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Abstract. The goal of this work is to describe the irreducible representations of
the quantum Heisenberg algebra and the unitary irreducible representation of one
of its real forms. The solution of this problem is obtained through the investigation
of the left spectrum of the quantum Heisenberg algebra using the results about
spectra of generic algebras of skew differential operators (cf. [R]).

Introduction

The quantum Heisenberg algebra Hqh(k) = Hqh{x,y\k) is the algebra over the field
k generated by indeterminables x, y satisfying the relation

xy - qyx = h,

where q,hek*. This algebra (or, rather this family of algebras) was introduced in
[FG] and, it seems, is going to occupy in the quantum groups - the quantum
spaces realm (cf. [Dr, J, FRT, M, S]) nearly the same place as its "classical
limit" - Weyl algebra - does in representation theory (cf. [K, D]) and mathematical
physics. Consequently, it deserves a thorough investigation.

The object of this work is to obtain a description of irreducible representations
of the quantum Heisenberg algebra and unitary irreducible representation of one
of its real forms. We come to the solution of this problem through the investigation
of the left spectrum of Hqh(k). Recall the definition of the left spectrum.
Let >- be the following relation (preorder) on the set ItR of left ideals of an
associative ring R: m >• n if there exists a finite subset w c R such that the left ideal
(m:w):= {rεR\rw c m} is contained in n. The left spectrum, SpeczK, of the ring R
consists of all the left ideals p of R such that (p:x)>-p for every xeR — p. We use
mostly the following two properties of Specj R: 1) SpectR contains the set Maxj R
of maximal left ideals of R; 2) the left spectrum is preserved by localizations (as
well as left maximal ideals).

The results obtained in [R] about the left spectrum of the general algebra of
skew differential operators \_A[x\ #,d] are sufficient to get a complete description
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of algebraically irreducible representations of the quantum Heisenberg algebra
Hqh = Hqh(k) over an arbitrary field k. This description is given in the first section
of the article.

In the second section we obtain the list of unitary irreducible representations
of the real form of the algebra Hqh(<£) defined by the involution τ which sends x
into y and y into x.

This article is essentially a continuation of [R], In particular, we use some of
the notions from [R] without additional explanations.

1. The Spectrum and Irreducible Representations
of the Quantum Heisenberg Algebra

1.1. The Left Spectrum ofHqh. Recall that Hqh is the algebra A\_x\ $,d~\ of A-skew
differential operators over A (cf. [R]), where A = k{y\ 9(y) = qy, and h = dy. We
consider the case when q is not a root of unity and h(0) φ 0.

The left spectrum, Specj Hqh, of the algebra Hqh can be described as follows.

1.1.1. The "Spectral Point." There exists a "special" left maximal ideal py = Hqhy.
The corresponding quotient module qV — Hqhjpy is naturally realized as the

k-vector space fc[x] of polynomials in x, where x acts by usual multiplication.
In the case when hεk, the action of j ; is given by the formula:

(x f)(x) = xf(x\ {yf){x)=-{h/q)dqf{x\ (1)

where dq is the ^-derivation:

dq(f)(x) = x-1(f(q-1x)~f(x))/(q-1 - 1). (2)

In particular,

(cf. Example 3.6).
In general case, when deg(//) ̂  1, the action of y is described by the recurrent

formulas (cf. [R] Proposition 3.5).

1.1.2. Proposition. 1) For any irreducible polynomial f = f(y) such that
the left ideal pf:= Hqhf + Hqhfx is maximal and two-sided. The quotient ring
Hq,h/Pf I S naturally isomorphίc to the quotient field kf:= /c[<y]/[/c[^]/.

2) Every maximal left ideal p of the algebra Hqh such that pnk[y~] Φ {0} is
equivalent to one and only one of the ideals pf, where f = f(y) runs over the set of
all the irreducible polynomials in y.

Proof. 1) Clearly, if f{y) is a polynomial in y such that /(0) # 0 and deg(/) ^ 1
then the polynomial q'1 f(y) = f(q~1y) belongs to the ideal /c[y]/ if and only if

9 = 1 .
In fact, if/fo" ιy) = g(y)f(y) then deg(g) = 0, and the equally /(0) = q~'/(0) =

gf(0) s h o w s that g=\. C l e a r l y f(q ίy) = f(y) o n l y if q=\.

