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Abstract. The geodesic approximation to vortex dynamics in the critically coupled
abelian Higgs model is studied. The metric on vortex moduli space is shown to be
Kahler and a scheme for its numerical computation described. The scheme is applied
to the 2-vortex system and the geodesic scattering compared with previous simulations
of the full field theory. The quantum scattering is also analysed.

1. Introduction

Describing the dynamics of field theory solitons is in general a difficult problem.
Classically, it requires that one solve the initial value problem for a set of non-
linear hyperbolic partial differential equations. Although there are some very special
(exactly-integrable) systems for which explicit time-dependent multisoliton solutions
can be constructed - for instance, the sine-Gordon model - no such systems enjoying
Lorentz-invariance have been found in more than one space dimension. In more
physically interesting cases one must resort to numerical simulation or work within
some kind of approximation scheme.

One possibility, at low energies, is that most of the degrees of freedom of the fields
remain unexcited and the field theory can be well approximated by a finite-dimensional
system. Truncating the field theory in this way is usual in the collective coordinate de-
scription of a single soliton. That it might be appropriate to the description of several
strongly interacting solitons was first proposed by Manton [1] in connection with the
scattering of BogomoΓnyi-Prasad-Sommerfield (BPS) monopoles. This theory is one
of a class admitting static multisoliton solutions corresponding to arbitrary configura-
tions of solitons at rest. The existence of the solutions may be understood physically
as due to the absence of static forces between separated solitons. Mathematically, the
essential property appears to be that they saturate a topological lower bound on the
field energy and as a consequence satisfy a first order field equation (BogomoΓnyi
equation) [2]. Manton's idea is that in such theories the low energy dynamics of
several solitons may - just as for a single soliton - be approximated by motion on
the space of the corresponding static solutions.
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Let W be the field configuration space of the theory, and L = T — V its La-
grangian, with T and V the kinetic and potential energies respectively. The n-soliton
static solutions form a submanifold Mn (the moduli space) of W on which (in the
charge-n sector) V takes its absolute minimum. Now consider intitial conditions cor-
responding to a slow motion tangent to Mn. Imparting small velocities to n widely
separated solitons would, for instance, be described by such conditions. In the sub-
sequent evolution, the trajectory of the system will be constrained by V to lie close
to Mn. V will thus remain approximately constant, and the field evolution described
by a geodesic motion on Mn, the metric being that induced by the kinetic energy T.
The problem of describing the soliton dynamics is thus reduced to finding the metric
and solving the ordinary differential geodesic equations on Mn. One may also obtain
an approximate quantization by considering wavefunctions over Mn, and taking a
Hamiltonian equal to (minus) the covariant Laplacian. A proposal to generalize the
prescription to the case where a BogomoΓnyi bound is only approximately attained
and there are weak forces between the solitons has been made in [3].

In general, to find the metric one must calculate the zero modes about each of
the static solutions and evaluate the kinetic energy functional T on them. Perhaps
the best studied example is the theory of BPS monopoles. Here, in principle, one
may construct the static multisoliton solutions explicitly. However, to calculate the
metric directly from the zero modes would in practice be very difficult. Instead, the
2-monopole metric has been found indirectly by Atiyah and Hitchin [4]. They showed
that the metric on the n-monopole space is hyper-Kahler. When n = 2, this property
of the metric, together with its symmetries and the requirement that it be complete,
determines it uniquely. This has allowed the low energy dynamics of two monopoles,
both classical and quantum mechanical, to be studied in some detail [4-6].

In some other cases where explicit multisoliton solutions are known, a direct cal-
culation of the metric has proved possible. Examples include Kaluza-Klein monopoles
[7], maximally-charged black holes [8], and the "lumps" of the CPi sigma model in
(2+1) dimensions [9]. In the last case the metric on the moduli space is (formally)
Kahler, and this result has been generalized to CP/v models with N > I [10], and
also to sigma models with arbitrary Kahler target [11]. The scattering of lumps has
been studied in both the geodesic approximation [12] and in the full field theory,
but numerical difficulties in the latter case have prevented a proper comparison from
being made (reported in [12]). A final example is that of vortices in the critically
coupled abelian Higgs model in hyperbolic 2-space, studied in [13]. When the hyper-
bolic space has special curvature exact solutions are available - the 5O(3)-invariant
instantons - and the metric is again found to be Kahler.

Here we are concerned with the solitons of another model in (2 + l)-dimensions
for which, by contrast, no explicit construction has been found. These are the vortex
solitons of the critical coupled abelian Higgs model in flat space. The geodesic ap-
proximation was first applied to vortex scattering in [14]. The 2-vortex metric was
determined, on grounds of symmetry, up to two unknown functions, and it was shown
that two vortices in head-on collision scatter through 90°. Some understanding of the
vortex metric was obtained in [15,16], though not enough to further specify its form.
There have also been numerical simulations of the true scattering, governed by the
full equations of motion [17,18]. These confirmed the 90° scattering, which persists
up to high energies. In [17] the scattering data was found to be roughly velocity
independent at low energies, as the geodesic picture would predict, and this data was
used to make an approximate determination of the functions in the 2-vortex metric.

Here the problem is studied further. The work is presented as follows.
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In Sect. 2 the abelian Higgs model and its static solutions at critical coupling are
reviewed.

In Sect. 3 we review the geodesic description of low energy vortex scattering, and
discuss the non-singularity of the metric on moduli space.

In Sect. 4 the form of the metric is investigated. It is shown to be Kahler in a similar
way to Strachan in [13], and a scheme for computing it in terms of the properties
of the static solutions is presented. The centre of mass motion is also discussed. A
different way of showing the Kahler property, due to Ruback, is sketched in Appendix
B1.

In Sect. 5 these ideas are applied to the 2-vortex system. The metric is shown to
depend on a single function of the vortex separation, and an integral constraint on this
function obtained. The metric, and the geodesic motion in this metric, are computed
numerically. The geodesic scattering is compared with previous simulations of the
true scattering of vortices, and good agreement is found, even for quite high impact
speeds.

In Sect. 6 we try to unerstand the integral constraint on the 2-vortex metric from
a more general point of view.

In Sect. 7 the 2-vortex quantum scattering problem is examined and the cross-
section in the long-wavelength limit found explicitly.

Some of this work has appeared in a less developed form in a previous publication
by the author [19].

2. Vortices in the Abelian Higgs Model

2.1. Background

The abelian Higgs model [20] is one of the simplest theories exhibiting the Higgs
mechanism. As well as its interest in the general context of field theory, it has rele-
vance to the study of cosmic strings [21] and to the phenomenological description of
superconducting materials [22]. In (3 -f- 1) dimensions it admits topologically stable
soliton solutions in which the energy density of the fields is concentrated in tubes of
definite width. The tubes are threaded by magnetic flux, quantized, together with the
energy per unit length, in integer multiples of a basic unit. The dynamics of these
flux tubes is in general rather complicated; its study has relied largely on computer
simulations [23]. A simpler special case, which nevertheless exhibits interesting dy-
namics, is obtained by imposing translational symmetry along a particular direction.
The flux tubes, or "vortices," are then all parallel to this direction and the problem is
essentially (2 + l)-dimensional. This is the case of interest here.

