
Commun. Math. Phys. 145, 1-16 (1992) Communications in

Mathematical
Physics

© Springer-Verlag 1992

Quantization of S£(2, R) Chern-Simons Theory

T. P. Killingback

Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Received August 10, 1990; in revised form June 5, 1991

Abstract. We discuss Chern-Simons gauge theory with an SL(2, R) gauge group
on an arbitrary 3-manifold M. The SL(2, R) Chern-Simons action is defined for
gauge bundles over M of arbitrary topological type. The geometric quantization
of SL(2, R) Chern-Simons theory is discussed and related to the quantization of
Teichmϋller space. The generalization to Chern-Simons theory with an SL(n, R)
gauge group is also considered.

1. Introduction

One of the most interesting recent developments in theoretical physics is the
realization that there are non-trivial quantum field theories defined on smooth
manifolds which are independent of any choice of metric on the manifold. The
observables of such a topological quantum field theory are then automatically
topological invariants of the situation. The Donaldson invariants of smooth
4-manifolds and the Floer homology groups of 3-manifolds are related to a certain
topological gauge theory in 3 + 1 dimensions [1]. Similarly the Gromov invariants
of symplectic manifolds may be interpreted in terms of the quantum field theory
of a topological sigma model in 1 + 1 dimensions [2]. In 2 + 1 dimensions an
interesting topological quantum field theory is defined by the Chern-Simons action
[3]. If M is a compact oriented 3-manifold and G is a compact simple simply-
connected Lie group, then the partition function of Chern-Simons theory defines a
topological invariant of M. If the topology of M is such that the flat connections
on M are isolated, then in the semi-classical limit this invariant is related to the
Ray-Singer torsion of M. If the manifold M contains an embedded link then the
expectation value of the corresponding Wilson lines in M yields an invariant of the
link, which in the simplest case is just the Jones polynomial of the link [3].

An important observation made in [3] is that there is a direct connection
between Chern-Simons theory in 2 + 1 dimensions and conformal field theory in
1 + 1 dimensions. The canonical quantization of Chern-Simons theory associates
a Hubert space to a 2-dimensional surface Σ. This Hubert space may be interpreted
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as the space of conformal blocks of a rational conformal field theory in 1 + 1
dimensions. The 1 + 1-dimensional conformal field theory is just the current algebra
of G [3-6]. In this paper we consider Chern-Simons theory for the non-compact
real group SL(2, R), and more generally for the groups SL(n, R), n > 2.
Chern-Simons theory for SL(2, R) is a natural generalization of Chern-Simons
theory for a compact group G, and is in addition related to two-dimensional
quantum gravity and the representation theory of the loop group of SL(2, R). It
should also be noted that three-dimensional quantum gravity with a negative
cosmological constant may be viewed as a Chern-Simons gauge theory with gauge
group SL(2, R) x SL(2, R) [7]. Chern-Simons theory of the complex groups SL(n, C)
has been discussed recently in [8]. This paper is organized as follows. In Sect. 2,
we define the Chern-Simons action for an SL(2,R) gauge bundle over M of
arbitrary topological type. The geometric quantization of the 5L(2, R) theory is
discussed in Sect. 3 and this is related to the quantization of Teichmuller space in
Sect. 4. Finally, in Sect. 5, we discuss the generalization to SL(π, R) Chern-Simons
theory, and very briefly the relation between SL(2, R) Chern-Simons theory and
representations of the loop group of SL(2, R).

2. The Chern-Simons Action for an SL(2, R) Gauge Group

We wish to define the Chern-Simons action for an 5L(2, R) gauge theory over a
compact 3-manifold M. Let us recall first the well-known case of the Chern-Simons
action for a compact simple Lie group G. Let P ->• M be a fixed principal G-bundle
over M and let ad(P) = P x Gg be the bundle associated to P by the adjoint action
of G on its Lie algebra g. The space of ad(P)-valued p-forms on M is denoted by
ΩP(M\ ad(P)). The space stf of all connections on P is an aίfine space with associated
vector space Ωl(M\ ad(P)). If the G-bundle P -> M is trivial, i.e., if P = M x G, then
a gauge connection Aejtf is globally well defined on M and the Chern-Simons
action may be written explicitly as

k ( 2 \
S[A] = — f Tr ( A Λ dA + - A Λ A Λ A ,

4πM \ 3 /
(1)

where Tr represents an adjoint invariant inner product on g and k is a constant.
If the group G is simply connected then any G-bundle P -»M is trivial and the
Chern-Simons action may be written in the form (1).

Let ^ denote the group of gauge transformations of P, i.e., the group of
fibre-reeserving automorphisms of P. If P -> M is trivial, then ^ is isomorphic to
the group of smooth maps from M to G: ̂  = Map(M; G). The group of components
of <S is then given by π0(^) ̂  [M; G], where [M; G] denotes the set of homotopy
classes of maps from M to G. If G is simply connected, then it may be shown [9]
that [M; G] ̂  π3(G). Thus, as G is simple, π0(^) ̂  Z. Jt is well known that under
a gauge transformation #e^, the action S changes by deg(#), the degree of g
corresponds to the isomorphism π0(^) ̂  Z. The requirement that eis should be
single-valued implies that the constant k in (1) must be quantized; if G = SU(n)
then k is quantized as an integer.

If the gauge group G is not simply connected then there may exist non-trivial
G-bundles P over the 3-manifold M. If P -> M is non-trivial then the connection
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cannot be defined globally on M and the Chern-Simons action cannot be written
in the form (1). However, there is an alternative way of defining the Chern-Simons
action in this case, which has been discussed for simple groups in [10] and for
the non-semisimple group U(n) in [11]. As we are interested here in the group
SL(2, R) which is not simply connected (π^SL^l, R) ̂  Z), it is necessary to use such
a method to define the Chern-Simons action.

