
commun. Math. Phys. 144,337350 (1992) Communications in
Mathematical

Physics
© Springer-Verlag 1992

Classification of Singular Sobolev Connections
by Their Holonomy

L. M. Sibnerx * and R. J. Sibner2 **
1 Department of Mathematics, Polytechnic University, Brooklyn, NY 11201, USA
2 Department of Mathematics, Brooklyn College, City University of New York, Brooklyn,
NY 11210, USA

Received June 9, 1989; in revised form August 5, 1991

Abstract. For a connection on a principal SU(2) bundle over a base space with a
codimension two singular set, a limit holonomy condition is stated. In dimension
four, finite action implies that the condition is satisfied and an a priori estimate
holds which classifies the singularity in terms of holonomy. If there is no
holonomy, then a codimension two removable singularity theorem is obtained.

1. Introduction

Since the appearance of the fundamental paper of Uhlenbeck [UJ, apparent
point singularities in gauge field theories have been studied extensively and are
now fairly well understood [O l5 OS, P, S, SSl5 Sm, Ul5 U2]. The next step in this
development concerns singular sets of higher dimension. If the singular set has co-
dimension three or higher, the techniques used for point singularities (subelliptic
estimates and broken Hodge gauges) can still be applied [O2]. Alternatively, these
higher co-dimensional results, as well as the original removable point singularity
theorems, can be obtained by straightforward modifications of the results in
Sect. 5. On the other hand, co-dimension two singular sets, such as an S2

embedded in S4, introduce new geometric difficulties. These arise mainly from the
fact that the complement of the singular set is no longer simply connected.
Geometrically, this means that there are non-trivial flat connections. These
connections cannot, in general, be extended to a neighborhood of the singular set
even though the bundle itself may be topologically trivial. The appearance of
holonomy is the obstacle to this extension. Physically, these singular sets give rise
to finite action connections satisfying field equations whose topological charge is
not integral but depends critically on holonomy [A, B, C, FHP1? FHP2].
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In the following, for definiteness, we restrict our attention to four dimensions
and singular sets Σ which are smoothly embedded, orientable, connected
2-manifolds. Denote by N a normal neighborhood of Σ and let X = N\Σ. We
consider connections D = d+A on SU(2) bundles over X which are "Sobolev" in
the sense that AeL\ loc(X) and the curvature F = dA + A/\A belongs to L2(N). A
holonomy condition is formulated for these connections [(H) of Sect. 3].

Our first main result, Theorem 4.1, states that finite action implies the
holonomy condition is satisfied, which answers a question raised by Atiyah in the
course of these investigations. Our second result, Theorem 5.1, is an a priori
estimate for finite action Sobolev connection which classifies their singularities
completely in terms of holonomy. The ideas involved in proving this estimate are
those of Taubes. Under certain conditions on the holonomy, this results in a co-
dimension two removable singularity theorem which we state as Theorem 5.2. An
important interesting special case is concerned with connections which admit an
S1 action about the singular set. In Sect. 2 we review Atiyah's construction of
hyperbolic monopoles via dimensional reduction. (This correspondence between
monopoles on a hyperbolic 3-manifold and S1 invariant instantons on a
4-manifold has been exploited by Braam [B].) In this context, Corollary 5.3
shows that the Prasad-Sommerfield limit for the finite action Higgs model over
H3 exists at infinity.

In joint work with K. Uhlenbeck, the above results are used to show the
existence of non-self-dual Yang-Mills fields in SU(2) bundles over S4 [SSU].

2. Hyperbolic Monopoles

Following Atiyah [A], we briefly recall the relationship between S1 invariant
instantons on R4 and magnetic monopoles on H3.

