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Abstract. For products, A(t) - A(t — 1)... A(\\ of i.i.d. N x N random matrices, with
i.i.d. entries, a triangle law governs the ΛΓ->oo distribution of Lyapunov
exponents, much like Wigner's quarter-circle law governs the singular values of
,4(1). Our proof requires finite fourth moments and a bounded density; the result
was previously derived only in the Gaussian case.

1. Introduction and Results

Let A be an NX N matrix whose AT2 entries are i.i.d. real random variables,
distributed as Wf\/N, where W (independent of N) has mean zero and variance
one. Historically, there are three main types of results concerning the (random)
singular values of A9 i.e., the eigenvalues of (ATA)1/2:

i) For W Gaussian and N finite, there is an explicit joint distribution of the N
singular values (see [Wi] and references therein).
ii) For W Gaussian and ΛΓ-*oo, the explicit nonrandom limit K of the empirical

distribution function of the singular values (the "integrated density of states") is
Wigner's quarter-circle law [W, p. 7]; i.e., the distribution with density

f<2/π)[l-(λ/2)2]"2, 0<λ<2
K(λ)=\0, elsewhere. (U)

iii) [MP] The extension of ii) to non-Gaussian W's.

The analogues of these results for Lyapunov exponents concern products of
i.i.d. matrices A(\\ A(2),... equidistributed with A. The nonrandom Lyapunov
exponents, μ?^... ̂ μjj, which exist by Oseledec's multiplicative ergodic theorem
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[O, R], may be defined as

μ% = Km - log (kih largest singular value of A(t) A(t - 1 ) . . . A(ί )) . (1.2)
t->CO t

The analogue of i), with W Gaussian and N finite, is an explicit expression for each
of the N Lyapunov exponents. This was derived first for the largest exponent in
[CN] and then for all exponents in [Nl], Let HN(λ) denote the empirical
distribution function of the exponentials of the μj^'s:

= J V ~ 1 (no. o f / c ' s i n {!,...,#} with exp(μ£)^λ). (1.3)

The analogue of ii), which follows from the explicit expressions of [Nl] for the μ '̂s
(see (2.2) below) is that for W Gaussian, HN converges to a distribution H with a
triangular density function,

H(λ)= J h(λ')dλ', where h(λ)=Pλ' (1.4)
- oo [0 , elsewhere .

Equivalently, FN(μ), the empirical distribution of the μj^'s themselves, converges to
an exponential distribution,

The next theorem, which is the main result of this paper gives an analogue of iii).

Theorem 1. Assume W has a finite fourth moment and a bounded density function;
then as JV-> oo, HN converges pointwise to the triangle law distribution function H
and equivalently FN converges to the exponential distribution function F.

The proof of Theorem 1 is given in the next two sections. We conclude this
section with two remarks.

Remark 1. In [CN] it was proved that for general W, the asymptotic behavior of the
leading exponent is the same as for the Gaussian case (namely, μ^— »0 as ΛΓ— >oo)
providing that for some δ > 0,

\E(eiuW)\ = 0(\u\-δ) as |n|->oo. (1.6)

Combining the results of [Ro] (as used in Sect. 3 below) with the arguments of
[CN], one can see that (1.6) may be replaced by the assumption of a bounded
density. It can be shown that neither (1.6) nor the bounded density assumption
implies the other. Although it is not clear what a minimal hypothesis for either
μΐ^O or for HN-+H would look like, we note that the conclusions of Theorem 1
require the distribution of W to at least be continuous. Otherwise A would be
rank-one with positive probability, implying μ% = — oo for fc^2.

Remark 2. The Gaussian result of [Nl] has been generalized [N2] in a different
way than Theorem 1. The generalization of [N2] drops the i.i.d. entry assumption
but requires, as in the Gaussian case, that the distribution of A(\)TA(\] be rotation
invariant. The conclusion is a nonlinear mapping between two JV— >oo distri-
butions - the one for the singular values and the one for the Lyapunov exponents.
Although certain technical hypotheses adopted in [N2] (see Theorem 2. 11 and
Remark 2.12 there) are not valid when the limiting singular value distribution is
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the quarter-circle law, nevertheless we note that the nonlinear mapping does pair
the quarter-circle law with the triangle law. It is clear that some very general
theorem should be valid, which would include both the results of [N2] and of this
paper as special cases.