Before considering how to define the SL(2, R) Chern-Simons action let us
consider how SL(2, R)-bundles over a 3-manifold M are classified. Associated to
any Lie group G there is a space BG, the universal classifying space of G, which
is determined up to homotopy type by being the base space of a fibration

G^EG^BG (2)

in which the total space is contractible [12]. It is a standard result in topology
[12] that any G-bundle P over a manifold M may be obtained by pulling-back
the universal bundle EG-^BG by a suitable map g:M-^BG. If two maps
#! , #2 '• M — > BG are homotopic, then the bundles g*(EG) and g* (EG) are isomorphic.
Thus the set of isomorphism classes of G-bundles over M is equal to the set
[M;£G] of homotopy classes of maps from M to BG. We are interested here in
the case G = SL(2,R). Recall that SL(2,R) is diffeomorphic to R2 x S1 and hence
SL(2, R) has the homotopy type of S1 . It follows from the exact homotopy sequence
corresponding to (2) that πI (BG)^πl _1(G). The first three homotopy groups of
BSL(2,R) are therefore: π1(BSL(2,R)) = Q,π2(BSL(2,R)) = Z,π3(£SL(2,R)) = 0. It
follows, therefore, that up to dimension 3, BSL(2, R) is approximated homotopically
by the Eilenberg-MacLane space K(Z, 2). We recall that for a positive integer n
and group π (with π Ableian for n > 1) a space X is defined to be an Eilenberg-
MacLane space K(π, n) if

o0, otherwise.

For any n and π, such a space exists and is unique up to homotopy type [13].
The set of isomorphism classes of SL(2, R)-bundles over a 3-manifold M is therefore
given by [M; BSL(2, R)] Ξ [M;K(Z,2)]. The Eilenberg-MacLane space K(π,n) is
classifying for cohomology, i.e.,

)]^H"(M;π). (4)

Hence, [M;£SL(2,R)] ^H2(M;Z) and consequently an SL(2, R)-bundle over a
3-manifold M is classified by a class in H2(M; Z). For certain 3-manifolds the only
SL(2, R)-bundle over M is the trivial bundle (i.g., when M is a homology 3-sphere
fί1(M;Z) = //2(M;Z) = 0), however, for a general 3-manifold M, there will exist
non-trivial 5L(2, R)-bundles over M.

We return now to the problem of defining the Chern-Simons action for the
group 5L(2, R). It is important to note at this point that there is a fundamental
difference between Chern-Simons gauge theories and gauge theories of Yang-Mills
type, which has been discussed for the case of complex gauge groups in [8], The
standard Yang-Mills action, for a theory with gauge group G, is

f Tr(FΛ*F),
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where F is the curvature of the connection A and * is the Hodge duality operator
associated to a Riemannian metric on M. If the gauge group G is compact then
the bilinear form Tr on g is positive definite and the action I[A~] is bounded below.
If, however, G is non-compact (e.g., G = SL(2, R)) then Tr is not positive definite
and /[A] is unbounded below. Thus, in order to ensure that Yang-Mills theory
has positive energy it is necessary to restrict Yang-Mills gauge groups to be
compact groups. The situation for Chern-Simons gauge theory is, however, quite
different. The Chern-Simons action (1) is independent of any choice of metric on
M (i.e., Chern-Simons gauge theory is generally covariant), which implies that the
Hamiltonian in Chern-Simons theory vanishes identically. Hence, for any choice
of gauge group G, Chern-Simons gauge theory always has a Hamiltonian which
is bounded below. Furthermore, for any gauge group G, Chern-Simons theory,
as a bosonic theory with a real Lagrangian, is always unitary. It makes sense,
therefore, to consider Chern-Simons gauge theory for the non-compact gauge
group G = SL(2, R).

If the SL(2, R) gauge bundle P -> M is trivial, then the Chern-Simons action
may be defined directly as

k ί
= — f Tr

2π M \

2
Λ dA + - A Λ A Λ A , (5)

3

where Tr is an invariant bilinear form on the Lie algebra s/(2, R) of SL(2, R). Under
a gauge transformation #:M->SL(2,R) the action (5) changes in exactly the same
way as in the case of a compact group, i.e., S changes by the degree of g. However,
in the case of 5L(2,R) we can no longer conclude that k is quantized as
π3(SL(2,R) = 0. The quantization of A; is discussed in greater detail below.

If P -» M is a non-trivial bundle then the Chern-Simons action cannot be
defined globally on M and we must adopt the following procedure. Assume that
there exists a compact oriented 4-manifold Y such that M is the boundary of Y,
i.e., M = dY. Assume further that the SL(2, R)-bundle P-+M extends to an
SL(2, R)-bundle P-> Y. In this case any connection A on P -> M extends to a
connection A on P -> Y, and we will denote the curvature of A by F. We can now
define the functional

SM = f jTr(FAF). (6)
2π y

In fact, as will be discussed below, it may be shown that every compact oriented
3-manifold M bounds a compact oriented 4-manifold Y. If P -» M is the trivial
SL(2, R)-bundle then P clearly extends to the trivial bundle P over Y. It is well
known that Tr(F Λ F) = dΎτ(A Λ dA + ^A Λ A Λ A) and hence, for the trivial
bundle, S[4] defined by (6) is identical to the standard Chern-Simons action
defined by (5). In fact we shall now show that (6) is well defined for an arbitrary
SL(2, R)-bundle over M and thus gives a general definition of the Chern-Simons
action. To write the Chern-Simons action, for an arbitrary 5L(2, R)-bundle P -» M,
in the form (6) it is necessary that the gauge bundle P extends over some
4-dimensional coboundary Y. To show that this is always possible it is necessary
to enter into a short mathematical digression concerned with cobordism theory
(see [14]).
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Let us first recall that two oriented n-manifolds Ml and M2 are oriented
cobordant if there exists an (n + l)-dimensional oriented manifold Y such that the
disjoint union of Mί and M 2 is the boundary of Y. The set of equivalence classes
of oriented cobordant ^-manifolds forms a group (see [14]) which is denoted by
Ωs

n°. The identity element of Ωs

n° consists of those oriented n-manifolds which
bound an (n 4- l)-manifold. Thus if Ωs

n° = 0, then every oriented n-manifold bounds
some oriented (n + l)-dimensional manifold. It may be shown [14] that Ω S