Locally, choose coordinates (w, v, r, θ) with (u, v) coordinates on Σ = R2 and (r, θ)
coordinates in planes normal to Σ. The Euclidean metric element

J 2 2(du + dv + dr JΩ2ds2 = r2< j +dθ2

exhibits a conformal equivalence:

R*\R2~H*xS1,

where H3 is hyperbolic 3-space with constant curvature —1.
On R4, the self-dual Yang-Mills (instanton) equations are

*F = F,

where F is the curvature form of a connection.
On H3, the BogomoPnyi (monopole) equations are

Dφ = *F,

where F is a curvature form and φ (the Higgs field) is a section of the adjoint
bundle.

Given a rotationally invariant instanton (independent of θ) on R4\R2 = S4\S2 it
descends via dimensional reduction (see [A, JT]) to a hyperbolic monopole on H3.

1 3

The Higgs field φ = Aθ, and, letting θ = x4, F' = - £ F^dx* A dxj. Finite action is
2 i,j=i
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preserved and the second Chern class c2 of the bundle over S4\S2 satisfies

The integer k, the magnetic charge of the monopole, is the winding number of φ,
or the number of zeros of the Higgs field φ. The number m, the mass of the
monopole, is the asymptotic value of \φ\ at infinity. As we shall later see, m
completely describes the holonomy of the connection about the singular set in R4.
A necessary condition that a connection extend to all of R4 is that m is an integer.

3. Properties of Holonomy

For ε sufficiently small, a normal ε-neighborhood JV of Σ is locally a product and it
is convenient to choose local coordinates in the following way. Restricting to a
coordinate chart Σo C Σ (and corresponding JV0) we obtain coordinates (w, v) on Σo

and polar coordinates (r, θ) in the normal plane to Σo at (w, v). Setting Xo = N0\Σ0,
a standard topological argument shows that any SU{2) bundle over Xo is trivial.

We next describe the phenomenon of holonomy, first discussed by Taubes in
this context. Given a connection on an SU(2) bundle over Xo, parallel transport of
the fibers around a generator of n^X^ gives an automorphism of the fiber which
we realize in the usual way as an element of 5(7(2) as follows. Write the connection
D = d + A where, using the above coordinates, A = Audu + Avdv + Ardr + Aθdθ. In a
fixed normal plane, the initial value problem.

^+Aθgr = 0, g,(0)=J (3.1)

has a unique solution gr(θ). We will not need an explicit representation of the
solution which would be given by a path ordered integral (cf. [IZ]). [If D is S1

invariant with Aθ independent of θ, then gr(θ) is obtained, as in the scalar case, by
exponentiating.]

Set gr(2π) = Jr E SU(2). The conjugacy class [J r] of the "phase factor" Jr is gauge
invariant. For completeness, we include a proof based on Eq. (3.1).

Lemma 3.2. Let gr andgr be solutions of (3.1) for gauge equivalent connections
D = d + A and D = d + Ά. Then gr(2π) and gr(2π) are conjugate in SU(2).

Proof. Let 5: Xo -+SU(2) be the gauge transformation such that A = s ~ xAs + s ~ 1ds.
Continuity of s requires that s be periodic in 0,5(0) = s(2π). Solving (3.1) in the new
gauge

it is easy to see that the function s(θ)gr(θ)s~ ι(0) solves (3.1) in the original gauge. By
uniqueness, it must then equal gr(θ) and hence gr(2π) = s(2π)gr(2π)s~ 1(2π), proving
the lemma.

If the connection were flat, then the holonomy [J r] would be a homotopy
invariant and hence independent of r. In general, we can ask that a "limit"
holonomy exists as we shrink to a point P on the 2-manifold Σ. We state this as the
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(H) Limit Holonomy Condition:

Km [J r ] = [J] exists for almost all P e Σ, and is independent of P.

We will show in Sect. 4, under the rather mild assumption of finite action, that
the holonomy condition is satisfied and see, in Sect. 5, how this implies that the
given connection is, near the singular 2-manifold, "asymptotic" to a flat connec-
tion with the same holonomy. It follows immediately from Lemma 3.2 that
the condition (H) is gauge invariant for smooth gauge transformations. In fact

Remark. Lemma 3.2 holds if A and A are related by a "weak" gauge transform-
ation s e LlΛ9LC. Thus A satisfies condition (H) if it is weakly gauge equivalent to a
connection A for which [ J J has a limit.