The model comprises a complex scalar Higgs field φ = φ\ + iφ2 coupled to a
[7(1) gauge field Aμ, together with a symmetry breaking potential. The Lagrangian
density is

S§ = \ DμφDΪφ - \ FμvF^ - \ λ(|0|2 - I)2, (2.1)

where Dμφ = (dμ — ίAμ)φ, Fμι/ = dμAv — dvAμ (μ, v = 0,1,2), and the metric is
taken to have signature (1,—1,—1). A s a result of symmetry breaking the gauge field
acquires a mass. Units have been chosen so that this mass, and also the gauge field
coupling, are both equal to one. The free parameter λ which remains is the (square
of the) Higgs mass.

I am very grateful to Peter Ruback for allowing me to reproduce his argument here
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The value of λ determines the relative strengths of the attractive scalar force and
repulsive magnetostatic force between vortices. Since the fields are massive, these
forces are short range. Roughly speaking, when λ < 1, the scalar forces prevail
and the only static solutions are those representing coincident vortices. Conversely,
when λ > 1, the vortices repel each other; again only coincident solutions exist, but
these are now unstable. In the Ginzburg-Landau theory of superconductivity these two
cases correspond to Type I and Type II materials respectively. At the critical value
λ — 1, the forces exactly cancel, and static solutions exist corresponding to arbitrary
configurations of vortices. We now describe the vortex solutions in this case.

2.2. Vortex Solutions

It is convenient to work in the gauge AQ — 0. The equation of motion associated with
AQ must be imposed as a constraint (Gauss' law),

diAi + φaεabΦb = 0 (2.2)

and the Lagrangian is then L = T — V, where T and V are the kinetic and potential
energies respectively:

T = £ / d2x(φaφa + AiAi) (i= 1, 2) , (2.3)

V = \ f d2x(D^~D^> + F2

2 + \ (\φ\2 - I)2) . (2.4)

The total conserved energy is E = T + V. Finiteness of E implies the boundary
conditions

as |*|->oo (2.5)
0

so that on the circle at infinity φ is a pure phase. It follows that the space of all finite
energy fields decomposes into topologically distinct sectors labelled by the winding
number n of the map

(2.6)

In the nth sector the total magnetic flux through the plane is (using Stokes' theorem)

/ d2xFn = 2πn . (2.7)

Note that if n ^ 0, then by continuity φ must have zeros somewhere in the plane.
Now consider static fields, Ai = 0, φ = 0. Gauss' law (2.2) is then satisfied and

the kinetic energy T vanishes. The static energy E = V may be written as follows:

E = I /d2z[(A ± ίD2)φ(Dl±iD2)φ + {Fn ± \ (\φ\2 - I)}2

± i{d2(φDλφ) - dι(φD2φ)} ± Fι2] . (2.8)

The boundary conditions (2.5) ensure that the total derivative terms vanish. Hence,
using (2.7),

E > π|n| (2.9)

with equality if and only if

(2.10)

(2.11)
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Equations (2.10) and (2.11) are called the BogomoΓnyi equations. The upper and
lower signs correspond to n > 0 and n < 0 respectively. Their solutions minimise the
static energy, so automatically satisfy the full second order static equations following
from (2.4). In fact, it has been shown that all solutions of the full static equations are
solutions of (2.10), (2.11) [24]. Hence to study the static theory it suffices to consider
just these first order equations. In all the work which follows we assume n > 0 and
take the upper signs. In this case the solutions are called vortices; forn < 0 they are
called anti-vortices.

It is straightforward to find rotationally symmetric solutions of (2.10), (2.11). In
polar coordinates (r, 0), the ansatz

gives the equations

Ar =0, AQ = na(r)

r n(l — a)ρ — 0,

(2.12)

(2.13)

where the appropriate boundary conditions are ρ(0) = α(0) = 0, ρ(oo) = α(oo) = 1.
The asymptotic behaviour of ρ is given by

Q ~ Arn r -> 0,

ρ ~ 1 - BK0(r) r -> oo ,
(2.14)

where KQ is the zeroth order modified Bessel function. These solutions are interpreted
as describing n coincident vortices. The profile for the single vortex (n = 1) is shown
in Fig. 1; in this case A = 0.603.

0.0 3.0 3.5

Fig. 1. The profile of the Higgs field \φ\ (solid line) and energy density (broken line) of a single
vortex
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The coincident vortices where the first solutions obtained [25]. Subsequently a
numerical analysis of the 2-vortex case indicated that the forces between critically
coupled vortices vanish [26]. Furthermore, an index theorem argument of Weinberg
showed that about any solution of charge n there are 2n (square integrable) zero
modes [27]. These results suggested the existence of a 2n-parameter family of n-
vortex solutions, finally established with the rigorous work of Taubes [24].

In the nth topological sector the space of smooth solutions (modulo gauge trans-
formations) is a 2n-dimensional manifold Mn. Each solution is uniquely specified by
choosing n unordered points (counted with multiplicity) in R2, where the Higgs field
is zero (though it should be noted that no explicit form for the solutions is known). It
is useful to make the identification R2 = C and write the position of a point (#ι, #2)
in R2 as z = x\ +1x2- We shall denote the positions of the zeros by zr (r = 1, ..., n).
The {zr} provide good local coordinates on most of Mn but, because they assume an
ordering, break down on the (2n — 2)-dimensional subspace Δn, where two or more
zeros coincide. Good global coordinates on Mn are provided by the coefficients of
the complex polynomial with roots zr [15]:

Pn(z) = WQ + wiz + ... + wn-\zn~l + zn

n

-Zr). (2.15)

Thus Mn is the topologically trivial space Cn = {wk}, inheriting a natural complex
structure from the complex structure on the plane. Note that the space of ordered
points, Cn = {zr}, is a branched covering of Mn.

Taubes' general results also relate the properties of the solutions closely to the
positions of the zeros. It follows from the first BogomoΓnyi equation (2.10) that in a
neighbourhood of a zero at zr of multiplicity nr

φ(x) = (z-zr)
nrhr(x), (2.16)

where hr is a smooth, non-vanishing function of x. Away from the zeros, the fields,
being massive, rapidly approach their asymptotic values. In particular, the Higgs field
has the following decay property: for any δ > 0 there exists a M(δ) > 0 such that

0 < 1 - \φ\2 < M(δ)e-(l~δW. (2.17)

The rapid decay means that solutions corresponding to well-separated vortices are
approximated by a superposition of 1-vortex solutions with errors only exponentially
small in the separations (see Appendix A). The positions of the zeros then correspond
to the locations of the vortices - i.e. to where the energy density (and magnetic flux)
of the fields is concentrated - and we may regard the vortices as independent particles
of mass π carrying flux 2π. On the other hand, when the vortices are close together,
it is no longer proper to think of them as distinct objects, and the zeros of the Higgs
no longer correspond in a direct way to the energy distribution of the fields.