2. Proof of Theorem 1

Our basic approach will be to study the following limit for 0 < v < 1:

G(v)= lim ΛΓ1(μ?+...+μk

v). (2.1)
N--OO
k/N-+v

In the Gaussian case, one has the formula [Nl]

which easily implies that

lim μj^ = ̂ log(l — v). (2.3)

k/N +v

This in turn implies both that FN-^F and that

G(v) = ] \ log(l - v')dv' = ~ [ - v - (1 -1;) log(l -1;)]. (2.4)
o 2 2

Because G uniquely determines limFN (see, e.g., Proposition 2.9 of [N2]), in order
to prove Theorem 1, it suffices to prove that under the given hypotheses, G(v) exists
for each ι;e(0,1) and does not depend on the distribution of W.

We proceed along the line used in [CN] to study μ .̂ For x l 5 ...,xk in RN, let
|| *! Λ ... Λ xk\\ denote the fc-dimensional volume of the parallelogram spanned by
x!,..., xk. The following lemma is a consequence of the arguments of [F, FK] for
convenience, we present a proof based on the presentation of [BL].

Lemma 1. Let /*,..., fk be orthonormal vectors in RN and let SN k denote the space
of such (jiN,...,fk

N)'s. Then

. . . Λ A f k

N \ \ - ] d v , (2.5)

where v is some (unknown) probability measure on SNtk.

Proof of Lemma 1. We apply Theorem 1.2 in Chap. 4 of [BL] (originally stated in
[GR]). To verify the hypotheses of that theorem, note first that log+ \\A\\ is
bounded by tτ(AτA)/2 so that (compare (2.14)) E(log+ \\A\\) is bounded by N/29

hence finite. The irreducibility and contracting hypotheses follow from Proposi-
tion 2.3 and Remark 2.4 in Chap. 4 of [BL] since the distribution of Wis absolutely
continuous. Finally, to obtain (2.5) from the conclusions of the theorem of [BL],
simply note that the action of A on the fc-fold exterior product space leaves the set
of decomposable k- vectors (i.e., vectors of the form x^ Λ ... Λ xk) invariant; hence
the measure denoted by vp in [BL] (with p = k) is actually supported on (the
projective image of) the decomposable vectors and may be replaced by some v on
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Now (2.5) is bounded above (respectively below) by the sup (respectively inf) of
the integrand over SNtk. It immediately follows that

G(ι>)= lim -E[loS\\Af1

NΛ...ΛAfk

N\\ ] 9 (2.6)
N-+OO Λ/

k/N-+v

if this limit exists and does not depend on the choice of (ff, ...,f^)εSN k. But
\\Af? Λ . . . Λ Afk

N I I 2 is the determinant of the fc x fc matrix B with entries (Aff, Aff)
= (fi

N,ATAfj

N). The right-hand side of (2.6) is then (υ/2) times the limit of fc"1 log
det(5). We wish to relate this to the limiting spectral distribution of B. The next
lemma will help us to do so its hypotheses were chosen for convenience and not for
optimality.

Lemma 2. Let Bk be a sequence of k x k random positive semidefinite matrices such
that the (random) empirical distribution ρk, of the eigenvalues of Bk, converges in
probability to some (nonrandom) distribution ρ (i. e., for each continuity point λ of ρ,
Qk(λ)-^ρ(λ) in probability). If

<oo (2.7)
k

and in addition the minimum eigenvalue λk of Bk has

for some y >0, sup E((λk) ~ γ) < oo , (2.8)
k

then J | logΛ,|dρ(Λ,)<oo and

lim k ~ 1 E [log (det BkJ] = J log λdρ(λ) . (2.9)
fc-»oo 0

Proof of Lemma 2. Let λt denote the eigenvalues of Bk and let ε< 1 and L> 1 be
continuity points of ρ. Then

logλdρk(λ)
t-

Ξ / J + / 2 + / 3 . (2.10)

Now

I2^]logλdρ(λ) (2.11)
ε

in probability, and since I2 is bounded, E(I2) has the same limit. Meanwhile,

/ logΛΛ . « . . ,. . _ .
|/3| £Ξ ( sup —-— I k to(Bk) (2.12)

and

|/1| ̂  ^sup^^llog^l^λ^7. (2.13)

Taking expectations and then letting L->oo and ε->0, yields the desired result by
standard arguments.

