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Abstract. The goal of this work is to describe the irreducible representations of
the quantum Heisenberg algebra and the unitary irreducible representation of one
of its real forms. The solution of this problem is obtained through the investigation
of the left spectrum of the quantum Heisenberg algebra using the results about
spectra of generic algebras of skew differential operators (cf. [R]).

Introduction

The quantum Heisenberg algebra H, (k) = H, ,(x, y| k) is the algebra over the field
k generated by indeterminables x, y satisfying the relation

xy —qyx=h,

where g, hek*. This algebra (or, rather this family of algebras) was introduced in
[FG] and, it seems, is going to occupy in the quantum groups — the quantum
spaces realm (cf. [Dr, J, FRT, M, S]) nearly the same place as its “classical
limit” — Weyl algebra — does in representation theory (cf. [K, D]) and mathematical
physics. Consequently, it deserves a thorough investigation.

The object of this work is to obtain a description of irreducible representations

of the quantum Heisenberg algebra and unitary irreducible representation of one
of its real forms. We come to the solution of this problem through the investigation
of the left spectrum of H, ,(k). Recall the definition of the left spectrum.
Let > be the following relation (preorder) on the set I;R of left ideals of an
associative ring R:m > n if there exists a finite subset w = R such that the left ideal
(m:w):= {reR|rw < m} is contained in n. The left spectrum, Spec, R, of the ring R
consists of all the left ideals p of R such that (p:x) > p for every xeR — p. We use
mostly the following two properties of Spec, R: 1) Spec, R contains the set Max, R
of maximal left ideals of R; 2) the left spectrum is preserved by localizations (as
well as left maximal ideals).

The results obtained in [R] about the left spectrum of the general algebra of
skew differential operators [ A[x; 3,d] are sufficient to get a complete description
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of algebraically irreducible representations of the quantum Heisenberg algebra
H,,= H,,(k) over an arbitrary field k. This description is given in the first section
of the article.

In the second section we obtain the list of unitary irreducible representations
of the real form of the algebra H, ,(C) defined by the involution 7 which sends x
into y and y into x.

This article is essentially a continuation of [R]. In particular, we use some of
the notions from [R] without additional explanations.

1. The Spectrum and Irreducible Representations
of the Quantum Heisenberg Algebra

1.1. The Left Spectrum of H,,,. Recall that H_, is the algebra A[x; 3,d] of 9-skew
differential operators over A4 (cf. [R]), where A =k[y], $(y) = qy, and h=dy. We
consider the case when ¢ is not a root of unity and h(0) # 0.

The left spectrum, Spec, H, , of the algebra H,, can be described as follows.

1.1.1. The“Spectral Point.” There exists a “special” left maximalideal p, = H, .
The corresponding quotient module ?V = H_,/p, is naturally realized as the

k-vector space k[x] of polynomials in x, where x acts by usual multiplication.
In the case when hek, the action of y is given by the formula:

x- N =xf(x), (y Hx)= —(h/g)d,f(x), (1)
where d, is the g-derivation:
d () =x"1(flg7 )= fMg™ ' — 1) 2
In particular,
yx"=x""'(h(1-q"H{(1—q) 3

(cf. Example 3.6).
In general case, when deg(h) = 1, the action of y is described by the recurrent

formulas (cf. [R] Proposition 3.5).

1.1.2. Proposition. 1) For any irreducible polynomial f = f(y) such that f(0)+0,
the left ideal p,:=H,,f + H,,fx is maximal and two-sided. The quotient ring
H, ,/p; is naturally isomorphic to the quotient field k.= k[ y]/[k[y]f.

2) Every maximal left ideal p of the algebra H,, such that pnk[y] # {0} is
equivalent to one and only one of the ideals p;, where f = f(y) runs over the set of
all the irreducible polynomials in y.

Proof. 1) Clearly, if f(y) is a polynomial in y such that f(0)#0 and deg(f) =1
then the polynomial q_ ' f(y)= f (g~ 'y) belongs to the ideal k[ y]f if and only if
g=1.

In fact, if (g~ 'y) = g(y).f(y) then deg(g) = 0, and the equally f(0)=q, ' f(0) =

g f(0) shows that g = 1. Clearly f(q~'y)= f(y) only if g = 1.
Now the statement 1) follows straightforwardly from Proposition 3.7 in [R].