This completes our review of the static vortex solutions. We now turn to the
consideration of the low energy scattering.

3. Geodesic Description of Low Energy Scattering

3.1. The Geodesic Approximation

To motivate the geodesic approximation of low energy vortex scattering we reinterpret
equations (2.2), (2.3), (2.4) in terms of the true configuration space of the theory,
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following [1,14]. Let ̂  be the space of finite energy fields a = (Ai, φ), and & the
group of gauge transformations over R2. The true configuration space is the quotient
W — Λ>l& obtained by identifying gauge equivalent fields2. There is a natural metric
h on ̂  given by the standard L2-norm

Λ(ά, ά) - \ / d2x(Aiλi + φaφa). (3.1)

The inner product of ά with an infinitesimal gauge transformation λ = (diA, iAφ) is
then

ft(ά, λ) = \ / d2x(AidiA - φaAεabφb)

= -{$ d2x(diAi + φaεabφb)Λ (3.2)

Thus Gauss' law (2.2) is just the condition that ά be orthogonal to the gauge
orbits through α. If we represent tangent vectors c on W by tangent vectors ά on ̂
satisfying Gauss, then the metric h is well-defined on W - it is just the kinetic energy
(2.3). Furthermore, the potential energy (2.4) is gauge-invariant so automatically well-
defined on W. We may therefore interpret the dynamics following from (2.1) as motion
on W with metric defined by T, and potential energy function V. See [14] for a
presentation via the Hamiltonian formalism.

In the geodesic approximation of the low energy scattering the theory is truncated
to Mn, and the evolution given by geodesic motion with respect to the metric induced
by T. The approximation will be good provided the amount of energy transferred to
field oscillations orthogonal to Mn remains small. No rigorous field theory analysis of
the problem exists. However, since there are no massless fields, the frequency of the
transverse oscillations is bounded below by a positive constant ω0 ~ 1- Investigations
of finite dimensional systems suggest that the energy transfer in a scattering process

should then be of order e~«, where υ is a typical vortex speed, and so rather strongly
suppressed [29]. Indeed, in the numerical simulations in [17,18], the energy transfer
in a head-on collision of two vortices is found to be negligible up to impact speeds
of 0.4 (of the speed of light). We would thus expect the approximation to be rather
robust. We shall test it directly in Sect. 6.

3.2. The Metric on Moduli Space

The metric on Mn is the restriction of (3.1) to vectors a = (Ai,φ) satisfying both
Gauss' law and the linearization of the BogomoΓnyi equations. The result of Weinberg
mentioned in Sect. 2.2 - that at each static solution the space of square-integrable zero
modes is 2n-dimensional - means (assuming it can be made rigorous) that this metric
is well-defined (i.e. finite) everywhere. It is worth remarking that Weinberg did not
use Gauss' law to fix the gauge, but rather diAi — 0. However, projecting his vectors
so that they are orthogonal to gauge orbits can only reduce their length (in the metric
/ι), so the space of vectors α of finite length (i.e. finite kinetic energy) is also 2n-
dimensional.

If the metric is everywhere well-defined, the map at each point of Mn between
the space of vectors a of finite length, and the tangent space at the corresponding

2 Note that for W to be a manifold, & must be restricted to gauge transformations which act freely
on ̂  [27]. In particular, the gauge transformations must tend to the identity at infinity, otherwise
W will have a singularity at the point α = 0
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point of Cn = {wk}, is non-singular. It is instructive to try to understand this a little
more explicitly. This work may be regarded as a generalization of Ruback's analysis
in [14] of the 2-vortex system.

Consider z =£ zr (all r) so that φ ̂  0. The first BogomoΓnyi equation (2.10) may
then be rewritten as

A = ίdzlnψ, (3.3)

where we have introduced the complex notation A = | (A\ — iA2). Linearising (3.3)
gives

A = idzή, (3.4)

where η is defined by
φ = φη. (3.5)

These equations may be used to eliminate A from the second BogomoΓnyi equation
(2.11) and Gauss' law (2.2). Writing / = ln\φ\2 the second BogomoΓnyi equation
becomes

V2/ + 1 - e/ = 0 (3.6)

and Gauss' law
V 2 I m r 7 - e / I m r y = 0. (3.7)

Linearising (3.6), and noting / = 2 Re 77, we have

V 2 Rer/-e / Reτ7 = 0, (3.8)

and so, for z φ zr,
V2η -efη = 0. (3.9)

Turning now to the boundary conditions on / and 77, we note that finiteness of the
static energy requires

/-*0 as x | ->oo. (3.10)

Indeed, we know from (2.17) that / falls off exponentially fast. For α to be finite in
the metric ft, we require

77 —* 0 as | :E |—»oo, (3.11)

where, by (3.9, 3.10), the decay is again exponential.
Solutions of (3.9, 3.11) give the vectors α via (3.4, 3.5). Since -V2 + ef is a

positive operator, non-trivial solutions must have singularities at one or more of the
zeros zr. Furthermore, finiteness of a implies that the singularities must be of the
form

η~(z-zrY
Q*, ρr = l, ... , nr (3.12)

where, as in (2.16), nr is the multiplicity of the zero zr. There are n zeros (counted
with multiplicity), so we have 2n linearly independent solutions, as expected.

In the neighbourhood of zr, the linear perturbation of φ corresponding to (3.12)
is (recalling (2.16)),

φ + λφ = (z- zrΓ
r~er [(z - zr)

ρr + λ]ftr(z). (3.13)

If we now consider the extension to the whole plane, then φ has the form

φ = Pn(z)h(x), (3.14)

where h(x) is a smooth, non-vanishing function of x, and Pn(z) is the polynomial
(2.15). Since it is clear that each perturbation (3.13) corresponds to an independent
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O(X) perturbation in the coefficients Wk of Pn(z) , the result follows. Note that while
the perturbation of the Wk is smooth, that of the zeros zr (if ρr > 1) is not: (3.13)
shows that the zero of multiplicity nr at zr splits into a zero of multiplicity (nr — ρr),
and ρr simple zeros displaced from zr by the ρr

th roots of — λ.
That the metric is well-defined everywhere on Mn determines the qualitative fea-

tures of vortex scattering. For example consider the 2-vortex system, with the vortices
placed symmetrically about the origin. Such a configuration is described by

P2(z) = w - z2 . (3.15)

The zeros of the Higgs lie at z = ±<\/w. Now consider, for instance, w real and
decreasing through zero. This is a smooth motion on MI in which the zeros of the
Higgs approach along the xi-axis and separate along the X2-axis. In essence, this is
the remarkable 90° scattering behaviour found in [14]. It is straightforward to consider
the local behaviour of higher-n collisions in the same way.

Finally, let us compare the vortices with a system of particles. One may imagine
shrinking the vortices to zero size, to obtain identical point particles at the positions
zr. The resulting metric is flat. It is well-defined on the covering space Cn = {zr},
but unlike the vortex metric, is not well-defined everywhere on Mn, having conical
singularities on the set of points Δn. Since the interactions between vortices are
short-range, the two metrics will agree asymptotically, as shown explicitly later on.
We shall often find it useful to regard the vortex metric as a smoothed version of the
metric describing the particles.