To complete the proof of Theorem 1, we must show that for any choice of
(/iN,..., f k ) , the hypotheses of Lemma 2 are valid with ρ not depending on either
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the choice of (/*, . . . , f k ) or the distribution of W. First we note that because the
entries of A are independent, mean zero, variance one random variables, we have

k~1Etr(B) = k-1 £ E\\Af^\\2 = l . (2.14)
i = l

This yields (2.7). Next we show convergence of ρk to a ρ not depending on
(fi*> •> ΛN) or W. Under our hypothesis that E(W4) < oo, we could obtain this from
the results of [MP] however we will rely instead on the results of [Y] which do not
require extra moment conditions beyond finite variance. We note that the matrix B
may be expressed as

B = PlOTATAOPk, (2.15)

where 0 is any N x N orthogonal matrix that maps the standard basis vectors
el9...9ek into /*, . . ., fk and Pk is the N x k matrix with diagonal entries 1 and all
others zero. The N x N matrix

BN = ATAOPkO
T

9 (2.16)

where Pk is the NX N projection matrix onto the span of ei9...9ek9 has all the
eigenvalues of B plus N — k extra zero eigenvalues. Thus to obtain a limiting
spectral distribution for B, it suffices to obtain one for BN. We apply Theorem 2.1 of

[Y] with the n9 p9 y9 Xp and Tp of [Y] taken respectively as N 9 N 9 Ϊ 9 ]/NAT, OPkO
T\

the quantities HI of [Y] are in our case

Ht= lim ΛΓ1 Tr[(OPfe0
τ)''] = lim k/N = υ for all i. (2.17)

JV-»oo N->oo

The limiting spectral distribution of BN exists and, by Eq. (4.14) of [Y], it does not
depend on the distribution of W.

The last remaining hypothesis to verify is (2.8). This will be done in the next
section. It is there that the two hypotheses on W of Theorem 1 will be seriously
used: bounded density in Lemmas 3 and 4; finite fourth moment in Lemma 5. (The
mild use made of the existence of a density for W to prove Lemma 1 was probably
not necessary.)

3. Bounds on Minimum and Maximum Eigenvalues

Let k = kNbe chosen so that kN/N-^ve (0,1) and let λN9 IN denote the minimum and
maximum eigenvalues of the k x k matrix B = BN given by (2.15) with O = ON any
(deterministic) sequence of N x AT orthogonal matrices. To complete the proof of
Theorem 1, it only remains to show that

for some γ > 0, lim sup E(λ^y) < oo . (3.1)
N->oo

In order to do so, we use the following lemma which is essentially a result of
[BYK]:

Lemma 3. Suppose that

for some y' > 0, lim sup E(λy

N) < oo . (3.2)
JV-» co
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Then (3.1) mil be valid if for some finite M, every w>0 and every N,

Σ aw if £ (α/ = l . (3.3)

l5 FΓ2, ... are i.i.d. with the same distribution as W.

Proof of Lemma 3. The matrix BN of (2.15) may be expressed as

(3.4)

where X^ X2,... are the i.i.d. k x 1 columns of γNPlOτAτ. If & = (&19 ..., bk) is a 1
x fc unit vector, then the inner product bX1 equals aAί9 where a is the 1 x N unit

vector (&!,.. ., fck, 0, . . ., 0)0T and ̂  is the N x 1 first column of ]/NAT. Hence (3.3)
implies

if X (&/)2 = l . (3-5)
j = ι

By the proof of Theorem 5.1 of [BYK], this implies that there is some constant
L< oo (depending on M) such that for all large N,