2) Statement 2)is a sequence of Proposition 3.5 and Proposition3.7in[R]. W
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1.1.3. Reflection of the Picture. In the algebra H,, the variables x and y play a
similar role. In particular, we can apply the results of Sects. 1.1.1 and 1.1.2 to the
“points” peSpec, H, , such that pn k[x] # {0} and obtain the following statement:

1.1.4. Proposition. 1) The left ideal p, = H, ,x is maximal. The corresponding simple
module V.= H,,/p, is realized as the left k[y]-module k[y] of polynomials in y,
where (in the case when hek) x acts as follows:

(- N)(y) = hd;f(y), (1)
where d is the 1/q-derivation:
d(N)y) =y~ (flay)— O —1D). 2
In particular,
xy"=y""th(1 —g")/(1 — g). €

2) For any irreducible polynomial f = f(x) such that f(0)#0, the left ideal
ppi=H,,f+ H,,fy is maximal and two-sided; in particular, p; =H,,fH, ;. The
quotient ring H, ,/p, is naturally isomorphic to the quotient field k.= k[x]/k[x]f.

3) Every maximal left ideal p of the algebra H,, such that pnk[x] # {0} is
equivalent to one and only one of the ideals p;, where f = f(x) runs over the set of
all the irreducible polynomials in x.

1.1.5. Proposition. The set of maximal left ideals m of the algebra H,, such that
mak[y] # {0} and mnk[x] # {0} consists of all the (two-sided) ideals of the form

Hyw(y =)+ Hyy(x —ha~'(1—q)™h), )
where A runs over the set k* of all the invertible elements of the field k.

Proof. Let p be a maximal left ideal of the algebra H,, such that unk[y]=k[y1f
and unk[x] =k[x]g for some nonzero polynomials f and g.

a) Note that it is impossible that f =" and g = x™ for some integers n = 1
and m2> 1.

Otherwise, since "~ ¢, the ideal y is equivalent to the ideal H, ,y. This means,
thanks to the maximality of y, that u=(H,,y:¢) for a certain element ¢ of the
algebra H,,. In particular, x"peH,,y. But this implies immediately that the
element ¢ belongs to H, ,y; hence p=(H,,y:¢)= H,,. Contradiction.

b) Therefore we can suppose that f(y) = f,(y)f,(y), where f,(y) is an irreducible
polynomial such that f(0) # 0. The ideal u is equivalent to the ideal ¢’ = (u:f,(y)).
Since f;(y)ey’, f1(0)#0 and the left ideal y' is maximal, it is two-sided (cf.
Proposition 1.1.2). This implies (since u = (u':) for some element ¥ from H,,\u')
that =y, In particular, f(y)=f,(y) and g(x) are irreducible polynomials, and
g(0) # 0. Thus we have the equalities (cf. Proposition 1.1.2):

Hywf +Hyfx=p=Hg g+ Hyugy.
In particular,

S)x = r(x)g(x) + s(x, y)g(x)y (1
for some polynomials r,s from H, .
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Replacing the left side of Eq. (1) by xf(q~'y)—q~'d(f)(q~'y) and putting
y =0, we obtain the following:

xf(0) — ¢~ 'd(f)(0) = r(x)g(x). @

Since f(0) #0, Eq. (3) implies that deg(g) = 1; i.e. g(x) = x — a for some aek\{0}.
Now, the equality

g(x)y=xy —ay=qyx+h—ay=qyg(x)+(q— Day +h

implies (since g(x)y and g(x) belong to the ideal ) that the element y — ((1 — q)) ™ 'h
belongs to u. Therefore f(y)=y—(a(1 —g))"th. B

1.1.6. The Remaining Points. Irreducible Curves. Consider now the ideals from the
left spectrum of H,,, which are not connected with points of Speck[y] and
Spec k[x]; i.e. the ideals peSpec, H,, such that pnk[y] = {0} and pnk[x] = {0}.

Following the general procedure (cf. [R], 3.1, (a)), we take the localization of the
algebra H, , at the set of all the nonzero polynomials in y. The result of this localiza-
tion is the algebra H,,= k(y)[x,q,,d], which differs from H,,=k[y][x,q,,d]
only by rings of coefficients: the polynomial ring k[y] is replaced by the field of
rational functions k(y).