4. Investigation of the Metric

We now turn to an investigation of the form of the vortex metric. We shall work on
the subspace Mn\Δn, where the zr are distinct and constitute good local coordinates.
Our results will extend by continuity to all points of Mn. We aim to express the metric
in terms of the zr:

n

ds2 = y^ (arsdzrdzs + brsdzrdzs + άrsdzrdzs) (4.1)
r,s=l

the metric coefficients depending on the zr through gauge-invariant properties of the
static solutions.

4.1. Coordinates and Fields

To begin, we make the dependence of the fields on the zτ as explicit as possible by
extending the equations for / and η, derived above for z ^ zr, to the whole plane.

We have assumed that the zeros zr are distinct, so all have multiplicity one. In a
neighbourhood of zr, (2.16) implies that

/ = In\φ\ 2 = ln\z- zr\
2 + smooth (4.2)

and (together with the discussion in 2.2) that

η = — + smooth. (4.3)
z — zr
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Noting that in two dimensions

V2 In \z -zr\
2 = 4πδ(x - xr) , (4.4)

we see that (3.6) and (3.9), extended to all points of R2, become

n

V2/ + 1 - e/ = 4π ̂  δ(x - xr) (4.5)
r=l

and

V2τ? - e r y - - 4π zr<9^(:r - xr) (4.6)
r=l

respectively. Note that (4.5) is the equation analysed by Taubes in his proof of the
existence of vortex solutions.

The solutions of (4.5) and (4.6) may be related in a simple way. Differentiating
(4.5) with respect to zr gives

y2 7Γ- ~ e/ 7T- =ozr ozr

Thus by the linearity of (4.6), and noting the boundary conditions (3.10, 3.11),

If (4 8)

r=l °Zr

42. Form of the Metric

Now consider the kinetic energy (2.3), which in terms of A and φ is

T = \ / d2z(4>U + </4). (4.9)

Recalling the assumption that the zeros zr are all distinct, let Sε be a set of non-
overlapping small discs of radius ε centred at the zr, and divide the integral into two
parts:

r r r
(4.10)

We evaluate each part and the let ε — > 0. Since the integrand is smooth the second
part is O(nε2), which vanishes as ε — » 0. The first part, using (3.4) and (3.5), becomes

^ /

(4.11)

Note that this expression is manifestly real. Since in R2\5ε, η is smooth, we are free
to rewrite it as

/ d2xdz(fjdzη)+^- ί d2xή(- V2η (4.12)
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The second integral vanishes by virtue of (4.6), leaving only the contributions from
the neighbourhoods of the zeros Sε:

T = -i dzήdtη. (4.13)

dSε

Using successively (4.3) and (4.8), and neglecting terms of O(ε),

n 2π n 2π

T = Σ j dθszsd,η = Σ
3=1 o Γ,θ=l 0

where for each s the integration is around the circle \z — zs\ = ε. Now, near zs, a
Taylor expansion of the smooth part of / in (4.2) gives3

/ = In \z - zs\
2 + as + \ {bs(z - za) + bs(z - zs)}

+ cs(z - zs)
2 + ds(z - zs) (z - zs) + cs(z - zs)

2 + O(ε3) ,
(4.15)

where to satisfy (4.5) we require

d, = -3 (4.16)

Hence for z near but not equal to zs, it follows that

rs . (4.17)
2 ozr 4

Substituting into (4.14) and taking the limit ε -* 0 we obtain finally

τ = * Σ ^ + 2 i ^ (4 18)

r,s=l N '

Since we began with a manifestly real expression for T, (4.18) must be real for
arbitrary zr. Consequently

τϊ = w (4 19)

It follows immediately that the metric

n / c^Γ \

(4.20)

is Hermitian. Physically, this means that the kinetic energy of a system of vortices is
unchanged by a (fixed) rotation of all their velocity vectors. Note that we have chosen
to normalise the metric relative to Γ by dividing by the vortex mass π.

The Kahler form associated with (4.20) is

ω=l- £ (δra + 2^\dzrf^dz,. (4.21)
r

Were the zero of multiplicity ns, the first term would be ns In \z — zs\'
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Taking the exterior derivative we find

dω = \ V 0 * dzt Λ dzr Λ dzs + . * dzt Γ\dzr/\dzs\ = 0, (4.22)
4 ^ ι̂ [dztdzr dztdzr J

where the second term in the square brackets vanishes by virtue of (4.19). Thus ω
is closed and the metric is Kahler. These results have been derived on Mn\Λn, but
extend to all of Mn by continuity. The analysis is similar to that of Strachan in [13]; a
different way of showing the Kahler property, due to Ruback, is described in Appendix
B. We also remark that it is straightforward to generalize the analysis to vortices
residing in a background 2-space with arbitrary metric. Provided the considerations of
Sect. 2.2 still apply and the modified BogomoΓnyi equations admit a 2n-dimensional
manifold of solutions, the analysis is much the same and the metric on the moduli
space is Kahler as before.

For a single vortex (n = 1), / is rotationally symmetric and the coefficient b\
of the linear term in (4.15) vanishes. The metric then reduces to that describing a
single free particle of mass π. When there is more than one vortex, the br are non-
zero; they describe the leading local change in the fields at each vortex due to the
presence of the rest. Since (see Appendix A) a system of well-separated vortices is
approximated by the superposition of 1-vortex solutions (i.e. of the functions /) with
an error exponentially small in the separation, the br will then be small of the same
order, and the metric given approximately by

dzrdzr (4.23)
r=l

This makes more precise the comments at the end of Sect. 3.2. The metric ds^ is flat
everywhere (except on Δn). It describes the motion of n non-interacting identical
point-particles of mass π. The second term in the full metric (4.2) may be thought of
as an "interaction" piece which has the effect of smoothing out the singularities of
the particle metric on the set of coincident points Δn.

43. Centre of Mass Motion

The vortex metric inherits the translational and rotational symmetries of the parent
field theory (2.1). This is manifest from (4.20) since the br depend only on the relative
positions of the vortices and are unaffected by rigid motions of the complete system.
The associated conserved quantities, corresponding to the total linear and angular
momentum, may be obtained from (4.18) in the usual way. Noting

oτ

lh0' (4 24)
r s=l 8=1 °Zs

which follows from (4.19) and translational invariance, one obtains for the linear
momentum P^

n

r. (4.25)
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Thus the total momentum is equal to that of n point particles of mass π located at
the zeros of the Higgs field. An immediate consequence is that the centre of mass of
the vortex system is

Z=l-Σ*r. (4.26)
r=l

We may now define relative coordinates

ζr = zr-Z, r = l , . . . , n . (4.27)

These satisfy
n

r = 0. (4.28)

(4.29)

r=l

Substituting into (4.20), and using (4.24), we find

1 1 n / ΛA \

ds2 = - ndZdZ + - ]Γ ( δrs + 2 — 1 )

Z Z = V °^r'

Thus Mn decomposes as an isometric product

Mn = C x M° , (4.30)

where M^ is the space of n-vortices with fixed centre.