Now the statement 1) follows straightforwardly from Proposition 3.7 in [R].
2) Statement 2) is a sequence of Proposition 3.5 and Proposition 3.7 in [R]. •
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1.1.3. Reflection of the Picture. In the algebra Hqh the variables x and y play a
similar role. In particular, we can apply the results of Sects. 1.1.1 and 1.1.2 to the
"points" peSpecj Hqh such that p n fc[x] φ {0} and obtain the following statement:

1.1.4. Proposition. 1) The left ideal px = Hqhx is maximal. The corresponding simple
module qVx = Hqh/px is realized as the left k[y~]-module /c[y] of polynomials in y,
where (in the case when hek) x acts as follows:

; (1)

where ά"q is the 1/q-derivation:

d;(f){y) = y- Viw) - /O0)/(« -1) (2)

In particular,

x-y" = f-lhi\-qn)l{\-q). (3)

2) For any irreducible polynomial f = f(x) such that /(0) Φ 0, the left ideal
pf\= Hqhf+ Hqhfy is maximal and two-sided; in particular, pf =HqhfHqh. The
quotient ring HqJpf is naturally isomorphic to the quotient field /c/:=/c[x]//c[x]/.

3) Every maximal left ideal p of the algebra Hqh such that pnk[x~] Φ {0} is
equivalent to one and only one of the ideals pf9 where f = f(x) runs over the set of
all the irreducible polynomials in x.

1.1.5. Proposition. The set of maximal left ideals m of the algebra Hqh such that
mn/c[y] φ {0} and mnk[x] Φ {0} consists of all the (two-sided) ideals of the form

Hq,h(y ~ V + Hq,h(x - hλ~\\ -qyι\ (2)

where λ runs over the set /c* of all the invertible elements of the field k.

Proof Let μ be a maximal left ideal of the algebra Hqh such that μ n k[y] = k[y~]f
and μrλk[x] = k[x]g for some nonzero polynomials / and g.

a) Note that it is impossible that f = yn and g = xm for some integers n ^ 1
and m ^ 1.

Otherwise, since yn~1 φμ, the ideal μ is equivalent to the ideal Hqhy. This means,
thanks to the maximality of μ, that μ = (Hqhy:φ) for a certain element φ of the
algebra Hqh. In particular, xmφeHqhy. But this implies immediately that the
element φ belongs to Hqhy; hence μ = (Hqhy:φ) = Hqh. Contradiction.

b) Therefore we can suppose that f(y) = fi(y)f2(y\ where fx(y) is an irreducible
polynomial such that /i(0) Φ 0. The ideal μ is equivalent to the ideal μ' = (μ:f2(y))>
Since f^eμ', / i ( 0 ) # 0 and the left ideal μ' is maximal, it is two-sided (cf.
Proposition 1.1.2). This implies (since μ = (μ':ψ) for some element φ from Hqh\μ')
that μ = μ;. In particular, f(y) = f1(y) and g(x) are irreducible polynomials, and
#(0) Φ0. Thus we have the equalities (cf. Proposition 1.1.2):

Hq,hf + Hqthfx = μ = Hqthg + HqMgy.

In particular,

f(y)x = r(x)g(x) + s(x, y)g(x)y (1)

for some polynomials r, s from Hqh.
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Replacing the left side of Eq. (1) by xf(q~1y) — q~~1d(f)(q~1y) and putting
y = 0, we obtain the following:

xf{0)-q-'d{f){0) = r{x)g{x). (2)

Since /(0) φ 0, Eq. (3) implies that deg(#) = 1; i.e. g(x) = x — α for some αefc\{0}.
Now, the equality

g{x)y = χy-ay = qyχ + h-(xy = qyg(x) + (q-

implies (since g(x)y and g(x) belong to the ideal μ) that the element y-{a{\—q))~1h
belongs to μ. Therefore f(y) = y-(α(l -q))~ ι h. •

1.1.6. The Remaining Points: Irreducible Curves. Consider now the ideals from the
left spectrum of Hqh, which are not connected with points of Sρecfc[>>] and
Specfc[x]; i.e. the ideals peSpeCji/^Λ such that pnk[y~\ = {0} and pnfc[x] = {0}.

Following the general procedure (cf. [R], 3.1, (a)), we take the localization of the
algebra Hqh at the set of all the nonzero polynomials in y. The result of this localiza-
tion is the algebra Hq h = k(y)\_x,q^d~], which differs from Hqh = k[y][x,q^d~\
only by rings of coefficients: the polynomial ring /c[y] is replaced by the field of
rational functions k(y).

