J^M).
2) TTze P.B. { , } ana { , }~ are compatible (i.e. <z«;y f/zez> linear combination again
gives a P.B.j.
3) The equations ofWhitham-type hierarchy (1.18) are bi-hamiltonian with respect to

To describe FFM-representations for the Whitham-type hierarchy (1.18) let us
consider the standard fiber bundle

(the fiber over u G M is the curve C = C(u) with marked homology basis and a
point Qoo and a function λ). This has a canonical connection: the curves λ = const
are horizontal by definition. Let us define multivalued Abelian differentials on C as
Abelian differentials Ω = Ω(P) on the universal covering of C such that

ΔΊΩ(P) = Ω(P + 7) - Ω(P) = Σ Ck(Ί)\kd\ (1.21)
k

for any cycle λ e #ι(C,Z). A family Ω = Ω(P,u) of multivalued Abelian differ-
entials on the curve C = C(u) smoothly depending on u G M is called horizontal
if:
1) It is holomorphic for any u on (7\Q00.
2) Its covariant derivatives duj Ω are Abelian differentials of the second kind on C
(i.e. with zero residues) with double poles only in the branch points P\ , ... , PN and
with zero α-periods.

Let D(M) be the quotient of the space of all horizontal differentials over the
subspace of differentials of the form

(1.22)
k

Proposition. The space D(M) is spanned by the following horizontal differentials:

Ω(k} = -\ dq(k}, k = 1,2, ... , k ̂  In; (1.23)
k

2) holomorphic differentials ωa = ω^

Γ
ωk = 2πiδkϊ, (1.24)

3) multivalued normalized (i.e. with zero a-periods) holomorphic on C differentials
σ&\ fc = 1, 2, . . . , α = l , . . . , g with the increments of the form

Δbaσ^ = -d(\k), (1.25)

other increments vanish;
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4) multivalued normalized holomorphίc on C differentials ω£\ a = 1, ... , g,
k — 1,2, ... with increments of the form

Δaaω
(V = d ( X k ) . (1.26)

Let us define a pairing
O Of i v ΐ/ (Λ O7\J / , J / I—>• VΩΩι ( L . Z / )

for any two horizontal differentials Ω, Ω' via the formula

Qoo

9

(1.28)

Here (/ Ω)+ means the principal part near Q^ of the meromorphic function / Ω.

For horizontal differentials the function VΩΩ> = VΩΩ'(u) on M is well-defined and
symmetric up to an additive constant. The main property of it is in the identity

ΩΩf

^T^) = res—, j = l,...,N. (1.29)

Theorem 4. The map D(M) -^ ^/const of the form

Ω^VdpίΩ (1.30)

is a linear isomorphism of the space of horizontal differentials onto the quotient of the
canonical Lagrangian plane over constants. The inverse map 3$ __> D(M),

^ 9 H = f h(u)dX ^ Ωh G D(M) (1.31)

is determined by the property

{dp, H}~ = (qh - - }dχΩh, h(cu) = cqhh(u). (1.32)
V nJ

Equivalently, the skew-gradient of H = J h(u)dX w.r.t. { ,}~ can be represented in
the FFM form

/ 1 \
h(u)e^. (1.33)

Remark. The Hamiltonian of the flow (1.33) w.r.t. { , } equals const d~lh.

For densities h(u) of the form (1.19a), Eqs. (1-33) coincide with the averaged
GD-hierarchy (1.5). The densities h(u) of the form (1.19b) provide the extension of
(1.5) to obtain a complete hierarchy.

Lemma. For any two functions f(u), g(u) G ̂  the following identity holds:

Σ res ί = W,dg). (1.34)
d\=o aλ

Here ( , } means the scalar product w.r.t. the metric ds2.

Note that the both P.B. { ,} and { ,}~ are involved in the identity (1.34).
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Let us choose some numeration hA(u), a— 1,2, ... of the basis (1.19a,b) such
that

Ωhl=dp (1.35)

(so h\ = t\). The Whitham-type hierarchy has the form

A = 1 , 2 , . . . , ΩA = ΩhA. (1.36)

Any horizontal differential Ω determines a solution ul = ul(X = T\,Tι, ...).
i = 1, . . . , N of the hierarchy (1.36) via the Tsarev-Krichever procedure [17, 14]

(Σ ?A«A + β)|dλ=o = 0 (1.37)

(this is a system of TV equations for TV unknown functions ul(T)).

Theorem 5. The formula (1.37) locally gives general solution of the hierarchy (1.36)
being analytic in all the times TA.

The corresponding τ-function r = τ^(T) of the Whithman-type (1.36) has the
form2

-±Vb',fl ' (1.38)

for
Ω' = Ω + ΣtAΩA. (1.39)

It is well defined up to multiplication by exponent of a quadratic form in TA- variables
with constant coefficients. The main property of the r-function of the Whitham-type
hierarchy reads as

(1.40)

Remark. The original averaged GD hierarchy (1.5) has an additional feature: it has a
class of exact solutions that can be Cl -extended onto

9tn. (1.41)

These solutions have the form 9

(Σ Tadq^ + Ω)\dλ=0 = 0 (1.42)

for any normalized differential Ω of the second kind with pole only in QQQ. This
point can be used for analytic solution of Novikov's problem (see [4]) of multivalued
functions evolution in the dispersive hydrodynamics.