Next we compile some information about flat bundles which will be needed in
the analysis which follows. Recall that for any Y with πϊ(Y) = Z, the flat (zero
curvature) SU(2) bundles over Y are in 1 — 1 correspondence with conjugacy
classes in SU(2). Such conjugacy classes can be uniquely described by their
traces which take values in some finite interval of the real line. Choosing the
diagonal representative

-2πim o \

o „»-) < 3 3 >
in each conjugacy class, we can identify every flat bundle with a real number m.

On the other hand, the prototype of a flat connection over Y is given by

A>=(™ ° )dθ = mΐdθ (3.4)
\ 0 — imj

with mΐe su(2).
The solution of (3.1) with Aθ = mΐ, is

e-imθ i

and g(2π) is the diagonal element (3.3). For flat bundles, the solution of (3.1) is
homotopy invariant and therefore independent of r. Hence, (3.3) and (3.4) exhibit a
unique correspondence between holonomy and flat connections.

We conclude this section with two useful facts about these flat connections.

Lemma 3.6. // m1—m2-\-n, n = integer, then A\ and A2 are gauge equivalent.

(einB 0
Proof. A\=A2 + g~ιdg with g(0) =

0 e -inθ

Corollary 3.7. // m is an integer then D is gauge equivalent to d.
It follows that, locally, flat bundles are indexed by m belonging to some finite

interval, for example, 0 ^

Lemma 3.8. Let D = d + A be a flat connection with holonomy m. Then, there is a
gauge in which D^

Lemma 3.8 follows from the previous discussion. These results apply with
= X 0 = ]V0\Z1

0 and also with Y=a punctured normal disk in Xo.
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4. A Sufficient Analytic Condition for Holonomy

In this section, we give sufficient analytic conditions on Sobolev connections which
insure that condition (H) is satisfied. We formulate these as

Theorem 4.1 (Existence of Limit Holonomy). Let Nbea normal ̂ -neighborhood of
the 2-dimensional submanifold Σ of a 4-manifold M. If D = d + A with
A e L{Λoc(N\Σ) and F e L2(N) then the holonomy limit (H) of D at Σ exists. Locally,
there is a gauge in which the components of A have a limit at Σ with, in particular,
AB-+na a.e.

Proof. In Xo = N0\Σ0 we "gauge away" Ar, the radial component of A, by solving
(in the weak sense)

^-+Arg = 0 with g(u,v,ρo,θ) = I, ρ o > 0 . (4.2)
ar

Since AeL\Λoc, we have g£L\Λoc. By Fubini's theorem, g is continuous on
almost all normal planes and, moreover, is periodic in θ of period 2π. In
the new "transverse" gauge with Ar = 0,

In a Fourier series expansion,

oo

A — V
n = — oo

Again, by Fubini's theorem, F is in L2 on almost all normal planes. Choosing a
normal plane at (u0, v0) and using (4.3), we obtain

ί Σ
da,
dr

2
2dr^k Jf \F\2rdrdθ. (4.5)

Letting rk be a sequence of radii tending to zero, the corresponding sequence of
Fourier series (4.4) forms a Cauchy sequence and hence converges to a limit.

cθ= Σ <Φy*.
n = — oo

The 1-form c = cθdθ defines a flat connection on the normal plane through
(uo,vo). From Lemma 3.8 c is gauge equivalent to an A* of the form (3.4).
Therefore,

s-1cs + s-ίds = Ab = mΐdθ, (4.6)

where s depends only on θ. Varying u and v, we can extend s to all of X0 so that the
extension is still independent of r.