3° = 0;
hence, any 3-manifold M bounds a 4-manifold Y, as was stated above. We now
wish to consider the situation in which we have maps from the manifolds to some
additional space. Let Ml and M2 be two oriented ^-manifolds and let fl:M1-^X
and f2:M2^X be maps to some additional space X. We define (Ml9fi) and
(M2,/2) to be oriented cobordant if there exists an (n + l)-dimensional oriented
coboundary Y of Mi and M2 together with a map f:Y-+X such that f\Mί = fι
and f\M2

 = f2- The corresponding n-dimensional oriented cobordism group is
denoted by Ωs

n°(X) (see [14]). If ΩS

H°(X) = 0, then for any oriented n-manifold M
and map f:M-+X9 there exists an oriented coboundary Y such that / extends to
a map f:Y->X.

To apply cobordism theory to the case of an SL(2, R)-bundle V over a
3-manifold M we simply take the space X to be the classifying space BSL(2, R) of
SL(2, R). If ΩS

3°(BSL(29 R)) = 0, then for any oriented 3-manifold M and any map
/:M ->£SL(2,R), there exists an oriented coboundary Y such that / extends to a
map /: Y^BSL(2,R). This is exactly equivalent to saying that the SL(2, R)-bundle
V -> M classified by the map / : M -» BSL(2, R) extends to an SL(2, R)-bundle V -> Y
classified by the map /: 7->£SL(2,R).

If follows from general results in cobordism theory [15] that for any space Y
(which satisfies certain mild topological restrictions) the cobordism groups Ωs

n°(X)
are given by

), (7)

where Hn(X) is the nth homology group of X. Thus, for X = BSL(2,R) we obtain

Ω*° (BSL(2, R)) = flf (X)#3(£SL(2, R))

= 0 (8)

as H3(BSL(2, R)) ̂  //3(5S1) = 0. It follows, therefore, that for any 5L(2, R)-bundle
V over a 3-manifold M there exists a coboundary 7 over which V extends. Thus,
we can define the Chern-Simons action for an arbitrary SL(2, R)-bundle over M
by (6).

The only issue that remains to be addressed in order to show that (6) is
completely well defined is the way in which S, as defined by (6), depends upon the
choice of coboundary. Let Yl and Y2 be two oriented coboundaries of a given

k k
3-manifold M, and let Sl =— J Tr(F Λ F) and S2 = -- j Tr(F Λ F) be the

2π YI 2π γ2

actions defined using Y1 and Y2 respectively. For the quantum field theory to be
well-defined we require that eiSl = eis\ i.e., that S1 = S2 + 2πN, where N is an
integer. It follows from the form of Si and S2 that N = /en, where n is given by

f), (9)
4π2 Y
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where Ϋ is the closed four-manifold Y1 + 72 Topologically the characteristic class

— - Tr(F Λ F) represents the obstruction to extending an SL(2, R)-bundle V defined
4π2

over the 3-skeleton of the manifold Y to the 4-skeleton. The obstruction to such
an extension comes from π3(SL(2,R)). However, SL(2,R) is diffeomorphic to
R2 x S1 and hence π3(SL(2,R))^π3(S1) = 0. It follows, therefore, that the class

— Tr(F Λ F) is trivial for an SL(2, R)-bundle over the 4-manifold Ϋ. It is a
4π
consequence of this that the constant k is not required to satisfy a quantization
condition. In this respect, 5L(2,R) Chern-Simons theory is similar to U(\)
Chern-Simons theory where there is also no quantization condition implied
directly from the definition of the action. In both cases this follows from the fact
that π3(SL(2,R)) = π3(l/(l)) = 0. It should be noted however that there is strong
evidence that it is necessary to impose a quantization condition on k in £7(1)
Chern-Simons theory if one wishes to define general operators on an arbitrary
three-manifold [16]. It may as well be, therefore, that a deeper understanding of
SL(2, R) Chern-Simons theory will require k to be quantized, even though such
a quantization condition does not follow directly from the action.

Given that the Chern-Simons action (6) is well defined for an arbitrary
SL(2, R)-bundle V over a 3-manifold M we may formally define the path integral

Z= $ @AeiS[A\ (10)
st

where jtf is the space of connections on K->M. More generally, if R is an irrducible
representation of SL(2,R) and C'.S1 -»M is an embedded curve, the Wilson line,
or holonomy operator, WR(A\ C) = Tr^Pexp J Atdxl is the natural gauge invariant

c
and generally covariant operator in the theory and has the expectation value

< WR(A; C)> = J SAe^WR(A; C). (11)
j*

In Chern-Simons theory with a compact group the exact analogue of (11) defines
an invariant of the knot C. It should be noted that in the case of Chern-Simons
theory with a compact group in order to define the analogues of (10) and (11) it
is necessary to give a framing of the three-manifold M and C. Pressumably in the
correct definition of the path integrals (10) and (11) such framings play an important
role, however, we will have nothing further to say on this issue here. In the next
section we will consider the canonical quantization of SL(2,R) Chern-Simons
theory.

3. Canonical Quantization of SL(2, R) Chern-Simons Theory

We have seen in the last section that for an arbitrary 5L(2, R) gauge bundle over
a 3-manifold M the Chern-Simons action may be defined by (6). Let us now
consider the canonical quantization of the theory defined by this action. To
canonically quantize SL(2, R) Chern-Simons theory we take the 3-manifold M to
be of the form M = R x Σ9 where Σ is a compact oriented surface. The SL(2, R)
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gauge bundle over M defines an SL(2, R)-bundle V over Σ. Such a bundle V-+Σ
is classified by a map Σ -> BSL(2, R). Up to dimension two we have the homotopy
equivalence BSL(2, R) - K(Z, 2) and thus an SL(2, R)-bundle over Σ is determined
by a class in [_Σ; BSL(2, R)] ̂  [Γ; K(Z, 2)] ̂  H2(Σ; Z) ̂  Z. This class may be
interpreted in the following way. Let P be a principal SL(2, R)-bundle over
Σ; SL(2, R) acts naturally on R2 and we let EP = P x SL(2,R)R2 denote the associated
real 2-plane bundle over Σ. The bundle EP-^Σ has an Euler class e(EP)eH2(Σ; Z) ̂  Z
and this class determines P. Thus an SL(2, R)-bundle P^Σ is classified topo-
logically by the Euler class e(EP)eH2(Σ; Z) £ Z. We will let r denote the Euler
class of an SL(2, R)-bundle over Σ.