P(λN^λ,λN^R)^LN(R/λ)k/2λNI2 for 0<λ<R/4. (3.6)

If we set R = λ~θ with θ chosen small enough so that (l+θ)ι;<l and choose
/?< 2(1 —(1+tyv), then for λQ small enough, there is some C< oo so that

for 0<λ<λ0. (3.7)

Thus

θy' for 0<λ<λ0. (3.8)

Clearly (3.1) follows from (3.2) and (3.8) by standard arguments.
It remains to verify (3.2) and (3.3). Clearly (3.3) will be valid if ΣajWj has a

density function bounded by M. Let us denote by g[W] the density of the r.v. W
and by ||g|| the (essential) sup norm of g; ||g[P^]|| = 00 if W does not have a

bounded density. The next lemma yields (3.3) with M = K* \\g[W] \\ = J/2 \\g\_W] \\
it is an immediate consequence of two known theorems [Ro, H].

N

Lemma 4. // 7l5 72, ... are independent r.v's, and Y= ^ cijYp then
j=ι

Ί-l/2

, (3-9)

where K* is a finite universal constant ( = ]/2).

Proof of Lemma 4. The elementary fact that | |gpf+ X']|| ̂  ||g[^]|| for indepen-
dent X and X' shows that in Lemma 4, we may assume, without loss of generality,
that ||g[lj]|| <oo for each;. Let U19 172,... be i.i.d. with a uniform distribution on
(—1/2,1/2), so that the densities of Ύj and t//||g[ Yj] || have the same sup norm. It is
proved in [Ro] that

where t7= Y (f l i/ l |g[Y)] | | )C7/. (3.10)
j = ι
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By scaling, we easily obtain (3.9) provided only that

X* = sup I sup (g Σ bjU, (0))1 (3.11)

is finite, where the second sup is over all fel5 . . ., bN with £ fe? = 1 . The quantity inside
the curly brackets is easily seen to be the maximum (N — l)-dimensional volume of
slices of the unit cube in RN by (N — l)-hyperplanes through its center. K* was

proven finite in [H] and its value was shown to be ]/2 in [B].
It now only remains to verify (3.2) to finish the derivation of (3.1) and hence, by

the results of Sect. 2, to complete the proof of Theorem 1. The next lemma yields
(3.2) with / = 1; it is based on the arguments of [YBK].

Lemma 5. If E(W4)< oo, then for

limsup£(IN)<oo. (3.12)
N-»oo

Proof of Lemma 5. We first note that for fixed N, λN is increasing in fc; in particular,

λN= sup \\AOPkf\\2£ sup ||4/ΊI2 = MII 2 . (3.13)

Hence, we restrict attention to the case k = N. For each N, we write A = AN as
\ where

(3.14)
δN>0 will be specified later, with <5N->0 as JV-»oo. If we define, for m = 1 or 2,

eigenvalue of (A(n»}TA(m\ (3.15)

then since \\A\\ £ \\A(1)\\ + \\A(2\ it clearly suffices to show lim sup £$$>)< oo for
m = 1 and 2.

In Sect. 4 of [YBK], it is proved (using E(W4) < oo) that for any η > 4, and any
sequence of integers 1N satisfying

0, (3.16)

one has for all large N,

£[(41}Kl ̂ Eltr{(A^TA^n ^ηl« , (3.17)

Thus for any fixed /' (in particular for /' = !),

lim sup £[(4W]^1 + lim sup £[(^1>/ιί)
l*]g2. (3.18)

N-^oo N->oo

To control J$\ we have

). (3.19)

For the given distribution of W with E(W4)<co, we can choose a positive,
nondecreasing function h(x) on [0, oo) with /j(x)-»oo as x^oo such that

E(W4h(W))<ao. (3.20)



598 M. Isopi and C. M. Newman

We then have

We now choose δN tending to zero slowly enough to have

δ2

Nh(δN\/N)^σo as JV^oo. (3.22)

Combining (3.19)-(3.22), we see that lim sup E(I^}) < oo (in fact =0) as desired.
This completes the proof.
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