We now return to the gauge in which Ar = 0 and gauge transform by s to obtain
A = s~ίAs + s~1ds with Ar = 0. An inequality of the form (4.5) then holds for the
Fourier coefficients of Aθ, and therefore, Aθ converges to a limit as r->0. However,

Aθ = s~ΛAθs + s~ι — converges to s^Cfl s + s " 1 — and Aθdθ converges to A0. It
αc/ du
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follows from continuous dependence on parameters, that the solution of the initial
value problem (3.1) converges. Therefore, the limit in (H) exists.

Next, we show that the limit in (H) is independent of the normal plane. Let Pγ

and P2 be two points of Σ at which the limit exists. By arranging coordinates, we
can always assume that P x and P2 are contained in a single coordinate chart Σo

and that Pi=(u1,v0) and P2=(u2,v0).
There exists a sequence of cylinders Ci = {(u,v0,ri,θ)\u1^u^u2, 0^0^2π}

with rt tending to zero such that, by Fubini's theorem,

dA
Choose a gauge in which Au = 0 so that -^- = Fuθ. Then

7 μθ(w2, t;0, r, 0) - Λθ(Wl,i;0, r, 0)|d<9 ̂  ferf j J |F|2</S. (4.7)
o c.

Denote by gί and g2 the solutions of (3.1), at r = rh in the normal planes at
(ul9υ0) and (u2,v0), respectively. Using the fact that gx is a solution of

elementary computations show that

)-/|^/cr f J |F|2rfS^0 (4.9)

which proves that the holonomy limit is the same at Pί and P2. This completes the
proof of Theorem 4.1.

5. An a priori Estimate for Finite Action Connections

In this section we prove our main estimate for Sobolev connections. Again, No is a
normal ε-neighborhood of the coordinate chart Σo and XQ = N0\Σ0. The
underlying topology is that of the space

ttfp = {D = d + A\AeLp

1Aoc(X0) and FeLp(N0)}

with p ̂  2. It follows from Theorem 4.1 that if D e J / P , a holonomy condition (Hm)
is satisfied and this determines a constant flat connection Ab of the form mΐdθ.

Given any flat connection Γ with holonomy m, we consider the space L\Γ of
1-forms ω with finite Γ norm

where VΓ is the covariant derivative at Γ.
We can now state our main result.

Theorem 5.1 (Classification by Holonomy). There exists a constant k > 0 such that,
for Dejtf2 with \\F\\L2(No)<k there is a real number m (with corresponding flat
connection Aj" = midθ) and a gauge in which D = d + A with A — A^elJl^*,-^ ,
Moreover, for some constant C, °'*

\\A-A>\\L1Λ^C\\F\\». (5.1)
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Remark. One might hope to obtain a co-closed connection in the gauge orbit of D
and hence, a "slice theorem" by using the implicit function theorem. However, an
example of Taubes shows that such a result cannot be true in general if 2m is not an
integer.

Since for meZ the flat connection A* = mΐdθ is gauge equivalent to the zero
connection, we obtain the following important corollary.

Theorem 5.2 (Codimension Two Removable Singularity). // the connection D
satisfies the hypothesis of Theorem 5.1 with holonomy m an integer, then D extends
as an L\ connection to all of No. If field equations are satisfied, more smooth-
ness follows from elliptic theory.

If D represents an S 1 invariant, finite action instanton over R4\R2 as in Sect. 2,
we obtain an estimate for the Higgs field φ of the associated hyperbolic monopole;
namely, from inequality (5.1), Sobolev's inequality, and conformal in variance
of norms, we have

Corollary 5.3. // {A, φ) is a finite action Yang-Mίlls-Hίggs configuration with field
strength F, on hyperbolic 3-space H3, then there exist a constant k such that

The construction in Sect. 2 produces a hyperbolic monopole on H3 given an
S1 -invariant instanton on S4. Conversely, we obtain

Corollary 5.4. A finite action monopole on H3 whose mass m is an integer
corresponds to an S1-invariant, finite action instanton over all of S4.