According to the general theory, localizations are compatible with the left
spectrum. In particular, the localization of the ideal p at k[y]\{0} belongs to
Spec,H,,. Since H;, is a left and right principal ideal domain, every ideal form
Spec, H, ,, is equivalent to a left maximal ideal; and every left maximal ideal is of
the form Hj,r where r =r(x,y) is a polynomial in x,y, which is an irreducible
element of the algebra H,,. In particular, the ideal p is equal to H,,nH_ ,r for
some irreducible (in H, ;) polynomial r.

Note that two polynomials, r(x, y) and r ~ (x, y) are equivalent, i.e. they define
the same principal ideal of the algebra H,,, if and only if r ~ (x, y) = f(y)r(x, y) for
some rational function f(y). We can, therefore, (and will) make the choice almost
unique, taking a polynomial of minimal degree in each equivalence class.

1.1.3.1. Proposition. Let a polynomial rek[x,y] be an irreducible element of the
algebra H,,, having the minimal degree in its equivalence class. Then the
specializations of the left ideal y,:= H,,n H, ,r can be described as follows:

a) The ideal p, is contained in the maximal ideal H,,fH,,=H,,f + H,,fx
for an irreducible polynomial f =f(y), f(0) #0, if and only if

f/a)'r(hd, , (f (W) f(y/), y)ek[y1Sf, (1)

where n is the degree of r in x.
b) Similarly, the ideal p, is contained in the maximal ideal H, ,gH,, for an
irreducible polynomial g = g(x), g(0) # 0, if and only if

9(gx)'r(x, — hd (x))/g(qax))ek[x]g, (2

where v is the degree of the polynomial r in y.

¢) The ideal y, is equivalent to a left maximal ideal if and only if the conditions
(1) and (2) do not hold for any irreducible polynomials f(y) or g(x) such that f(0)#0,
g(0) #0.
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Proof. 1) Suppose that the left ideal p,:= H,,nH, ,r is not maximal; and let m
be a left maximal ideal of the ring H,,, containing y,. Clearly mnk[y] # {0}; i.e.
mnk[y] =k[y]f for some nonzero polynomial f = f(y). If f(y) is not equal to
cy" for some cek and neZ,, then f(y) can be represented as g(y)u(y), where g is
an irreducible polynomial in y such that g(0) # 0. Since uem, the ideal (m:u) is
proper, and (u,:u) = (m:u). And, besides, the intersection (m:u)nk[y]=k[ylg is a
maximal ideal of k[ y]. By Proposition 3.9 in [R] the ideal (m:u), being left maximal,
coincides with the two-sided ideal H,,gH,, = H,,g + H, ,gx. This implies that
m=(m:u)=H,,g+ H, ,9x = k[ylg + H, ,(x — ¥), where y = /() is a polynomial
in y such that y(y)g(y/q) = d(g(y/q9)) + f(y)g(y) for some f(y)ek[y] (cf. the proof
of Proposition 3.7 in [R]).

The ideal m = k[ ylg + H, ,(x — ) consists of all the “polynomials” f(x, y) such
that f(Y(y), y)ek[y]g. In particular, r(¥/(y), y)ek[ y]. On the other hand, it is easy
to see that, thanks to the minimality of deg(r), u.em if r(¥(y), y)ek[ylg.

Note that the last inclusion is equivalent to the following one:

9(y/q)y'rd(g(y/9))/9(y/9), y)ek[y1g,
where n is the degree of r as a polynomial in x. W

Proposition 1.1.3.1 finishes the description of the left spectrum of the quantum
Heisenberg algebra H,,= H,,(k) over an arbitrary field k. It is convenient,
however, to have a separate picture in the case of an algebraically closed field k.

1.2. The Left Spectrum of the Quantum Heisenberg Algebra Over an Algebraically
Closed Field. Let the field k be algebraically closed. Then we have

1) Closed points:

(a) the ideals H,,x and H,,y;

(b) the two-sided (left and right) maximal ideals

my=Hg(y— D)+ Hyy(x —hA™' (1 —q)7"),

where A runs over the set k* of nonzero élements of the field k;
(c) the ideals of the form u, = H, ,~H;,r, where the polynomial r =r(x, y)e
k[y1[x] is an irreducible element of the algebra H,, such that

r(hA~'(1—¢q)~ ' A)#0 for each lek*. 1

The condition (1) guarantees that the left ideal y, is maximal and has zero
intersections with k[x] and k[y].