4.4. A Computational Scheme

Equation (4.20) expresses the metric in terms of gauge invariant properties of the
static solutions - or more precisely, in terms of the local behaviour of \φ\ in the
neighbourhood of its zeros. If one can compute all the static solutions then one can
find the metric. Specifically, one must solve (4.5) for / for arbitrary configurations
of vortices, extract the quantities br as functions of the zs, and then substitute into
(4.20).

Stated in this way, this procedure is not suitable for numerical work, since /
has singularities. To remedy this, we define a smooth function Φ by moving all the
singularities of / out to infinity:

n

$ = f - Σ ln \z - Zr 2 (4 31)

r=l

Φ satisfies

V 2 Φ + 1 - ft |*-*r|2e* =0

> (4-32)
Φ ~ — Σ In \z — zr\

2 as \z — > oo .
r=l

To obtain the bs in terms of Φ we differentiate (4.15) with respect to z and evaluate
it at zs. This gives

bs = 2 Γ — — + bs , (4.33)
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where
bs = 2θzΦ(zs) (4.34)

is smooth in the zr. Finally, substituting (4.33) into (4.20) gives the result

1 n / ί^ϊ\ \

ds2 = - δrs + 2 —?- dzrdzs . (4.35)

Equations (4.32), (4.34), and (4.35) provide a method of computing the n-vortex
metric. For general n one must solve a (2n - 3)-dimensional family of non-linear
elliptic partial differential equations (In— 3 rather than 2n because of translational and
rotational symmetry). It would be very interesting if all this work could be obviated in
some way. In the case of monopoles the hyper-Kahler property is sufficiently strong to
determine (together with the symmetries of the moduli space) the 2-monopole metric.
Unfortunately the Kahler condition is much weaker; indeed, it is trivial in the 2-vortex
case (though as we shall see, there is a non-trivial global residue).

It is possible that the ideas of Hitchin described in [15], and developed further
by Ruback in [16], might allow further analytical progress to be made. There it is
concluded that M% is the fixed point set of an isometric circle action in a (4n — 4)-
dimensional hyper-Kahler manifold, M. Unfortunately, the behaviour of M away
from M% is not known (i.e. whether its metric is smooth), so it is not clear what
constraints on the metric this information provides.

5. The 2-Vortex Metric

We now apply our general results to the simplest case, that of two vortices. The
metric is found to depend on a single function of the vortex separation, and an
integral constraint on this function obtained. We describe a numerical computation
of the metric, using the method of Sect. 4.4. The geodesic prediction for the classical
scattering is computed and compared with numerical simulations of the true scattering.
Good agreement is found, even for quite large impact speeds.

5.1. Form of the Metric

When there are just two vortices the moduli space decomposes into two 2-dimensional
spaces

M2 = C x M 2 ° . (5.1)

The centre of mass and relative coordinates are

Z=±(zι + z2) (5.2)

and

respectively. For fixed Z, ζ and — ζ label the same point in moduli space and should
be identified, ζ is only a good local coordinate on M% for ζ ^ 0. As discussed in
Sect. 2.2, a good global coordinate is w, where

w-ζ2 = 0. (5.4)
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From the symmetry of / under z — z —» — (z — Z) we have [see also the remark
following Eq. (6.8) below]

61 = -62. (5.5)

The expression for the metric (4.29) then reduces to

(
f\T \

1+2—i-jdCdC (5.6)

It is convenient to introduce the polar coordinates (σ, $) defined by

C — σ ̂  (5 Ί\s — υ c \J '/

where, by the remarks above, the range of ϋ is π. Rotation and parity symmetry then
imply (see (4.15))

bl=b(σ)e~ω with b(σ) real (5.8)

and the metric describing the relative motion is

ds2

el = F2(σ) (dσ2 + σ2dtf2), (5.9)

where

F2(σ)= 1 + - -^(σb). (5.10)
σ dσ

We remark that symmetry under rotations and parity alone implies that

ds2

el = F2(σ)dσ2 + G2(σ)dϋ2 (5.11)

as found in [14]. The reduction to just one unknown function F(σ) is a consequence
of the Hermiticity of the metric. The Kahler property, as we remarked before, is trivial
for a 2-manifold.

For σ <C 1, b(σ) has the form

σ 2σ

The singular term in (5.12) follows from (4.33), and does not contribute to the metric.
The remaining terms are fixed by the requirement that the metric be non-singular when
expressed in terms of the coordinate w. i.e.

, 2 F2(H1/2) , fαs^pi — — dwdw
H

= O(l)dwdw for \w\ < 1 (5.13)

which is equivalent to
F2(σ) = O(σ2) for σ < 1. (5.14)

An explicit calculation of the linear perturbation to the coincident 2-vortex configu-
ration (given in Appendix C) confirms that the form (5.12) is indeed correct and our
scheme consistent.

For σ > 1, the Higgs field at one vortex is perturbed by the exponential tail of
the field produced by the other and one has (see Appendix A)

b(σ) = O(e~2(l-δ}σ) any < 5 > 0 , (5.15)

giving
F2(σ) = 1 - O(e~2(1-*)σ). (5.16)
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Fig. 2. A sketch of the smoothed cone representing M° as an embedding in I3, and the singular
cone CΊ to which it is asymptotic. The difference in the areas of the cones is π. Also shown is a
geodesic describing vortices in head-on collision

These results determine the qualitative form of ds2

&l. A convenient way to represent
this metric is by isometrically embedding M% as a surface of revolution in R3 [14].
The surface is asymptotic to the (singular) cone of deficit angle π, CΊ = C/{±1} (see
Fig. 2). Geodesies on C^ describe the motion of a pair of identical non-interacting
point particles. In accordance with our general picture, M^ is a smoothed version of
this cone in which the singularity at the vertex is removed. As pointed out in [14],
the geodesies passing over the top (σ = 0) of the smoothed cone describe the 90°
scattering of vortices in head-on collision.

Finally, we note that (5.10) and (5.12), together with the fast fall-off of 6, imply
the constraint

00

dσσ[l -F2(σ)] = 1. (5.17)

This expression, multiplied by π, has a simple geometrical meaning: it says that the
difference between the areas of the cones CΊ and M% is TT. In Sect. 6, we will try
to understand this integral from a more general point of view. We shall also see
that it appears naturally in the quantum mechanical scattering problem in the long-
wavelength limit.