According to the general theory, localizations are compatible with the left
spectrum. In particular, the localization of the ideal p at &[.y]\{0} belongs to
Specjiί^. Since Hqh is a left and right principal ideal domain, every ideal form
Specj Hqh is equivalent to a left maximal ideal; and every left maximal ideal is of
the form Hqhr where r = r(x, y) is a polynomial in x, y, which is an irreducible
element of the algebra Hqh. In particular, the ideal p is equal to HqhnHqhr for
some irreducible (in Hqh) polynomial r.

Note that two polynomials, r{x,y) and r ~ (x,y) are equivalent, i.e. they define
the same principal ideal of the algebra Hqh, if and only if r ~ (x, y) = f(y)r(x, y) for
some rational function f(y). We can, therefore, (and will) make the choice almost
unique, taking a polynomial of minimal degree in each equivalence class.

1.1.3.1. Proposition. Let a polynomial rek[x,y] be an irreducible element of the
algebra Hqh, having the minimal degree in its equivalence class. Then the
specializations of the left ideal μr:= HqhnHqhr can be described as follows:

a) The ideal μr is contained in the maximal ideal HqhfHqh = Hqhf + Hqhfx
for an irreducible polynomial f =f(y), /(0) Φ 0, if and only if

f(y/q)nr(hd1/q(f(y))/f(y/ql y)ekly]f9 (1)

where n is the degree of r in x.
b) Similarly, the ideal μr is contained in the maximal ideal HqhgHqh for an

irreducible polynomial g = g(x\ g(0) Φ 0, if and only if

g(qxγr(x, - hdq(x))/g(qx))ek[x]g, (2)

where v is the degree of the polynomial r in y.
c) The ideal μr is equivalent to a left maximal ideal if and only if the conditions

(1) and (2) do not hold for any irreducible polynomials f(y) or g(x) such that /(0) φ 0,
g(O)ΦO.
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Proof. 1) Suppose that the left ideal μr:= HqhnHqhr is not maximal; and let m
be a left maximal ideal of the ring Hqh, containing μr. Clearly mnk[y] Φ {0}; i.e.
mc\k{y\ = /c[y]/for some nonzero polynomial / = f(y). If f(y) is not equal to
cyn for some cek and neZ+, then f(y) can be represented as g(y)u(y\ where g is
an irreducible polynomial in y such that g(O)Φθ. Since wem, the ideal (m:u) is
proper, and (μr:u) a (m:u). And, besides, the intersection (m\ύ)nk\_y] = k[y]g is a
maximal ideal of k\_y]. By Proposition 3.9 in [R] the ideal (m:w), being left maximal,
coincides with the two-sided ideal HqhgHqh = Hqhg + Hqhgx. This implies that

m = (m:u) = Hqhg + Hqhgx = k\_y]g + Hqh{x- φ), where φ = ^(y) is a polynomial
in y such that φ(y)g(y/q) = d(g(y/q)) + / ( ^ ( y ) for some f(y)ek[yJi (cf. the proof
of Proposition 3.7 in [R]).

The ideal m = k[y]g + //^(x — i/r) consists of all the "polynomials" /(x, y) such
that /(<A(y),̂ )e/c[̂ ]gf. In particular, r(φ(y\y)ek\_y~\. On the other hand, it is easy
to see that, thanks to the minimality of deg(r), μrem if r(ψ(y)9y)ek[y]g.

Note that the last inclusion is equivalent to the following one:

g(y/q)nr(d(g(y/q))/g(y/q\ y)ekly]g,

where n is the degree of r as a polynomial in x. •

Proposition 1.1.3.1 finishes the description of the left spectrum of the quantum
Heisenberg algebra Hqh = Hqh(k) over an arbitrary field k. It is convenient,
however, to have a separate picture in the case of an algebraically closed field k.

1.2. The Left Spectrum of the Quantum Heisenberg Algebra Over an Algebraically
Closed Field. Let the field k be algebraically closed. Then we have

1) Closed points:
(a) the ideals Hqhx and Hqhy;
(b) the two-sided (left and right) maximal ideals

where λ runs over the set fc* of nonzero dements of the field k;
(c) the ideals of the form μr = HqhnHqhr, where the polynomial r = r(x,y)e

k[y] [x] is an irreducible element of the algebra Hqh such that

r(hλ-ί(l-q)-\λ)Φθ for each λek*. (1)

The condition (1) guarantees that the left ideal μr is maximal and has zero
intersections with k[x\ and /c[y].