Every maximal left ideal of the algebra H, , having a nonzero intersection with
k[y] or k[x] coincides with one and only one of the ideals from (a) and (b). The
ideals H, ,x, H, ,y and the ideals m, for different Aek* are pairwise non-equivalent.

Every maximal left ideal of the algebra H,,, which has a trivial intersection
with the subalgebras k[x] and k[y], coincides with one of the ideals p, with r
satisfying condition (1).

2) Non-closed points:

(d) the generic point {0};

(e) the ideals H,,(y — 4), where A runs over the set k* of nonzero elements of
the field k;

(¢") the ideals H, ,(x — 1), where # runs over the set k*;

(f) the ideals u, = H, ,n H, ,r, where the polynomial r = r(x, y)ek[y][x] is an
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irreducible element of the algebra H,, such that
deg(r) =deg(u) for any uey, )
and the equation
rhAi~'1—¢q)~,1)=0 3)

has solutions in k*.

Each of the ideals H,,(y—4), and H,,(x—mn), n,Aek* has only one
specialization, which is the maximal (two-sided) ideal m,=H,,(y — A)H,, and
my:=H, ,(x —n)H, , respectively. We can write it down as follows:

Hq‘h(y - ]')Hq,h = Hq,h(x -4 )Hq,h
2 N
HoWy—4) H,x— %)
where the (“conjugate” to 1) element 4 is equal to hi~}(1 —q)~ 1.
Every (non-trivial) specialization of the ideal y, = H, ,~H,,r (cf. the point (b)
above) is a maximal two-sided ideal H,,(y — A)H,, for some A'ek*. Solutions
Aek* of Eq. (3) give all the specializations of the ideal p, in the “strong” sense:

H < Hq,h(y - )')Hq‘h'

It seems, however, more than probable that the set of the solutions of Eq. (3)
for some equivalent to the u, ideal, say (u":(y —4)) for a certain A such that
u. < Hy y(y — A)H,,, can not coincide with the set of solutions for r.

2. In Search of Unitary Representations

2.1. Definition. Let A be an algebra over the field C of complex numbers. A map
a:A— A is called an involution if

o(xy)=o(y)o(x) and o(Ax)=Ao(x)
for any x,ye A and 1eC.

2.2. Involutions of the Quantum Heisenberg Algebra. From now on k will be the
field of complex numbers.

2.2.1. Lemma. The involutions of the quantum Heisenberg algebra H, , are classified
as follows.
() Let q and h be real numbers. Then the maps

T,:xby, y—b 1x,

where b runs over the set k* of nonzero complex numbers, determine all the involutions
of the algebra H .

(i) Let |q| =1 and h=ig**A for some real number A. Then there are only two
involutions, T, and t_, given by the formulas:

T (x)=x, 1.()=y and 1_(x)=—x, T_())=—).
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(iii) Let |q| =1 and h=q''?/ for some real number A. Then there are only two
involutions, t; and 12, defined as follows:
i)=x, ti()=-y and t(x)=-x, Z()=y.
(iv) There are no involutions for other pairs (4, h).
Proof. Let o(x) = ax + by and o(y) = cx + dy. The relations, which should hold are:
h = a(xy — qyx) = a(y)a(x) — Go(x)o(y) = (cx + dy)(ax + by) — g(ax + by)(cx + dy)
= ca(l — §)x? + cbxy + dayx + db(1 — q)y* — Gadxy — gbcyx
=db(1 — g)y* + (be(q — q) + ad(1 — qg))yx + ca(1 — §)x* + (cb — Gad)h.
Thus we obtain the following equations:
bd(1—-q)=0, ac(1—g)=0, n
(be(g — §) + ad(1 — q3)) =0, (cb — Gad)h = h. )}
Since g # 1, the first two equations are equivalent to
bd=0, ac=0.
Therefore we have the following posssibilities:
1) b=a=0; 2)d=a=0; 3) b=c=0; 4) d=c=0. 3)

That is all, because if any three of the elements a, b, c,d are equal to zero, then,
as it follows from the last of Egs. (2), h=0. The solutions b=a=0and c=d=0
are also incompatible with this equation. Consider the remaining possibilities (2).