The rest of this section is devoted to the proof of Theorem 5.1 in which we carry
out the details of Taubes' program. We cover the space Xo = N0\Σ0 by a countable
collection of balls. On each ball, we have a "good" gauge, namely the Hodge (or
Coulomb) gauge obtained from Uhlenbeck's theorem [ U 2 ] , in which the Sobolev
norm of the connection form can be estimated by curvature. These gauges are then
glued together to produce a global gauge. The contributions to the connection
form which cannot be controlled by curvature are then seen to arise from
holonomy and these terms define a flat connection.

Let

\\L^k and (Hm) holds}.

Our main technical result is

Proposition 5.5. Let p>2. Then, there exist k and t, and an explicit flat connection Γ
with holonomy m, such that if De ^ j k , then there is a gauge in which D = d + Ά and

\\A-Γ\\Llr{No)^0\\F\\Lq{No), 2^q^p. (5.5)

From this we obtain

Corollary 5.6. There exists a gauge in which D = d + A with A — AbeL\ At>(N0) and

\\A-A"\\LUHNo)^C\\F\\Lq(No). (5.6)

Corollary 5.6 implies Theorem 5.1. Approximate A in L\Λoc by smooth Aj with
\\FJ\\L2{NO)<^' Apply Corollary 5.6 to each ΆjeLP1ΛθG9 p>2. For each Dp there is a
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gauge in which Dj=d + Ap where Ai satisfies (5.6) with some Aj=m/dβ. The bound
in (5.6) with q = 2 implies that a subsequence of Aj—Aj converges weakly in L\ to
some A—A^. For each j , s]~ίΆjsj + s]~1dsj=Aj. It follows that a diagonal
subsequence of {ŝ } converges weakly to seL\Λoc. In the limit,

ds = sA—As

with s e L| l o c(X0). From the remark following Lemma 3.2, A and A have the same
holonomy. It follows that Ά is weakly gauge equivalent to A satisfying (5.6) which
proves Theorem 5.1.

We now turn to the proof of Proposition 5.5. The proof involves the basic
theorem of Uhlenbeck concerning the existence of Coulomb gauges and
several technical lemmas.

We cover X0 = N0\Σ0 by balls Ba in each of which a good gauge is given by

Theorem 5.7 (Uhlenbeck [U2]). For k sufficiently small, there is a gauge in which
D = d + Aa in Ba with

(5.7a)

(5.7b)

( 5 7 c )

Conditions a and b are in [U2] To prove c, note that in the Abelian case, Aa is
gauge equivalent to A = Aa + du0 with uo = Cx and C chosen so that A has mean
value zero. In the non-Abelian case, A may be found by iterating with s0 = eu° = eCx,
sn = eUn and solving Aun = e~1tn-l[A*9dun-1']e?n-1 with J dun= -~f e~Un-'AaeUn-\

Since, | |wJ|L | ( B α )^ \\Aa\\L\iBtx)^k\\F\\L2{B^ we see that un converges to u with
H l l ^ k | l ^ l l α ) Therefore, A = e uAaeu + du satisfies the conditions a, b, c.

Remark. The connection Aa is not uniquely specified but can be altered by a
constant gauge transformation. This gauge freedom will be used in gluing gauges
together.

First, we describe the precise covering constructed by Taubes and then, his
definition of the global gauge transformation.

We assume that {Ba} is an open covering of Xo which contains a subcovering
{Ua} defined in the following manner. Let Σo, the local singular set, be
diffeomorphic to a square in R2. The index α = (n, /, x) where n is a positive integer, /
takes integer values from 0 to 7, and x is a point of Σo lying on the standard square
lattice Λn of side length 2~n~ι. With this notation, Ua consists of the points with
coordinates (r,θ,y) restricted as follows:

(i) 2~n-

(iii) y belongs to the open square centered at x of the length 2~n.