5.2. Numerical Computation of the Metric

Let the two zeros of the Higgs field lie on the xi-axis at (±σ, 0). The procedure
described in Sect. 4.4 reduces to the solution of a one-parameter family of non-linear
partial differential equations:

V2Φ + 1 - R2

+R2_ eφ = 0

Φ In R2

+R2_ as oo
(5.18)

where

R±(x) = y(zι±σ) 2 + z^ (5.19)

b(σ) is then given by

b(σ) = - + b(σ) (5.20)
σ
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(α)
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3 -

2 -

1 -

(6)

18

Fig. 3a and b. The magnitude of the Higgs field \φ\ in the first quadrant, for two vortices at positions
(±σ,0): a σ = 1.0; b σ = 3.5
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with

(5.21)

To solve (5.18) numerically a simultaneous over-relaxation method was used [30].
Since Φ is symmetric under reflection in the x\ and £2-axes one only need work in the
first quadrant, requiring that the normal derivative of Φ vanish on the boundary. The
domain taken was 0 < #ι < 10, 0 < #2 < 7, discretized with a square grid of spacing
0.1. The initial configuration ΦQ to be relaxed was taken to be the superposition of
1-vortex solutions

Φ0 = In ρ2(R+)Q2(R-) - In R2

+R2_ (5.22)

with the 1-vortex profile ρ(r) approximated by tanh(O.όr). The values of Φ on x\ — 10
and X2 = l (which are very close to unity) were then left unchanged in the subsequent
relaxation, which was repeated until the norm of the residual dropped below 10~4.
This required about 600 sweeps of the grid. Presumably more sophisticated techniques
could speed up the rate of convergence, though since the equation to be solved is
non-linear, obtaining convergence at all could be a delicate matter. The solution was
obtained for σ ranging from 0 to 3.5 in steps of 0.05. Figure 3 shows a contour map of
the magnitude of the Higgs field \φ\ at two different separations. The domain appears
to be sufficiently large to avoid significant boundary effects.

-0.1 -

-0.2 -

-0.4 -

-0.5

0.0 3.5

Fig. 4. The function δ(σ) (solid line), and the asymptotic forms -σ/2(σ —> 0) and -l/σ(σ —> oo)
(dashed lines)

The next step, that of calculating b(σ) from (5.21), requires a differentiation of Φ
at the point (σ, 0). To ensure an accurate determination, the values of the solution on
the 15 x 15 sub-grid centred at (σ, 0) were fitted by a fourth order surface using a
least-squares algorithm, and b(σ) obtained algebraically from this fit. When the sub-
grid overlapped the edge of the domain the values of Φ on the overlap were obtained
by reflection symmetry. The result is shown in Fig. 4. For small and large σ, b(σ)
agrees with the analytical results (5.12), (5.15), as indicated by the broken lines in
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0.0

0.0 3.5

Fig. 5. The profile F(σ) of the metric dsjd. The slope at the origin is about 0.658

the graph. One may also check that there is good agreement with the size of the
exponential decay in (5.15).

Finally, the profile F(σ) was calculated from (5.10) (where we may replace b
by b) using a standard 5-point differentiation formula. Note that since b has the
right asymptotic behaviour, the profile automatically satisfies the constraint (5.17).
At separations σ of the same order as the grid spacing one would expect the results
to be less reliable. Indeed, the slope of the profile obtained was not very smooth at
these small separations (σ < 0.2). The profile was therefore smoothed by making a
weighted polynomial fit for 0 < σ < 1.5. The final result is shown in Fig. 5; the slope
of F(σ) at the origin is about 0.658. One may check numerically that this profile
gives rise to a metric with positive curvature

1 d σ dF
(5.23)

5.3. Classical 2-Vortex Scattering

It is straightforward to compute the geodesies of the metric ds2

el. The corresponding
trajectories of the zeros of the Higgs in R2 are shown in Fig. 6 for various impact
parameters (see also Fig. 7). In Fig. 8, the deflection angle θ is plotted against the
impact parameter α, here defined to be the perpendicular distance of each vortex from
the xi-axis at large separation. Since there is no orbiting, θ is always equal to the
observation angle ϋ. Note also that it is a monotonically decreasing function of α;
this is a consequence of the positive curvature of the cone MQ [4], and is important
in the quantum scattering. The classical differential cross-section

dσcs

dΰ

dθ_

da

-i
(5.24)

is shown in Fig. 9.
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1 2 3- 3 - 2 - 1 0

Xi

Fig. 6. Trajectories of the zeros of the Higgs field in the geodesic approximation

a
I

O
Fig. 7. The geometry of scattering. This diagram may be regarded as representing either the upper-
half of I2 = {(xι, χ2)}, or, identifying $ = 0 and π, the smooth cone M°

It is very interesting to compare these results with the true scattering of vortices,
governed by the full equations of motion, investigated numerically in [17] and [18].
The scattering data obtained at various impact speeds are displayed together with
the geodesic prediction in Fig. 8. We see that the geodesic description is remarkably
robust. It holds to a good approximation up to speeds of at least 0.4 (at this speed the
Lorentz factor is 0.92); only the numerical data for the very high impact speed 0.85
show a significant deviation4. This accords with the remarks made in Sect. 3.1.

4 We assume that the anomalous point at impact parameter 2.5 for speed 0.16 results from inaccu-
racies in the simulation of [17]
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80 -

60 ~

40 -

20 -

α
Fig. 8. The deflection angle as a function of impact parameter. The solid line is the geodesic pre-
diction. The data points are from the numerical simulation of the full scattering problem at various
impact speeds υ: v = 0.16 (Δ), υ = 0.4 (V), υ = 0.85 (0) (from [17]); v = 0.5 (D) (from [18]). For
estimates of the errors in some of these data points see [17]
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100
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Fig. 9. The classical differential cross-section in the geodesic approximation
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6. Integrals of the Kahler Form

In Sect. 5.1 we obtained an integral constraint (5.17) on the 2-vortex metric. We shall
now try to understand this integral from a more general point of view.

Consider the decomposition of the Kahler form (4.21) on Mn into "free" and
"interacting" parts

(jj = (JJQ -j- ωi (6.1)

with

n

ωQ = - ̂  dzr Λ dzr , (6.2)
r=l

U! = ^db, (6.3)

where we have introduced the (l,0)-form

bsdzs, (6.4)

and where d is the standard holomorphic exterior derivative. The 2-fornι ω\ measures
the difference between the geometry of the vortex space and that of the corresponding
point particles. Now, let D be a 2-dimensional submanifold of Mn without boundary,
and consider the integral

/(£>) = -- ωι. (6.5)
7Γ J

D

ω\ is closed, so this integral is invariant under local deformations of D. In fact, ω\
is singular on Δn, so not closed there, but the singularities do not contribute to I(D)
(see the footnote below).