2. Topological Landau-Ginsburg Models of Genus g

Here we give explicit formulae for the partition function (at the tree level) and for
the chiral ring of An_ι-LG topological model for any genus g.
1) Coupling space is the moduli space M = Mg^n.

2) Flat co-ordinates ί1, . . . , tN on M have the form (1.11) (they are the flat co-
ordinates for the metric ds2 and, therefore, the densities of Casimirs for { , }).
3) The corresponding primary fields Φ\ = dp, Φ2, , ΦN have the form

Φa=ηaβΩtβ (2.1)

(we recall that the map f *—> Ωf was described above via the second P.B. { , }~).

2 For genus zero the r-function of Whitham hierarchy (i.e. of dispersionless Lax equations) was
constructed by Krichever [10]
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More explicitly:

Φi = -nΩ(i\ i = l , . . . , n - l ,

Φn-l+α = < α̂ , Φp+n_ι+α = σa , α = 1, . . . , g ,

where ωa, σa = σ£} are defined by (1.24), (1.25).
4) LG potential is λ = λ(p), where p = / dp. In other words

<9^(λφ)p=const = - Φα (2-3)

5) The correlation functions of the primary fields have the form

/,* Λ \ v- a β
{ΦaΦβ} =ηaβ = Σ ̂  _ ,

The matrix ηaβ is of the form (1.12) [this follows from the identity (1.34)].
6) The chiral algebra C^g(t) has the form

***0 = Clβφ^dP (mod dχ ' D(M)) - (2.6)

This is a Frobenius algebra for any t with the constant invariant scalar product (2.4)
and with the unit Φ\ = dp.
7) The partition function F = log r has the form

F = -\ VPdX,pdx - (2.7)

Since the differential pdλ is not a horizontal one the last formula should be clarified.
We have the identity

N

pdλ = nί?(n+1) + taΦa . (2.8)

So
N N

The dependence of the coefficients in the formula (2.9) on t is determined from (1.11)
[or, equivalently, from the vanishing of the right-hand side of (2.8) in the branch points
d\ = 0-cf. (1.37) above].

The partition function F posesses a quasihomogeneous property of the form

F(cntl C2tU~^ Cn+ltn

 cn+lj.g+n-l c £9+n ctN)

= c2(n+l)F(t). (2.10)

Obviously the fields Φi, ... , Φn-\ are lifted from the genus zero case. But the 2g
fields Φn, ... , ΦN have no good zero genus limit.

Remark. The Hessian
(3 3 a F(f\\ C2 11 ^

coincides with the period matrix of the algebraic curve C:

(2.12)
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It would be very interesting to find the Virasoro-type constraints uniquely character-
izing the partition function (2.7) (for genus zero some constraints were considered
in [10]). This could give a new approach in the solution of the Schottky problem of
specifying period matrices of Riemann surfaces [19].

Appendix. Geometry and Deformations of Frobenius Algebras

Let A be any TV-dimensional (commutative) Frobenius algebra and M = A* (the dual
space). A multiplication is defined on T*M: if ul , . . . , UN is a basis in A (providing
the co-ordinate system in M) then

du* -duk = c%duk , (A.I)

c^ being the structure constants of A. The non-degenerate scalar product on T*M
(and, therefore, a metric on M) is defined by the formula

(df,dg)=2iD(df dg), (A.2)
o

D — ul - — is the dilation generator. It was shown in [9] that the metric (A.2) is flat
oul

and the corresponding Levi-Civita connection has the form

(raising of indexes using the metric (A.2)). The flat co-ordinates ί1, ... , tN can be
introduced via an appropriate quadratic substitution

ul = \ alβt
atβ , (A.4)

(dta, dtβ) = ηaβ = const . (A.5)

Let us consider the coefficients

ciι,...,tn = 2cj1

1

<2c^<3 ...c^lf'V"-1 (A.6)

and the functions
fad flj-β fa.k <A 7)

Proposition. The functions (A.I) determine a deformation of the Frobenius algebra
A with constant invariant scalar product (ηa^). The deformation can be represented
in the form (0.20) for the "partition function"

00 2n~l

F(t) = ]Γ c^'"inuiλ ...uin. (A.8)

Proof. It is sufficient to prove that in the curvilinear co-ordinates -u1, ... , UN the
function (A.8) satisfies the equation

V*V J ^J k F = cl^k . (A.9)

The proof of (A.9) is straightforward using the identities

Acknowledgement. I wish to thank I. Krichever and M. Kontsevich for useful discussions.
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Notes added in proof. 1. After this paper was finished the author was shown a paper [20] of
Krichever. In this paper the averaged GO hierarchy for genus g > 0 also was considered from
the point of view of topological field theory. But no extension of the averaged GD hierarchy was
considered. Without such an extension for g > 0 it is impossible to construct a closed primary
operator algebra. 2. As it was argued in [21] the models of the present paper (for g > 0) can
be obtained from An_\ minimal models as a result of "phase transition". The integrability of the
nonlinear system for the partition function being imposed by associativity of the Frobenius algebra
(0.19)-(0.21), (0.14), also is proved in [21]. The hierarchy of systems of hydrodynamic type of the
form (1.18) proves to describe coupling to topological gravity.

20. Krichever, I.: Topological minimal models and soliton equations. Talk on the 1st A. Sakharov
Congress, Moscow, May 1991

21. Dubrovin, B.: Integrable systems in topological field theory. Preprint INFN-NA-IV-91/26, De-
cember 1991. Submitted to Nucl. Phys. B
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