On intersections UanUβ9 the Coulomb connections are related by the
gauge transformations Aβ = e~uAaeu + du where we have written eti = h~1hβ.
Therefore, we obtain
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Corollary 5.8. On UanUβ

^ ^ ) ? (5.8)

where P lies in Uan Uβ and a is the larger of the diameters of the two balls Ba and Bβ.

Lemma 5.9. The function u in Corollary 5.8 may be chosen to satisfy on UanUβ

(with α = (n, l,x) and β = (n',ΐ,x')) the constraints:

a) // n = ri, x = x' and / = /' + l with l ^ / ' < 7 , then u(P) = 0.
b) // n = n\l = lf and x and x' are adjacent on the square lattice Λn, then u(P) = 0.
c) // n = n' + l and 1 = 1' and x = x\ then u(P) = 0.

Proof. The gauge freedom can be used to achieve the above conditions. However,
note the important fact that strict inequality holds in a) which means that u(P)
cannot be chosen to be zero in an intersection in which /' = 7.

We now proceed with Taubes definition of the global gauge transformation.
Because of the non-Abelian nature of SU(2\ at each stage, at most two local gauge
transformations can be glued together by a cutoff function. The strategy consists
of four steps. First, the transition functions of Corollary 5.8 are glued together as θ
goes from 0 to 7, with n and x fixed. Secondly, the resulting gauges corresponding
to x and x' with the same n are glued together. Thirdly, the gauge indexed
by n is glued to the gauge indexed by n + 1 . This produces a gauge which is multi-
valued in the sense that g(r,2π,y)ή=g(r,0,y). The gauge transformation
s = g(r,2π,y)~1g(r,0,y) is first shown to have a pointwise limit as r tends to zero
which may be identified with the holonomy. Then, using a carefully normalized
local radial gauge, s can be shown to satisfy good a priori estimates. Finally, from
this analysis, 5 can be modified to obtain a global gauge in which the connection
form satisfies the inequality of Proposition 5.5.

We begin by fixing a cutoff function

1 for O ^ ί ^

0 for — ^ ί ^ 2 π
lo

and let λt(θ) = λ I θ — — I be periodic in θ of period In. With n and x fixed, we define

a gauge transformation on (J U{nJtX) by

where Q^Vuι~KnXχ)Kn,ι- i,xy Note that hnx as defined on E/(ΛfOtJC) does not agree
ih i dfiii UKX)K,

with its definition on U{ntlfX).
h i

Secondly, move along the singular set from a point x = (xu x2) on the lattice Λn

to a neighboring point x' = (xί,x2 — 2~ ( Π + 1 )). Now, define

for
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and let u(n,x,xf) be defined by expu(n,x,x') = h~xhnx,. Then, on Uinthx)nUiHtltX>)9

our global gauge transformation is given by

hn = hn,xexp(λ(y)u(n,x,x')).

To get from the lattice point x = (xux2) to x" = (xί— 2~(n+2),x2)> λ and w are
defined in an analogous way and on U{njiX)nU(nthxΊ, the definition of hn is clear.

The third step is now to move from n to n +1. To this end, let

fO for r = 2~{n+1)

for r ^ | 2 ^ w + 1 > .

Then, on the appropriate intersection on which expu = h~1hn+1, we define

g = hnexp(λu).

It follows from Corollary 5.8, that each of the w's occurring on an intersection
belongs to U2 for q > 2, and hence, to L00 by Sobolev's lemma. Moreover, using the
gauge freedom of Lemma 5.9, which allows the choice of a gauge for which
u(P) = 0, we find that in all intersections except those involving 1=0 and 1=7,

^llMllL.+ ^ F w I I ^ + I I Γ ί ^ l l ^ ^ c o n s t ί l l F I I ^ ^ ^ ) . (5.10)

Using the basic facts about cutoff functions that | Vλ\ ̂  cd and | V(Vλ)\ ^ cd2, we
find that for g defined above, on an intersection not involving 0 = 0 and θ = 2π, the
one form ω = g~1dgeL\ obeys