To canonically quantize the SL(2, R) Chern-Simons theory on M = R x Σ,
with gauge bundle V^Σ, we introduce an oriented coboundary B of Σ over
which V extends. We then have M — dΎ, where Y = R x B. Choosing the gauge
A0 = 0 (where A0 is the component of the connection in the R direction) the action
(6) takes the form

S = -fAfd3x8*'Tr(X.F,r). (12)
π B

The Gauss' law constraint δS/δA0 = 0 is given by

FΣ = 0, (13)

where FΣ is the curvature of the connection on Σ. The Chern-Simons action is
first order in time derivatives and thus the physical phase space of the theory is
the subspace of the space of connections on the SL(2, R)-bundle V-*Σ on which
the constraint (13) holds. The phase space is, therefore, the space of flat connections
on V-+Σ modulo gauge transformations. We will denote this space by Jt. The
phase space Jt has a natural symplectic structure which determines the Poisson
bracket on Jί. As the action (6) is independent of any metric on M, Chern-Simons
theory is generally co variant and the Hamiltonian of the theory vanishes identically;
therefore the dynamics of Chern-Simons theory is determined completely by the
Poisson bracket (i.e., symplectic structure) on the phase space Jt.

(a) The Symplectic Structure on Jt. A symplectic structure on Jί is a closed
non-degenerate 2-form on Jί. If we let 3F denote the space of flat corrections on
an SL(2, R)-bundle V^»Σ and let ^ denote the group of gauge transformations
on V9 then Jί — ̂  1^. It is well known that the space of flat connections on a bundle
over Σ may be described in terms of the representations of π1(Σ'). Let Pφ be a
principal 5L(2, R)-bundle over Σ with a flat connection. The flat bundle Pφ is
equivalent to a representation φ:πί(Σ)-^SL(2,R). Hence the space 3F may be
identified with Hom(n^\SL(2,R)) and J^/^ = Hom(π1(Γ),SL(2,R))/SL(2,R),
where the quotient is with respect to the natural action of 5L(2,R) on

Now let us define a natural symplectic structure on Jt — Hom(π1(Z1), SL(2, R))/
SL(2,R) (see [17]). To define a 2-form on Jί we must first determine the tangent
space TώJt to Jt at φeHom(π1(Σ\SL(29R)). Let PΦ-*Σ be the principal
SL(2, R)-bundle associated to φ as above; Pφ has a canonical flat connection Dφ.
Let ad(Pφ) be the SL(2, R)-bundle associated to Pφ by the adjoint representation
p:SL(2,R)-» Aut(s/(2,R)), i.e., ad(Pφ) = Pφx ps/(2,R). Then ad(Pφ) has a canonical
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flat connection associated to Dφ, which we denote by 2Φ. Now let us consider the
de Rham cohomology of Σ with coefficients in the flat vector bundle ad(Pφ)^Σ.
The cohomology of the complex Ω*(Σ;ad(Pφ)) of ad(P^)-valued forms on Σ is
defined as follows. Locally a p-form ω€Ω?(Σ; ad((Pφ)) is ω = α (x) θ, where αeΩp(ρ)
and θ is a section of ad(P^). The differential is defined to be

dφ(Λ®θ) = dα®θ + (-iγ<*®Vφθ, (14)

where Vφ is the covariant derivative associated to the canonical flat connection
3>φ on ad(Pφ). The flatness of V^ implies that dφ = 0 and thus the cohomology of
the complex (Ω*(Σ;ad(Pφ)\dφ) may be defined. We will denote this cohomology

It may be shown (see [17]) that the tangent space Ύ^Jί to Ji at
φeHom(πί(Σ\SL(2,R))/SL(2,R) is given by

TφJί = Hl(Σ;ad(Pφn (15)

Given two tangent vectors α, βeTφJΐ, their product α Λ βεΩ2(Σ; ad(P^) (x) ad(P^)).
The bilinear form Tr:s/(2,R) x s/(2,R)->R defines a bundle map, also denoted by
Tr, from ad(Pφ)®ad(Pφ) to the trivial R-bundle over Σ. Hence

ω,(α,jS) = f T r ( α Λ / 9 (16)
Σ

defines a 2-form on ΎφJt. The skew form ωφ may be viewed as coming from the
cup product on cohomology

ωφ:H
l(Σ;aά(Pφ)) x Hl(Σ',ad(Pφ))^H2(Σ',R)*R. (17)

The two-form ω defined on Ji may be shown to be closed [17] and thus defines
a symplectic structure on Ji.