We shall see that (5.17) is an example of an integral of the type (6.5). To evaluate
it in the general case we first show that we may replace the d in (6.3) by the full
exterior derivative d = d + d. The condition (4.19) means that

db=-db. (6.6)

It follows that the (2,0)-form db is annihilated by both d and 9, and hence db = da
where a is a (l,0)-form satisfying da = 0. The components of a are therefore
holomorphic functions on Mn\Δn. Furthermore, since b decays exponentially fast at
large vortex separation, so does da. Thus da is in fact identically zero and we have

db = 0. (6.7)

Locally on Mn\An we may therefore write

ωι = -db. (6.8)

We remark incidentally that (6.7) also implies b = dK, i.e. br = dK/dzr, with K
n

real by (6.6). Translation invariance then gives the interesting relation Σ br = 0.
r=l

If D is compact then /(£)) is zero, so we take it to be non-compact, and in
particular, to be topologically a plane on which b is asymptotically zero. (This means



Vortex Scattering 171

that traversing the circle at infinity on D corresponds to the motion of infinitely
separated vortices.) We assume also that D is generic, in the sense that it intersects
Λn transversely in a finite number of points, and denote by D' the space obtained by
removing from D small discs centred at these points5. Letting the radii of these discs
tend to zero we have

Γ ' Γ ' ™^ Γ d~

2π J 2π J π ̂  J zs — zr

D' dD' r^s~Y dD'

(6.9)

where in the third equality we have used (6.4) and (4.33). The integer TV is determined
by the intersection of D with Δn. It counts the number of times the zeros zr wind
round each other as one traverses a closed path Γ on D encircling D Π Δn. More
precisely, since on Γ no two zr coincide, it defines a braid. TV is the oriented crossing
number of this braid, with the assignment

+ 1 for and - 1 for /

Let us consider two examples.
(i) D is the surface given by fixing all the zr but one — zr say. Then

/" _

J ZZι-Zr

dD'

(ii) D is the surface given by

P(z) = zn~k(zk - w) ,

(6.10)

(6.11)

Note that this surface is not generic, but lies within Δn\ we should really consider a
perturbation of it, e.g.

P(z) = (zn~k - έ) (zk - w) , weC. (6.12)

Denote by ζ one of the kth roots of w. Then the zeros (arbitrarily ordered) are

2πίr
/y» I JU

ΊΓ' r-1" ' f c ' (6.13)

The integral over D becomes

. k

Σ «

2πί(s-r)
\

(6.14)

where the integration is around ζ = 0 (in the positive sense). Since

w ΊΓk
(6 15)

5 The contribution to I(D) from such a disc of proper radius ε is O(ε\ and so vanishes in the limit
ε->0
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we obtain

= 2 n — ,
^—' 2πi
t=ι 1 — exp ——

K —

= 2 n - f c - l . (6.16)

If n = 2 and k = 2 then

/(£>)=!. (6.17)

Noting that for n = 2

cji = - (1 - F2(σ))σdσ Λ dΰ, (6.18)

we see that (6.17) is precisely the constraint (5.17) on the 2-vortex metric obtained
in Sect. 5.1.

7. Quantum Scattering

We have seen that at low (and not so low) energies vortex scattering is well approxi-
mated by geodesic motion on the vortex moduli space. We now consider the quantum
scattering problem. As mentioned in the Introduction, an approximate quantization is
obtained by considering a wave function Φ on Mn, obeying the Schrόdinger equation

*£-7*'-

where V2 is the covariant Laplacian on Mn. The factor π results from our choice
of normalization of the metric, and corresponds to a reduced mass of π/2 for the
2-vortex system. The centre of mass motion may be split off via

Φ = Q~ip χ/hψ (7.2)

and in a stationary state we obtain

— V2 + £ 7 ) ^ = 0, (7.3)
π )

where V2 is the covariant Laplacian on M® and E is the energy of the relative motion.
As in the description of the classical motion we neglect excitations of field modes

orthogonal to Mn. Since the fields are now subject to quantum fluctuations, it is not
clear that this will still give such a good approximation to the true dynamics. Indeed,
it is probable that quantizing these modes leads to an effective potential on Mn.
Nevertheless, we shall ignore this possibility and just consider the simple problem of
free motion (7.3), confining the discussion to the 2-vortex case. This prescription was
employed to quantize the 2-monopole system in [5].
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7.1. Quantum 2-Vortex Scattering

When n = 2 the problem reduces to quantum scattering on the smoothed cone
Recalling the metric (5.9), the wave function on M ,̂ ψ = ψ(σ, $), satisfies

d ( cto/Λ - „ ,-)•>•>
* IT + ̂ T + klσzF\σ)φ = 0, (7.4)

dσ

where we have set
f)2k2

E=ϋ-. (7.5)
π

The angular coordinate i? has the range π. We therefore impose the periodic boundary
condition

^(σ,0) = ^(σ,π). (7.6)

For large σ, M^ is asymptotic to C^, i.e. locally flat. The appropriate boundary
condition for the scattering problem is thus

cos * ^σ cos ̂  σ -̂  oo , (7.7)

and the differential cross-section is given by

/7/τ__
(7.8)

It is straightforward to adapt the usual partial wave analysis to the present case.
The partial wave decomposition of φ is

"" " (7.9)

where, owing to (7.6), only the even waves will contribute. Denoting differentiation
by σ by a prime, the equation for un is

σ(σu'J + (k2σ2F2 - n2)un = 0. (7.10)

For large σ this reduces to BesseΓs equation

hence the asymptotic behaviour

un(σ) ~ anjn(kσ) + bnNn(kσ)

2 cncos \kσ- ( n + ^ ) ^ + ί n ) , (7.12)
πkσ

where an = cn cos δn, bn — — cn sin δn. Using

(7.13)

6 We note that the scattering problem on a singular cone of arbitrary deficit angle has recently been
studied in connection with cosmic strings, and also 2-dimensional quantum gravity [31]
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and comparing with (7.7) with (7.12) we obtain

/ n ( * ) e n , (7.14)
n even

where

/n(fc) = V - - e * * s i n « n . (7.15)
V πk

It is useful to relate the phase shifts to the metric in the following way [32]. We
compare (7.10) with the free equation (7.11) whose regular solution (normalized for
later convenience) is

ΰn(σ) = anJn(kσ) . (7.16)

One obtains a standard form by writing un = vn/^/σ and ΰn = vn/^/σ. Then (7.10)
becomes

and similarly for (7.11). The Wronskian then satisfies

(vnϋ'n - v'nvn)' = k\l - F2)vnvn . (7.18)

Integrating from σ = 0 to oo and employing (7.12) and (7.16), we obtain

oo

tan£n = - - πk2 ί dσ σ(l - F2) — Jn(kσ) . (7.19)
2 J ano

To describe the quantum scattering at a general k, one must sum the contribu-
tions of partial waves up to at least order n ~ k. We consider just the large and
small wavelength limits, where it is possible to obtain some results without lengthy
computation.

7.2. Large and Small Wavelength Limits

In our units the size of a vortex, and thus the length scale in the scattering problem,
is O(l). We consider the scattering in the two limits k <C 1 and k > 1. In terms of
the classical velocity v ~ fik we require υ <C h and h <C υ <^ 1 respectively.