\\ω\\L<£coΏ&t\\F\\L9iϋuUUβ). (5.11)

The fourth and final step in the proof is to deal with the multi-valuedness of g.
Let go = g\£/(n,o,*)and £? = g|Uin, ltX). Then, the gauge transformation s = go ιgη

is defined on \J {U(nfOfX)nU{ntΊtX)}.
(n,x)

We next prove a theorem of Taubes which shows directly that s has a limit as n
tends to infinity which is independent of x. Finally, to prove the inequality of
Proposition 5.5, with p > 2, we use some very precise information obtained from a
well normalized radial gauge.

Define the set V= V\n, x~] = {(r, 0, y)} satisfying

(i) l2

(iii) y belongs to the open square centered at x of side length \2 n.

Let Ω = Ω[n, x] denote the collection of indices α = (ri9 /', x') such that ί/αn V is non-
empty. Let

Wln,x]= U t/«, X[n,x]= U ^[n^x] and P[n,x] = (2-<n+1),0,x).
αeβ n'̂ w

Then,

Theorem 5.12 (Taubes). The gauge transformation s obeys the inequalities

(a) s u p F | | s - s ( P ) | | = c | | F J L 2 W ,

(b) K ^ ^ ί C ^ T l l l F
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Proof. The inequality (a) follows from a very delicate argument found in
Lemma A1 of [T]. The inequality (b) follows immediately from (a).

This theorem shows that the sequence {s(P[n, x])} converges to some s0 eSU(2)
as n-^ oo and that s0 is independent of x. Let s0 = JO0 = e2πaco and Ao0 = a^dθ be the
constant form.

Lemma 5.13. In any ball Ba, a point P may be chosen and a radial gauge (Ar = 0)
found, in which A(P) = Ao0 and the inequality,

for q^2,

is satisfied.

Proof. From the results of Sect. 4, we know there is a radial gauge in which lim A

= AO0 a.e. The gauge transformation g' = e~
Au{P)u gives a new radial gauge A' in

which A'U(P) = O. The gauge transformation g" = e~
A'v{P)v now gives a new radial

gauge A" in which A'ύ{P) = A'ύ(P)=O. A constant gauge transformation now fixes
Aθ(P)=a(X). In the final normalized gauge,

| £ J \Fρθ\dρ^$ρ\F\dρ.
r{P)

Using Holder's inequality and integrating by parts, we obtain the Lq estimate on
Aβ — a^. Estimates on Au and Av are obtained similarly.

Now, let A represent the connection 1-form in the radial gauge of the lemma in
the ball containing Uo = U(niOx) and let Ao be the 1-form in the Coulomb
gauge on this same ball. Note the elementary measure theoretic fact that there
is a point Qs Uo with O < 0 Q < f such that

ί \
Uon(θ = θQ)

Lemma 5.14. Let h be the gauge transformation on Uo from the radial to the
Coulomb gauge. Then, h = e~a°°θ(I + R0) where, for q7t2,

Proof. Since dh + Ah = hA0, we may choose h so that

(ftAoβ - (aθ - α^JΛ) + /(r, u,v)\,I

with Q as defined above, /(β)=0 and

( r , β β , u > t ) ) + J (
ΘQ

The inequality on the remainder Ro follows by taking Lq norms, using the
measure theoretic fact above, Corollary 5.8, and the Poincare inequality.

If now, k is the gauge transformation on UΊ = U(n, 1, x) from the radial gauge to
the Coulomb gauge, an analogous computation shows that

with \\RΊ\\Lq(Uo)^cr2\\F\\Lq(Uo).
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Putting these estimates together,

Lemma 5.15. There exists a point P in UonUΊ such that

where C is the larger of the constants in the bounds on Ro and RΊ.