The space Jt = Hom(n^\SL(29R))/SL(2,R) consists of different connected
components corresponding to the topological type of the SL(2, R)-bundle over Σ.
Recall from the above discussion that a principal SL(2, R)-bundle P -> Σ is classified
by the Euler class e(EP)eH 2(Σ\ Z) ̂  Z, where EP = P x SL(2,R)R2 For any integer
r, there exists an 5L(2, R)-bundle P -* Σ such that e(EP) = r. The situation for a
flat SL(2, R)-bundle over Σ is, however, more subtle. Let φeHomίπ^Γ), SL(2, R))/
SL(2,R) and let Pφ be the associated flat principal SL(2, R)-bundle introduced
above. Let Eφ = Pφ x sL(2,R)R2 be the flat 2-plane bundle over Σ associated to Pφ

by the natural action of SL(2,R) on R2. The 2-plane bundle Eφ-^Σ has an Euler
class e(Eφ)GH2(Σ', Z) ̂  Z, which will be denoted by e(φ). It is a basic theorem [18]
that e(φ) satisfies the bound \e(φ)\ ^ \χ(Σ)\ = 20 — 2 (where g is the genus of Σ).
Thus we have a map eiHom^OΓ), SL(2, R))/SL(2, R)-*{2-2g,3-2g,...92g- 3,
20 - 2} and the inverse images e~ V), for re (2 - 20, 3 - 20, . . . , 2g - 3, 20 - 2}, are
precisely the connected components of ̂  = Hom(π1(l'),SL(2,R))/5L(2,R). We
shall denote the connected component e ~ l ( r ) by Jir. The physical phase space of
SL(2,R) Chern-Simons theory, for a gauge bundle V^Σ of Euler class
e(V)εH2(Σ;Z)^Z such that \e(V)\^2g-2, is Mr where r = e(V). If the gauge
bundle V does not satisfy the bound \e(V)\ ^ 2g — 2 then V is incompatible with
the constraint (13) F = 0.

The physical phase space Jίr has a natural symplectic structure defined by the
symplectic form ω. However, to quantize the phase space Jίr> using the standard
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principles of geometric quantization (see [19] for example) it is necessary that Jtr

should admit a natural polarization. In practice, there are two natural polarizations
that a symplectic manifold can have. The first is a real polarization, which is given,
for example, by the structure of a cotangent bundle and the second is a complex
polarization, which is given by a Kahler structure. If a phase space W is a cotangent
bundle T*Z then the quantum Hubert space 3F may be taken to be the space
L2(Z) of square integrable functions on the configuration space Z. If W has a
Kahler structure, i.e., a complex structure compatible with the symplectic structure
on W, then the quantum Hubert space may be taken to be the space of holomorphic
functions on W, or more generally, the space of holomorphic sections of a
holomorphic line bundle over W. We shall now see that the phase space Jtr of
SL(2,R) Chern-Simons theory has a Kahler structure and can, therefore, be
quantized using the complex polarization.

(b) The Kahler Structure on M. One obtains a natural Kahler structure on Jίr

via a connection with 2-dimensional self-duality equations that has been studied
in [20]. Here we shall simply outline the main ideas; further details may be found
in [20].

Consider a principal G-bundle P over a compact Riemann surface Σ (G a
compact Lie group). Let A be a connection on P (with curvature FA) and let Φ
be a complex Higgs field Φeί21'°(^;ad(P)®C). The pair (A,Φ) are solutions of
the self-duality equations if

FΛ + [Φ,Φ*]=0, d"AΦ=0. (18)

From now on we restrict our attention to the case G = SO(3). A principal SO(3)-
bundle P-+Σ is classified by the second Stiefel-Whitney class w2(P)eH2(Σ'9 Z2)^Z2.
If w2(P) = 0, then P is covered by a principal S£/(2)-bundle, associated to which
is a rank-two vector bundle V, with c^V) = 0. If w2(P) ̂  0, then there is a principal
(7(2)-bundle P to which P is associated via the homomorphism l/(2)/centre ̂  SO(3).
Associated to P is a rank-two vector bundle F, with c^(V) odd. In both cases the
Higgs field Φmay be viewed as a section of End(K)(χ)/C, where K is the canonical
bundle of Σ. Let L c V be a line subbundle. L is said to be Φ-invariant if
Φ(L)aL®K. There is an important connection between solutions of the self-
duality equations (18) and a certain notion of stability of vector bundles. Let V
be a holomorphic vector bundle of rank-two over Σ and let Φ be a holomorphic
section of End (K) ® X, the pair (V, Φ) is defined to be stable if, for every Φ-in variant
line subbundle Lc= K,deg(L)<|deg(Λ2K). When Φ=0, this definition reduces to
the standard definition of stability for a rank two vector bundle. It may be shown
[20] that if (A, Φ) is a solution of (18), then the associated pair (K, Φ) is stable.
Conversely, to each stable pair (K, Φ) there corresponds a solution of self-duality
equations (18) which is unique up to gauge equivalence. If we let Jf denote the
moduli space of solutions of (18) (or equivalently the moduli space of stable pairs
(K, Φ)), then [20] ^ is a smooth manifold of dimension 12(0 - 1), where g is the
genus of Σ.

The space Jf of solutions of (18) has a subtle geometrical structure: Ji is a
hyperkahler manifold [20]. To see this, consider the infinite-dimensional space
N = jtf xί21'°(Z';ad(P)(χ)C), where $t is the space of connections on P. The
tangent space to si at A is TAs/ = Ωΐ(Σ; ad(P)), which may be identified with the
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complex space Ω°'l(Σ'9ad(P)®C). The space N has a natural Kahler metric

0!(α, Φ) = 2i J Tr(α*α + ΦΦ*). (19)
Σ

The gauge group ^ acts on N preserving the Kahler form ω{ of the metric (19).
The moment map associated to this symplectic action is [20]

μμ,Φ) = fu + [Φ,Φ*]. (20)
Thus, μ(A9 Φ) = 0 corresponds to the first equation of (18). The second equation
of (18), d"AΦ = 0, may be obtained as follows. The tangent space to N at (A, Φ) is
β°fl(Z;ad(P)®C)® βlf%£;ad(P)<8)C). Define a complex symplectic form ω on
N b y

ω((«1,Φ1),(α2,Φ2))= f Tr^oq - Φxα2). (21)
Σ

The real and imaginary parts of ω give two Kahler forms on N, denoted by ω2

and ω3, and d'AΦ = 0 is the zero set of the moment maps of ω2 and ω3 with respect
to the action of #. The forms ωl9ω2 and ω3 are the Kahler forms for a flat hyper-
kahler metric on N.lϊ μί9μ2 and μ3 denote the moment maps corresponding to
ωl9ω2 and ω3, with respect to 9, then the self-duality equations (18) are given by

μ,μ,Φ) = 0, (22)

where i= 1,2,3. The moduli space Jf of solutions to the self-duality equations
(18), modulo gauge euivalence is

^=|VΓ1(0)/». (23)
i = l

It is a standard theorem that the quotient of a hyperkahler manifold, defined in
this way, has a natural hyperkahler structure [21]. Hence, the moduli space Jf
is naturally hyperkahler. The hyperkahler metric g on Jf is Kahler with respect
to three complex structures /, J and K which satisfy the algebraic relations of the
quaternions. The Kahler forms corresponding to each complex structure are
ω,(X, Y) = g(IX9 Y\ ω2(X9 Y) = g(JX9 Y) and ω3(X9 Y) = g(KX9 Y).