First consider fc < 1. When σ > 1, Eqs. (7.10) and (7.11) agree; when σ ~ 1
they differ by O(k2). Thus with corrections of the same order, we have un = un.
Substituting into (7.19) we obtain (the first Born approximation)

oo

tan δn = - ^k2π ί dσ σ(\ - F2)Jn(kσ)2 . (7.20)

o

Further, since for m > 0

m, as z-*0 (7.21)

it follows that
Sn = O(fc2n+2) . (7.22)
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Thus, when k <C 1, the lowest partial wave dominates the scattering and, noting
(7.14) and (7.15), the scattering amplitude is

(7.23)
π

with
oo

<S0 = - ^ k\ ί dσ σ(l - F2) . (7.24)

o

The quantity appearing here is precisely the area deficit between M^ and C^ discussed
in Sect. 5.1. Thus, using (5.17), the differential cross section for vortex scattering at
small k is

(7.25)
v

and the total cross-section
σcs = 2π2/c3 . (7.26)

Now consider fc > 1; this is the semiclassical limit of the quantum scattering.
Using (7.17), the semiclassical phase shift, as modified by Langer, is found to be

7 \ί r7 2 \ 1 / 2 1 1
δn= dσ\(k2F2- — } -k _ fcσo + -raτr, (7.27)

σo

where σo is the classical distance of closest approach - the zero of the function in
round brackets [33]. In the case of the lowest partial wave, we have σo = 0 and

00

= -k ί dσ(l - F). (7.28)

The quantity appearing here is now the length deficit between the two cones M^ and
C2, i.e. the difference in the geodesic distances to the apex in each case.

Semiclassically, of course, the n = 0 phase shift has little significance. At a given
angle $, the dominant contribution to the scattering amplitude is from waves with
n ~ li(ff)/h, where the /;($) are the angular momenta of classical paths ί scattering
to ΰ. The sum over waves may be replaced by an integral, and at generic $, evaluated
by the method of stationary phase, though in certain special regions (in the "forward"
scattering region $ ~ 0, π, and also where dθ/da = 0) one has to be more careful
[33]. Away from these regions one obtains

' exp 2i5(oi)/ft, (7-29)

where S(a) is the classical action associated with the path with impact parameter α.
In our problem, the deflection angle depends monotonically on the impact parameter,
so for every scattering angle there is just one contributing classical path. This means
that the only semiclassical effects in the quantum scattering amplitude are in the
region ΰ ~ 0, π, where there is a "forward diffraction peak." Outside this region the
semiclassical differential cross-section is just the classical expression (5.24).
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Appendix A: Well-Separated Vortices

We show without rigour that a solution corresponding to well-separated vortices is
the supeφosition of single vortex solutions, up to corrections exponentially small in
the separation.

Recall that the quantity / = In \φ\2 satisfies

n

V2/ + 1 - Qf = 4π Σ δ(x - xr) (A.I)
r=l

with

as oo. (A.2)

Denote the solution for a single vortex at the origin by /o(#) and write fr(x) =
fo(x — xr). For n well-separated vortices we expect a solution of the form

/r + S, (A.3)
r=l

where the smooth function g is small. Substituting into (A.I) gives

n n
2V2g + 1 - n + e/r - e9 exp /r = 0 (A.4)

r=l r=l

with

# — > 0 as x| — > oo . (A.5)

Let the minimum separation between any two xr be 2R, with .R ^> 1 , and consider
the domain D = {x: x — x\\ < R}. In the limit R — > CXD the 1 -vortex problem is
recovered, and g = 0. We treat the problem with R > 1 as a perturbation of this case.
Thus, retaining only first order terms in g, and noting that in D, fr =
for r φ 1, (A.4) gives

1-^) . (A.6)

Now, the second, inhomogeneous term in this equation is also O(e~2^1~<5)Λ). Thus

ί _ v2 + exp £ fr} 9 = 0(e-2(1"ί)Λ) , (A.7)
V = /r=l

2and since this equation is symmetrical in the index r, it holds throughout R2. Noting
the boundary condition (A.5) we conclude that

(1-tf)Λ). (A.8)
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Appendix B: A Different Way of Showing Kahler

We briefly sketch the formal steps of an argument due to Ruback [34] which shows
in a different way that the metric on Mn is Kahler. The reasoning is similar to that
of Atiyah and Hitchin in [4], in their proof that the monopole metric is hyper-Kahler.

The linearized BogomoΓnyi equations, and Gauss' law may be written

(B.I)

4dzA = iφφ. (B.2)

(The imaginary part of (B.2) is the linearized second BogomoΓnyi equation, and the
real part is Gauss' law.) The map / given by

I:(A,φ)^(-iA,iφ) (B.3)

leaves (B.I) and (B.2) invariant and satisfies I2 = — 1, so defines an almost complex
structure on Mn. Further, recalling (4.8)

zr 7j— In \φ\z , (B.4)
Ύ r=l r

we see that under I, ir —> zir, so / coincides with the complex structure defined by
the coordinates zr on Mn. Thus / is truly a complex structure on Mn, and not just
an almost complex one. The metric on the space of all fields ^?,

h(ά, 6) = 5 / d2x(4A£ + 4A6 + φψ + φφ) (E.5)

is invariant under /, and provided Gauss' law is satisfied, well-defined on Mn. Thus
the induced metric on Mn, g say, is also invariant under /, i.e. it is Hermitian.

To show Kahler one must show that the Kahler form ω defined by

is closed. We define a Kahler form on ̂  by

α)(ά, b) = - ί d2x(4AB - 4AB - φψ + φφ). (B7)

If λ is an infinitesimal gauge transformation (dzΛ, iΛφ) then after an integration by
parts, and using (the imaginary part of) (B.2), we find α)(ά, λ) = 0, so ώ is well-
defined on Mn and reduces to ω there, ώ is constant on ̂ , so closed. Pulling back
to any set of solutions of the BogomoΓnyi equations we obtain a closed form there.
Hence the result.

Appendix C: Perturbing the Coincident 2-Vortex

To check the expression (5.12) for b(σ) at small σ we consider the linear perturbation
which splits the coincident 2-vortex. We may suppose that the zeros of the Higgs are
perturbed to (±σ, 0) and restrict our attention to the xi-axis.

In the neighbourhood of the unperturbed 2-vortex, the function / = In \φ\2 is

/ = 2 In x\ + const - \ x\ + O(x\). (C. 1)
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The relevant perturbation is given by (1 + λη)φ with

1
η = ~— +0(xf). (C.2)

x\

f is then perturbed to

\Ά(X\ - λ + O(\x\))2 + const - \ x\ + O(zϊ). (C.3)

Thus
λ = σ2 + O(σ4), (C.4)

and the higher, O(λ2), corrections to / are only O(σ4).
b(σ) is the coefficient of the linear term in the expansion of / about the zero at

xl = σ. Writing x\ = σ + s with s <C σ and retaining only terms up to O(s) we find

/ = In s2 + - + const - ~ σs + O(σ3s) (C.5)
σ 2

and thus

b(σ)=--^-σ + 0(σ3). (C.6)
σ 2
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Note added in proof. E. Myers, C. Rebbi, and R. Strilka have now performed further simulations
of the full equations of motion for the two vortex system [Phys. Rev. D, 45(4) to appear]. They also
carry out a computation of the 2-vortex metric, using a different method from that employed here.