Proof Let N = {xeUonUΊ \ \RΊ(x)\> 1} and let m(N) be its measure. Then,

m(N)= Jrfxrg J \RΊ(xψ

Since 2q^.4, for r sufficiently small,

Let V=(UonUΊ)\N. Then, |Λ7 |^1 on V and m(V)^m(U0nU7). We can now
find a point P in V such that

$\R0\«dx 2S\R0\«dx

which concludes the proof of Lemma 5.15.

Putting all of these results together, we obtain

Proposition 5.16. The gauge transformation s = s0e
z = gQ1g7 on ^(/J j0)JC)n£/(n>7>JC),

where zeLq

2,2^q^p, and obeys the inequalities,

^ ^ ^ , (5.16a)

. /m. < Cr2WF\\LnUU)

where P = P[n,x] is the point of UonUΊ given by Lemma 5J5.

Proof. The first inequality follows from Corollary 5.8. To obtain the second, note
that for small r, (I+R0(P))~1 = I-R"0(P) with \R0(P)\ ^2\R0(P)\. Therefore, s(P)
= e2πa~-R'0(P)(I+R1(P)) = s0e

z{P) with |/-e z ( P ) |^4|K 0 | . In other words,
e«F> = I+W, with |WΠ^4|Λ0|. Therefore,

Now, let λ(θ) be defined by

f for

π0 for θ^ —
16

and note that on UintOtX)nUiHt7tX)9 \Vλ\ <^c2n and \V{Vλ)\ <^c22n. We now define the
final gauge transformation

The critical term to estimate is
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Using the inequalities of Proposition 5.16, we find that on U0nU7,

It now follows that if M = \J (UirifOfX)nU{nfΊtX), then | |ώ| | L « ( M ) £2fc | |F | | W ( M ) .
(n,x)

Using all of the preceding results,

\\ώ\\L'iNo)ZC\\F\\»(No)9

Letting λ be the connection form in the £ gauge, we see that λ = Γ + a, where Γ is a
flat connection with holonomy m and a satisfies inequality (5.5). This proves
Proposition 5.5. Corollary 5.6 follows immediately since Γ = a^dθ is a constant flat
connection and hence is gauge equivalent to Ab by a similarity transformation.

An alternate proof of Theorem 5.1 has been given by Taubes directly in the
critical Sobolev case, p = 2. For completeness, we outline the crucial steps in his
argument.

First, he improves the convergence of s(P[n, x]) to s 0 by an iteration. To do this,
consider x on the lattice Λ „ of side length 2~n~ *. Projecting U(rifOtX) onto Σ gives a
square of side length 2 " n with center x. The square contains four subsquares whose
centers lie in Λ n+ί, each of which is the projection onto Σ of some U(n+ίt 0> xΊ for x'
in Λ π + 1 . Let Q(x) be this set of four points in Λ n + 1 . Iterating and using
Theorem 5.12, gives

n,x])-so|^i Σ |s(P[n,x])-s(P[n + l,xTI + i Σ
x' = Q(x) x' = Q(x)

which implies

± Σ
' Q(x)

Letting W\n,x',k] = {(r,0,y)} such that 2 - n - f c - 1 ^ r ^ 2 - ' | - k a n d j ; belongs to
the projection of Uin+KOfXΊ for x' in Λπ+fc; we finally obtain

| s ( P [ n , x ] ) - s o | 2 ^ c Σ 2-k(\\FA\\LHW[n,x,k]))
2.

fc = O

From these results we now have

Theorem 5.17 (Taubes). The gauge transformation s = soe
z with zeL|(AΓ0) is

continuous and

sup | z | £ Σ 2-k{\\FA\\LHmntX,k]))
2. (5.17a)

V[n,x\ k = 0

The global gauge transformation, g = eλzg is continuous and ώ = &~1d&e L\(N) and
satisfies

? ( W o )^c Σ Σ ^k(\\FΛ\\mw{n,x,^
2^'\\FA\\mNθ) (5 Πb)

( ) k 0
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