The connection between the moduli space Jf and the space of flat SL(2, R) con-
nection Jtr comes from considering Jf with the different complex structures. /, J
and K. Recall that with respect to / the tangent space of N is ί3°'1(Σ1;ad(P)(x)C)Θ
Ω1 °(Γ; ad(P)® C). The complex structure J may be defined by J(A9 B) = (i£*, - iA*)
and the complex structure K by K(A, B) = ( — B*9 A*). We can define an isomorphism
β:N -> j/ x j/ by /?(4, Φ) = (d"A + Φ*, d^ 4- Φ), where dA = d'A + d"A is the covariant
derivative of the unitary connection A. The map β identifies N with the complex
structure J with the space &f x j/with its natural complex structure. An element
of j/ x £0 is a pair of operators (df[,d'2) or, equivalently, d = d\+ d"2 is an SL(2,C)
connection. The self-duality equations (18) imply under the isomorphism β that
the SL(2,C) connection d^ -f d^ + Φ+ Φ* is yiαί. Conversely, it is proved in [22]
that every flat SL(2,C) connection arises from a solution of (18). Thus the moduli
space Jf with the complex structure J may be identified with Hom^^Γ), 5L(2, C))/
51(2, Q.

There is an involution θ on Jf induced by (A9 Φ) -> (X, — Φ) which is
holomorphic with respect to the complex structure /, but antiholomorphic with
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respect to the complex structure J. Thus θ defines a real structure on («/Γ, J). The
fixed points of θ consist of complex submanifolds ^Γ0, Λ^d- 1 (1 = ̂  = 0 ~~ 1) each
of dimension 30 - 3. Consider now the map β'.Λ^^ffl which takes (4, Φ) to the
equivalence class of the flat connection d'A + d"A + Φ-f Φ*. As θ is an anti-
holomorphic involution on (Jf> J) and β is holomorphic, the connection β(A, Φ)
corresponding to a pair (A, Φ) which is a fixed point of θ must satisfy a reality
condition. Now consider the fixed points of θ. If (A, Φ) is fixed by θ then Φ = — Φ = 0
and d'A + d"A is a flat 5O(3)-connection over Σ. Thus this component </Γ0 of the
fixed point set of θ may be identified with the moduli space of stable rank 2 bundles
over Σ. If, however, the gauge equivalence class only of (A, Φ) (which corresponds
to a stable pair (V9Φ)) is fixed by θ then A is reducible to a (7(1) connection on
the decomposition

V = L®L*Λ2V (24)

and Φ has the form

-C o)
An antilinear homomorphism

Γ:K-»F®Λ 2K* (26)
may be defined by

T(ul9u2) = (ύM. (27)

It follows that ΦΓ=TΦ*. Hence the connection d^ + d^ + Φ+Φ* commutes
with T, and therefore defines an R2-bundle over Σ associated to the flat SL(2, R)
connection d'A + d"A + Φ + Φ*. Under /? the fixed point sets of θ correspond to the
spaces Jίr of equivalence classes of flat SL(2,R) connections whose associated
R2-bundle has Euler class r. It follows, therefore, that the spaces Mr inherit a
Kahler structure from the hyperkahler structure on Jf. The symplectic structure
corresponding to this Kahler structure on Jlr is that defined by (16).

We can now quantize the phase space Jtr using the Kahler polarization. In
the above discussion of the Kahler structure on Jtr, we were considering a fixed
Riemann surface Σ. Thus, for a fixed smooth surface Σ, a choice of complex structure
σ on Σ induces a Kahler structure on the space of flat SL((2,R) connections

r̂ = Hom(^(r),SL(2,R))r/SL(2,R), where Hom(n^)9SL(29R))r denotes the
space of representations φ:π1(Σ)-*SL(2,R) with e(φ) = r. Note that while the
Kahler structure on Jίr depends on σ, the symplectic structure on Jtr determined
by the Kahler form (i.e., ω of (16)) depends only on the smooth surface Σ. Let Σσ

denote the Riemann surface determined by the complex structure σ on Σ. There
exists a Hermitian holomorphic line bundle <£ -*Jlγ with a connection whose
curvature is equal to the symplectic form ω on Jίr defined by (16). The quantum
Hubert space ffl is then given by the space Γ(£f) of holomorphic sections of JSf .
Although we will refer to jff as the quantum "Hubert" space, as is conventional,
all we actually require is that 34? is a vector space canonically associated to Σ, which
is exchanged with its dual space when the orientation of Σ is reversed. Since Jίr is
non-compact, the Hubert space 3? — Γ(&) is infinite dimensional. Therefore, for
any choice of complex structure σ on Σ we obtain an infinite dimensional Hubert
space Jfσ. Let 2Γg denote the Teichmίiller space of the smooth surface Σ of genus g.
As σ varies over yg the spaces 3tf0 vary holomorphically to form an infinite rank
holomorphic vector bundle Y ' -J>&~9. In direct analogy with the case of a compact
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group one might expect that this bundle should be canonically projectively flat
(see [3-6] and [23-24]). However, in view of the supposed connection between
SL(2, R) Chern-Simons theory and two-dimensional quantum gravity it may be
that the geometrical structure of 1^ is more subtle. Understanding the geometry of
the bundle of Hubert spaces i^ defined by the quantization of SL(2, R) Chern-
Simons theory is an important open problem, the solution of which may well
involve further ideas from [20].