2) a=d=0. Then

be(g—§)=0, bch=h. )

The property o2 = id is equivalent to the equality bc = 1. Therefore the equalities
(4) mean exactly that g and h are real numbers.
3) b=c=0.Then the property 6> = id and (2) provide the following equations:

a’*=d*=1, ad(1—-qq)=0, —gadh=nh. (%)

Since ad # 0, the second Eq. (5) means exactly that |q| = 1. It follows from the
first and last Eq. (5) that h = +gh.

(i) a=d= + 1.Then h = —gh. This equality means that h = iq'/? for some real
number 4.

(i) a= —d = + 1. Then h = gh; or, equivalently, h = q*/21 for some real number
A N

2.3. Unitary Representations of the Quantum Heisenberg Algebra

2.3.1. Definition. Let R be an algebra with the involution *. A representation p of
the algebra R in the complex vector space V is referred to as unitary, or *-unitary,
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if there exists a positive definite Hermitian inner product (,) such that
(p(x)v. w) = (v. p(x*)w)
for any two vectors v, weV and for any element xeR. W

Our goal is to describe the unitary representations of the algebra H,, (if any),
corresponding to different involutions of H,; (cf. Lemma 2.2.1).

2.3.2. Proposition. Let h and q be real numbers. Then
a) The “standard” representation of the algebra H,  in the vector space k[z] of
polynomials in z,

xN)2=2f(), (yf)2)=—(h/9)0,,f(2)
(cf. 4.1.1) has the unique (up to multiplication by a positive number) t,-unitary
structure, where 1, is an arbitrary involution of the algebra H, :
7,:x—>by, y—blx,

if and only if h/q <O.
b) The “standard” representation of the algebra H,, in the vector space k[z] of
polynomials in z,

N =2f(@), (xf)2)="hd,f(z)

has the unique (up to the multiplication by a positive number) t,-unitary structure if
and only if h> 0.

Proof. a) Let v;=2z', i=0. It is easy to see that a 7,-invariant inner product (if
any) satisfies the equalities:

(v, v)=h(1 — q—i)/(l —q)(vi-1,0;-1)-

This implies immediately that (v;,v;) is positive for every i =0 if and only if
(vo> Vo) >0 and h/q < 0. Thus, if h/q <0 then there exists a unique inner product (,)
on 1V such that (1,1)=1 and the representation V is unitary. The elements
(h/q) " "H[—=i]Y)"Y2x", i 2 0, form an orthonormal basis of 1V with respect to (,).

b) Similarly, in case of the canonical representation

' N@)=2f@), (xf)2)=hd,f(2),

it follows from the recurrent relations
(v, v) =h(1 — qi)/(l — QW= 1,0;-1)

that the inequality h > 0 is necessary and sufficient for the existence of 7,-invariant
positive Hermitian form of k[z]. B

2.3.3. Proposition. Let k be a field of complex numbers, q # 1 and h real numbers
and H,, = H, ,(k) the corresponding quantum Heisenberg algebra over the field k.
And let T, be the involution x+—-by, yr>b~'x, bek. Then there are the following
possibilities:

1) If g>0 and hb~'(1 —q)~ ! > 0, then each point y of the circle of the radius
hb~'(1 — q)~ ! determines a one-dimensional t,-unitary representation

Xy x—hr T 1 —g)7h yoy.
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2) If <0 and hb(1 —q)~ ' > 0, then

(@) Each point y of the circle of the radius hb~*(1 —q)~' determines a
one-dimensional t,-unitary representation

Lyx—ohy (1=, yoy.
(b) Each point A of the open interval (0, hb(1 — q)~!) determines an algebraically
irreducible infinite dimensional t,-unitary representation of H .

3) If b is real (as it is in the previous cases), then the remaining t,-unitary
irreducible representations contain the “standard” representation,

V' N@=z2f@), (xf)(2)=hd,f(2).

This is the complete (up to equivalence) list of irreducible t,-unitary repre-
sentations of H, .

Proof. Let p be an irreducible 7,-unitary representation of the algebra H, ,. Denote
by L the operator bp(yx). Since byx = 1,(x)x, and, by condition, p(t,(x)) = p(x)*,
the operator L is positive.

Let v be an eigenvector of the operator L with the eigenvalue A. Then it follows
from the relations

yxy=y(gyx+h), yxx=q '(xy—hx=q" 'x(yx—h)
that
Lp(y)v = bp(yxy)v = p(y)(qL + bh)v = p(y)(g4 + bh) = (g4 + bh)(p(y)v)
Lp(x) = q~ *p(x)(L — bh)v = g™ ' p(x)(2 — bh)o = g~ (A — bh)(p(x)v).