Every maximal left ideal of the algebra Hqh having a nonzero intersection with
/c[y] or k[x] coincides with one and only one of the ideals from (a) and (b). The
ideals Hqhx, Hqhy and the ideals mλ for different λek* are pairwise non-equivalent.

Every maximal left ideal of the algebra Hqh9 which has a trivial intersection
with the subalgebras fc[x] and /c[y], coincides with one of the ideals μr with r
satisfying condition (1).

2) Non-closed points:
(d) the generic point {0};
(e) the ideals Hqh{y — λ\ where λ runs over the set /c* of nonzero elements of

the field k;
(eA) the ideals Hqh(x — η\ where η runs over the set /c*;
(f) the ideals μr = HqhnHqhr, where the polynomial r = r(x,y)ek[y][x] is an
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irreducible element of the algebra Hqh such that

deg(r) ^ deg(u) for any ueμr (2)

and the equation

\\~qy\λ) = 0 (3)

has solutions in k*.
Each of the ideals Hqh(y — λ\ and Hqh(x — η\ η,λek*, has only one

specialization, which is the maximal (two-sided) ideal mλ = Hqh(y — λ)Hqh and
m*:= Hqh(x - η)Hqh respectively. We can write it down as follows:

Hq.h(y-λ) H ^ ( x - Γ )

where the ("conjugate" to λ) element λA is equal to hλ~\\ — q)'1.
Every (non-trivial) specialization of the ideal μr = Hqh n Hqhr (cf. the point (b)

above) is a maximal two-sided ideal Hqh(y — λ')Hqh for some λ'ek*. Solutions
λek* of Eq. (3) give all the specializations of the ideal μr in the "strong" sense:

q q

It seems, however, more than probable that the set of the solutions of Eq. (3)
for some equivalent to the μr ideal, say (μr:(y — λ)) for a certain λ such that
μr a Hqh(y — λ)Hqh, can not coincide with the set of solutions for r.

2. In Search of Unitary Representations

2.1. Definition. Let A be an algebra over the field C of complex numbers. A map
σ.A^A is called an involution if

σ(xy) = σ(y)σ(x) and σ(λx) = λσ(x)

for any x,yeA and λe<C.

22. Involutions of the Quantum Heisenberg Algebra. From now on k will be the
field of complex numbers.

2.2.1. Lemma. The involutions of the quantum Heisenberg algebra Hqh are classified
as follows.

(i) Let q and h be real numbers. Then the maps

τb:x\-+by, y\-*b~1x,

where b runs over the set k* of nonzero complex numbers, determine all the involutions
of the algebra Hqh.

(ii) Let \q\ = ί and h = iq1/2λ for some real number λ. Then there are only two
involutions, τ+ and τ_, given by the formulas:

τ + (x) = x, τ + (y) = y and τ_(x)=-x, τ__(y)=-y.
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(iii) Let \q\ = l and h = q1/2λ for some real number λ. Then there are only two
involutions, τ + and τl, defined as follows:

τl(x) = x, τl(y)=-y and τl(x)=-x, τl(y) = y.

(iv) There are no involutions for other pairs (λ, h).

Proof. Let σ(x) = ax + by and σ(y) = cx + dy. The relations, which should hold are:

h = σ{xy - qyx) = σ(y)σ(x) - qσ(x)σ(y) = (ex + dy)(ax + by) — q(ax + by){cx + dy)

= ca(\ — q)x2 + cbxy + dayx + db(\ — q)y2 — qadxy — qbcyx

= db(l - q)y2 + {bc(q -q) + aa\\ - qq))yx + ca{\ - q)x2 + (cb - qad)h.

Thus we obtain the following equations:

bd(l-q) = 0, ac(l-q) = 0, (1)

(bc{q-q) + ad(l-qq)) = 09 (cb-qad)h = h. (2)

Since q Φ 1, the first two equations are equivalent to

bd = 0, ac = 0.

Therefore we have the following posssibilities:

l)b = a = 0; 2)d = a = 0; 3)fo = c = 0; 4)d = c = 0. (3)

That is all, because if any three of the elements α, b, c, d are equal to zero, then,
as it follows from the last of Eqs. (2), h = 0. The solutions b = a = 0 and c — d — 0
are also incompatible with this equation. Consider the remaining possibilities (2).