4. Quantization of Teichmuller Space

We saw in the last section that the space M of flat 5L(2, R) connections on a surface Σ
(of genus g) has connected components Jir = e~l(r\ where e:Hom(n^\ SL(2, R))/
SL(2, R) -> Z is the map defined by the Euler class of the 2-plane bundle associated
to a flat SL(2,R) connection, and re{2- 20,3 -20,...,20 - 3,20-2}. These
components have a natural Kahler structure and can be quantized geometrically.
In this section we will consider the maximal component Mg-29 which is related
to the geometry of the surface Σ.

The relation between Jt2g-2 and the geometry oϊΣ is as follows. A flat SL(2,R)
connection on the smooth surface Σ is given by a representation φ:π1(Σ)^SL(29R).
The uniformation theorem asserts that every Riemann surface S (S should be
regarded as the surface Σ together with a choice of complex structure) may be
represented as a quotient of the upper half-space H2 by a discrete group of
isometries Γ. Such a uniformation determines an isomorphism of πx(S) with a
discrete subgroup Γ of the group 5L(2, R) of isometries of H2. If φ'.π^Σ]I-> 5L(2, R)
is an isomorphism onto a discrete subgroup of SL(2,R) then S^H2/φ(π1(Σ)).
Thus the Teichmuller space yg of the surface Σ of genus g is the connected
component of ^ = Hom(π1(Σ),SL(2,R))/SL(2,R)), consisting of equivalence
classes [φ]e ,̂ where φ is an isomorphism of n^(Σ) onto a discrete subgroup of
SL(2,R). It is a theorem [25] that φeHom(πί(ΣlSL(2,R))/SL(29R) is an
isomorphism onto a discrete subgroup of 5L(2, R) if and only if e(φ) = 2g-2.
Hence the Teichmuller space yg is isomorphic to the maximal component Jt2q~2

of Jt. Quantizing the component ^2^-2 *s thus equivalent to quantizing
Teichmuller space.

The Teichmuller space 9~g has a well-known Kahler structure given by the
Weil-Petersson Kahler form. The symplectic structure defined by the Weil-
Petersson form on yg is precisely the symplectic form ω on M (defined by (16))
restricted to the component 9~g ̂  Jl2g,2 [17]. Teichmuller space may be quantized
geometrically using the Weil-Petersson Kahler structure in a straightforward way.
Over yg there_is a natural holomorphic line bundle given by the determinant
bundle of the d operator. A point y^yg corresponds to a complex structure on
Σ. On the Riemann surface (Σ9 y), there is a d operator. The determinant line £fy

over ye^gis defined by

max _ max _

J^y = Λ (Kerd)~ 1 ® Λ (Ker<3*). (28)

As y varies over yg the lines JS?y vary holomorphically_to form a holomorphic
line bundle £?-+ff'g\ the determinant line bundle Detδ [26]. The determinant
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bundle Detδ->^ has a natural connection, the curvature of which is equaHo
the Weil-Petersson Kahler form on ̂ g [26]. The quantum Hubert^ space $ is
then given by the space of holomorphic sections of j£? = Detδ:^f = Γ(<£\ A
discussion of the quantization of Teichmϋller space related to this approach is
given in [27] and also [6].

In Sect. 3, we studied the quantization of the spaces of Jίr of flat SL(2, R) con-
nections on Σ. In particular, the space Jt2g-2 (which as we have seen may be
identified with yg) has a Kahler structure induced from the hyperkahler structure
on the moduli space Jf. The Kahler structure on Jt2g-2 obtained in this way
depends upon a choice of complex structure σ on Σ. The symplectic 2-form on
Jt2g-2 defined by the Kahler structure is ω (defined by (16)), which is independent
of the complex structure σ and is equal to the Weil-Petersson symplectic form on
yg. Hence the spaces yg and Jt2g_2 coincide symplectically, but are distinct as
Kahler manifolds; the Kahler structure on M2g_2 depends upon a choice of
complex structure on Σ whereas the Weil-Petersson Kahler structure on 3Γg

requires no such choice. For a choice of complex structure σ on Σ (i.e., for a choice
of a point σe&~g) we obtain a Kahler structure on <M2g_2. Let 3?β denote the
Hubert space obtained by quantizing *M2g_2 with the Kahler polarization, as in
Sect. 3. It would seem to be worthwhile to study further the relation between the
two Hubert spaces tffa and 3$ obtained by the quantizations of Teichmiiller space
considered here.

It is interesting to note that there is a different way of quantizing Teichmuller
space which has been considered in [28]. In this approach one notes that in terms
of the length and twist co-ordinates τ{ (0^τ f < oo) and θj (—00 <0/< oo) of
Teichmuller space the symplectic form (defined by (16)) is given by [29]

Λ άτ y

The canonical commutation relations are

If we let Z denote the product of the real half-lines τte[09 oo), then the Hubert
space obtained by quantizing Teichmuller space with this polarization is given by
L2(Z).