In other words, p(y)v is the eigenvector of the operator L with the eigenvalue
(gA + bh), and p(x)v is the eigenvector of the operator L with the eigenvalue
q~'(4 — bh). Note that, since all the eigenvalues of the operator L are non-negative
(in particular, real) numbers, this implies that b should be a real (nonzero) number.

Let now A be the minimal positive eigenvalue of the operator L (since L is
positive, then existence of any eigenvalue guarantees the existence of the minimal
one). And suppose that both vectors, p(y)v and p(x)v, are non-zero. Then the
inequalities

(gA+bhyz 2, q '(A—bh)=41 (1)

hold. Consider each to the two possibilities: ¢ >0 and g <O0.
1) g > 0. Then the inequalities (1) can be rewritten in the form (g — 1)A + bh = 0,
(@ — 1)A + bh £0. Therefore (since g # 1) we have:

A=bh(1—g)~'>0. ®)

The annihilator of the vector v contains the left ideal of the algebra H,,
generated by the element yx — h(1 —g) .
Note now that, for an arbitrary yek, we have the identity:

yx—h(l—q) ' =(y—yx+yx—hy"'1—q) 7). A3)

The identity (3) means that the left ideal H, ,(yx — h(1 —q) ') is contained in
the (two-sided) maximal ideal m,:= H_,(y —y) + H, ,(x — hy (1 — ¢) ") for every
yek (cf. 1.2). Since, by hypothesis, the representation p we are considering is
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irreducible, it is equivalent to the one-dimensional representation
Lixehy T (=g yey

for some yek. The requirement of 7,-unitarity of the representation y, means
exactly that

by = 1,(by) = 1,(Ts(X)) = x,(x) = h(1 — q)~ /3,
hby) ™ (1 — @)~ = x,(x/b) = 1,(1() = 1,(») = .

Or, equivalently,
lyI>=hb'(1—¢q)~". 4)

Thus each point of the circle of the radius hb~ (1 —q)~ ' determines a one-
dimensional 7,-unitary representation.

2) q <0. Then the inequalities (1) are equivalent one to another. From the first
of them we obtain:

0<AZbh(l1—¢q)~ " (%)

Take an arbitrary A satisfying (3). The element yx — A/b, which annihilates the
vector v, can be represented in the form

yx=Ab=(y—yx+yx—hy~'(1=q) ) +h(l—q)~" = Ab.
This shows that the element yx — /b belongs to the maximal ideal m, for some
y if and only if
A=bh(1—¢q)~ 1.

Ie. we are in the situation described in the Sect. 1) of the proof. Using its result,
we obtain: each point of the circle of the radius hb~'(1 — q) ™! determines a one-
dimensional 7,-unitary representation.

If, on the contrary, 4 <bh(l —q)~!, then the left ideal generated by yx — A/b
is maximal and, therefore, determines an (algebraically) irreducible infinite-
dimensional t,-unitary representation.

Now we describe the rest of 7,-unitary representation; i.e. the representations,
for which the condition

(@A +bh)24, q '(A—bh)2 A (1)
does not hold.
3) Let ¢>0.
3.1) Suppose that the first of the inequalities (1) is in fault; i.e.
M1 —q) > bh. (6)

This means that the operator p(y) annihilates the vector v; and, therefore there

is an embedding (with a dense image) of the standard representation ?V into the

representation p. In particular, 9V is a 7,-unitary representation. According to

Proposition 2.3.2, this implies that h/q <0; i.e., since by condition ¢ >0, h <0.
3.2) The second possibility,

M1 — ) < bh )
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means that the operator p(x) annihilates the vector v; i.e. p contains the “standard”
representation

Wy NE)=2f(2), (xf)z)=hd,f(2).

It is possible if and only if > 0.

4) Consider now the case g <0. Then the inequality (6) implies that g < —1,
and (7) implies that g > —1 (cf. Proposition 2.3.2). Therefore, again, as in the case
q > 0,n0 more than one of the two standard representations can be 7,-unitary. W

Acknowledgement. 1 am grateful to David Kazhdan for inspiring discussions in connection with
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