2) a = d = 0. Then

bc(q-q) = 09 bch = h. (4)

The property σ2 = id is equivalent to the equality be = 1. Therefore the equalities
(4) mean exactly that q and h are real numbers.

3) b = c = 0. Then the property σ2 = id and (2) provide the following equations:

a2 = d2 = 1^ ad(l-qq) = 0, -qadh = h. (5)

Since ad Φ 0, the second Eq. (5) means exactly that \q\ = 1. It follows from the
first and last Eq. (5) that h= ±qh.

(i) a = d = ± 1. Then h = —qh. This equality means that h = iq1/2λ for some real
number λ.

(ii) a = —d= ± 1 . Then h = gh; or, equivalently, h = q1/2λ for some real number
1 •

2.3. Unitary Representations of the Quantum Heisenberg Algebra

2.3.1. Definition. Let R be an algebra with the involution *. A representation p of
the algebra R in the complex vector space V is referred to as unitary, or *-unitary,
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if there exists a positive definite Hermitίan inner product (,) such that

(ρ(x)v. w) = (v. ρ(x*)w)

for any two vectors v, weV and for any element xeR. •

Our goal is to describe the unitary representations of the algebra Hqh (if any),
corresponding to different involutions of Hqh (cf. Lemma 2.2.1).

2.3.2. Proposition. Let h and q be real numbers. Then
a) The "standard" representation of the algebra Hqh in the vector space k[z] of

polynomials in z,

(x-f)(z) = zf(z\ (yf)(z) = -(h/q)d1/qf(z)

(cf. 4.1.1) has the unique (up to multiplication by a positive number) τb-unitary
structure, where τh is an arbitrary involution of the algebra Hqh:

if and only if h/q < 0.
b) The "standard" representation of the algebra Hqh in the vector space k[z] of

polynomials in z,

has the unique (up to the multiplication by a positive number) τb-unitary structure if
and only ίfh>0.

Proof, a) Let vt = z\ i ̂  0. It is easy to see that a τb-invariant inner product (if
any) satisfies the equalities:

This implies immediately that (vhvt) is positive for every i ^ O if and only if

(vθ9 v0) > 0 and h/q < 0. Thus, if h/q < 0 then there exists a unique inner product (,)
on qV such that (1,1)=1 and the representation qV is unitary. The elements
(h/q)~ι/2([ — /]!)~1/2x ί, ΐ ^ O , form an orthonormal basis ofqV with respect to (,).

b) Similarly, in case of the canonical representation

it follows from the recurrent relations

that the inequality h > 0 is necessary and sufficient for the existence of τb-invariant
positive Hermitian form of k[z~\. •

2.3.3. Proposition. Let k be a field of complex numbers, qφ\ and h real numbers
and Hqh = Hqh(k) the corresponding quantum Heisenberg algebra over the field k.
And let τb be the involution x\-*by, y\-^b~1x, bek. Then there are the following
possibilities'.

1) // q > 0 and hb~ x(l - q)~1 > 0, then each point y of the circle of the radius
hb~ι(\ — q)~ι determines a one-dimensional τb-unitary representation

(\-q)-1, y\-+γ.
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2) //q < 0 and hb(\ -q)~ι>0, then

(a) Each point y of the circle of the radius hb~ι(\ — q)~x determines a
one-dimensional τh-unitary representation

\\-q)\ y\-+γ.

(b) Each point λ of the open interval (0, hb(\ — q)~ι) determines an algebraically
irreducible infinite dimensional τb~unitary representation of Hqh.

3) // b is real (as it is in the previous cases), then the remaining τb-unitary
irreducible representations contain the "standard" representation,

(yf)(z) = zf(z\ (x-f)(z) = hdqf(z).

This is the complete (up to equivalence) list of irreducible τb-unitary repre-
sentations of Hqh.

Proof Let p be an irreducible τ^-unitary representation of the algebra Hqh. Denote
by L the operator bp(yx). Since byx = τb(x)x, and, by condition, ρ(τb(x)) = p(x)*,
the operator L is positive.