5. Chern-Simons Theory with 5L(jι,R) Gauge Group

So far in this paper we have discussed Chern-Simons theory for the gauge group
SL(2, R). Let us now consider the generalization to the gauge group SL(n, R), for
n ̂  3. Let M be a compact 3-manifold and let K->M be an SL(n, R)-bundle. Recall
that SL(n,R) is diffeomorphic to R(i/2)«("+υ-ι x sθ(n), so there is a homotopy
equivalence of classifying spaces BSL(n, R) ~ BSO(n). The first three homotopy
groups of BSL(n9 R) (n ̂  3) are given by π^BSLfr, R)) = 0, π2(BSL(n, R)) = Z2 and
π3(β5L(n,R)) = 0. Hence, up to dimension three BSL(n,R) is approximated
homotopically by a K(Z2,2) space. The set of isomorphism classes of
SL(n, R)-bundles over M is given by [M; BSL(n, R)] ̂  [M; X(Z2,2)] ̂  H2(M; Z2).
In general, therefore, there are non-trivial 5L(n, R)-bundles over a 3-manifold M.
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We wish to define the Chern-Simons action for an arbitrary SL(n, R)-bιmdle over
M by (6). To do this we need to know that for any SL(2, R)-bundle F-»M, there
exists a coboundary Y of M over which V extends, i.e., that Ωl°(BSL(n,R)) = Q.
It follows from (7) that

(n, R)) - Ωs° ® H3(BSL(n, R))
= 0 (29)

as H3(BSL(n, R)) £ H3((BSO(n)) = 0. The SL(n, R) Chern-Simons action may now
be defined (as in (6)) to be

S = ~$Ύr(FΛF). (30)

Requiring that eis be independent of the coboundary Y is equivalent to demanding
that for two coboundaries Ύl and Y2 of M the corresponding actions Sx and S2

should satisfy Sί = S2 + 2πN, where AT is an integer. N = fcn, where N is given by
(cf, (9))

*e» - n (31)

P is the closed 4-manifold y: + y2. The expression (31) represents a 4-dimensional
_ 1

characteristic class of an SL(n, R)-bundle K->y. If we let λ(V) = —-Tr(FΛF)
4π2

denote this class then λ(V)εH4(Y\ R). Viewing λ(V] as an integral class in H4(Y; Z)
it pulls back from a universal class in H4(BSL(n,R)',Z). We have that
H4(BSL(n,R)ιZ)^H4_(BSO(n)',Z)^Z and λ(V)eH4(Ϋ;Z)^Z. Thus for any
SL(n,R)-bundle V-+Y,n defied by (31) is an integer. Geometrically, the class λ(V]
represents the obstruction to trivially extending V from the 3-skeleton of Y to the
4-skeleton. The obstructions to a trivial extension come from π3(SL(n,R)) =
π2(SO(n))^Z. This contrasts with the case of SL(2,R) discussed in Sect. 2. For

SL(2,R), the class -̂  Tr(F Λ F) is trivial as H4(BSL(2,R);Z)^H4(BSl;Z) = 0; or
4π

geometrically because π3(SL(2,R))^π3(S1) = 0. The requirement that N = kn be
an integer then imposes a quantization condition on SL(n,R) Chern-Simons
theory: the constant k in (30) must be an integer. This is, of course, the situation
for Chern-Simons theory for a compact non-Abelian gauge group.

Now let us move on to discuss the quantization of SL(n, R) Chern-Simons
theory. Canonically quantizing the theory on M = R x Σ9 as in Sect. 3, results in
the physical phase space Jt being the space of flat SL(n, R) connections over Σ.
That is M = Hom(n^),SL(n,R))/SL(n,R). Consider a representation φ'.π^Σ)-*
SL(n,R) and let Pφ be the associated flat principal SL(n, R)-bundle over Σ. Let
Eφ = Pφ XsL(n,R)R" t>e tne real fl-plane bundle associated to Pφ by the natural action
of SL(n, R) on R". The bundle Eφ^Σ is canonically flat and jias a second
Stiefel-Whitney class w2(F^)e//2(X; Z2) ̂  Z2. The moduli space Jt has two con-
nected components JtQ and M^ consisting of representations φ:π1(Σ)-*SL(n,R)
for which w2(F^) is zero or non-zero, respectively.

The procedure used to define a symplectic structure on Jί in Sect. 3 generalizes
to define a symplectic structure on Jt. The sumplectic pairing is given by the cup
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product on cohomology (cf., (17))

H\Σ;ad(Pφ)) x Hl(Σ;ad(Pφ))^H2(Σ',R)^R, (32)

where ad(P^) is the bundle associated to Pφ by the adjoint action of SL(n,R) on
s/(ft, R). The procedure used to define a Kahler structure on Jir also generalizes
to the case of SL(n, R). The self-duality equations considered in Sect. 3 may be
defined for an arbitrary compact Lie group G. The case G = SU(2) or SO(3) is
related to the moduli space of flat SL(2, R) connections over Σ. For G = SU(n)
one obtains a relation with the moduli space of flat SL(n, R) connections over Σ.
The essential features of the discussion in Sect. 3 remain true for G = SU(n). The
moduli space Jf of solutions of the self-duality equations has a natural hyperkahler
structure and this induces ajίahler structure on Jff (/ = 0, l\ which is the fixed-point
set of an involution on Ji. The Kahler structure on Jt{ depends on a choice of
complex structure σ on Σ. For a given complex structure σe^, quantizing Ji{

with theJCahler polarization gives a Hubert space tfσ. As σ varies over 2Γq the
spaces ̂ σ fit together to form a canonically projectively flat vector bundle i^-+ ZΓ9,
just as for the case of SL(2,R). In general, then the quantization of SL(n,R)
Chern-Simons theory proceeds in complete analogy with the SL(2, R) case.

Finally, we will give a very brief and somewhat speculative, discussion of the
relation between 57X2, R) Chern-Simons theory and the representations of the
loop group of SL(2, R). The connection between SL(2, R) Chern-Simons theory
and representations of the loop group LSL(2, R) of SL(2, R) is formally the same
as for a compact group (see [3]), and also holds for a complex group (see [8]).
Consider quantizing SL(2, R) Chern-Simons theory on M = R x D, where D is a
two-dimensional disc. Let ̂  denote the group of gauge transformations that are
the identity on the boundary of R x D, i.e., on d(R x D) = R x S1. The classical
phase space of flat SL(2, R) connections on D modulo ̂  is LSL(2, R)/SL(2, R).
We then quantize the phase space LSL(2, R)/SL(2, R) using a Kahler polarization
as described above. The quantum Hubert space Jf then furnishes a projective
unitary representation of LSL(2, R). Representations of LSL(2, R) obtained in this
way may be related to the representations of L5L(2,R) described in [30].
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