Let v be an eigenvector of the operator L with the eigenvalue λ. Then it follows
from the relations

yxy = y(qyx + h), yxx = q~1(χy-h)x = q~ 1x(yx - h)

that

Lp(y)v = bp(yxy)v = p(y)(qL + bh)v = p(y)(qλ + bh) = (qλ + bh)(p(y)v)

Lp(x) = q~ιp(x)(L - bh)v = q~'p(x)(λ - bh)v = q~\λ- bh)(p(x)v).

In other words, p(y)v is the eigenvector of the operator L with the eigenvalue
(qλ + bh\ and p(x)v is the eigenvector of the operator L with the eigenvalue
q~ ι(λ — bh). Note that, since all the eigenvalues of the operator L are non-negative
(in particular, real) numbers, this implies that b should be a real (nonzero) number.

Let now λ be the minimal positive eigenvalue of the operator L (since L is
positive, then existence of any eigenvalue guarantees the existence of the minimal
one). And suppose that both vectors, p(y)v and p(x)v, are non-zero. Then the
inequalities

(qλ + bh)^λ, q~\λ-bh)^λ (1)

hold. Consider each to the two possibilities: q > 0 and q < 0.
1) q > 0. Then the inequalities (1) can be rewritten in the form (q - \)λ + bh ̂  0,

(q — 1)1 + bh ̂  0. Therefore (since q φ 1) we have:

λ = bh(\-q)~1>0. (2)

The annihilator of the vector υ contains the left ideal of the algebra Hqh

generated by the element yx — h(\ — q)~ι.
Note now that, for an arbitrary ye/c, we have the identity:

yx-h(l-q)-1=(y-y)x + y(x-hy-1(l-q)-1). (3)

The identity (3) means that the left ideal Hqh(yx — h(\ — q)~x) is contained in
the (two-sided) maximal ideal mγ:= Hqh(y — y) + Hqh(x - hy~x(l - q)'1) for every
yek (cf. 1.2). Since, by hypothesis, the representation p we are considering is
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irreducible, it is equivalent to the one-dimensional representation

for some γek. The requirement of τ^-unitarity of the representation χy means
exactly that

by = Xγ(by) = χy(τb(x)) = χy(x) = h(l - q)-ι/γ9

h(byΓx(l - q)~ι = χγ(x/b) = χy(τb(y)) = JJy) = y.

Or, equivalently,

\y\2 = hb-\\-q)-\ (4)

Thus each point of the circle of the radius hb~ι(\— q)~ι determines a one-
dimensional τfc-unitary representation.

2) q < 0. Then the inequalities (1) are equivalent one to another. From the first
of them we obtain:

0<λSbh(l-q)-\ (5)

Take an arbitrary λ satisfying (3). The element yx — λ/b, which annihilates the
vector v, can be represented in the form

This shows that the element yx — λ/b belongs to the maximal ideal my for some
y if and only if

λ = bh{\-q)-\

I.e. we are in the situation described in the Sect. 1) of the proof. Using its result,
we obtain: each point of the circle of the radius hb~x{\ — q)'1 determines a one-
dimensional ^-unitary representation.

If, on the contrary, λ < bh(\ — q)~ *, then the left ideal generated by yx — λ/b
is maximal and, therefore, determines an (algebraically) irreducible infinite-
dimensional ^-unitary representation.

Now we describe the rest of τfc-unitary representation; i.e. the representations,
for which the condition

(qλ + bh)^λ, q-\λ-bh)^λ (1)

does not hold.
3) Let q > 0.
3.1) Suppose that the first of the inequalities (1) is in fault; i.e.

λ(\-q)>bh. (6)

This means that the operator p{y) annihilates the vector υ\ and, therefore there
is an embedding (with a dense image) of the standard representation qV into the
representation p. In particular, qV is a τ6-unitary representation. According to
Proposition 2.3.2, this implies that h/q < 0; i.e., since by condition q>09h<0.

3.2) The second possibility,

λ(l-q)<bh (7)
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means that the operator p(x) annihilates the vector v; i.e. p contains the "standard"
representation

(yf)(z) = zf(z), {x f)(z) = hdqf{z).

It is possible if and only if h > 0.

4) Consider now the case q < 0. Then the inequality (6) implies that q < — 1,

and (7) implies that q > — 1 (cf. Proposition 2.3.2). Therefore, again, as in the case

q > 0, no more than one of the two standard representations can be -^-unitary. •

Acknowledgement. I am grateful to David Kazhdan for inspiring discussions in connection with
this work.
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