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Abstract. We consider the canonical Gibbs measure associated to a Λ/-vortex
system in a bounded domain Λ, at inverse temperature β and prove that, in the
limit JV->oo, fi/N^β, odV-»l, where βe( — 8π, + oo) (here α denotes the vorticity
intensity of each vortex), the one particle distribution function ρN=ρN(x\ xeA
converges to a superposition of solutions ρβ of the following Mean Field Equation:

e~βψ

Qβ(x)= τ-^β^l -Λψ = ρβ in Λ

Moreover, we study the variational principles associated to Eq. (A.I) and prove
that, when /?-> — 8π+, either ρβ-^δxo (weakly in the sense of measures) where x0

denotes an equilibrium point of a single point vortex in Λ, or ρ^ converges to a
smooth solution of (A.I) for β= — 8π. Examples of both possibilities are given,
although we are not able to solve the alternative for a given Λ. Finally, we discuss a
possible connection of the present analysis with the 2-D turbulence.
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I. Introduction

A natural route to the investigation of the fully turbulent behavior of a real flow is
the study of invariant measures for the Euler equation. This in analogy with the
Classical Statistical Mechanics where the Gibbs measures, which are stationary
with respect to the Newton evolution, take into account the configurations which
are relevant for the thermodynamical behavior of the system.

In the easiest two-dimensional case it is possible to construct, according to the
Gibbs prescription, a class of Gaussian measures formally invariant. However,
such measures do not seem to be physically relevant in the study of stationary
turbulence: the model is too naive since it describes only free fields and the spectra
computed with this ensemble are very far from those observed experimentally and
computed numerically [1, 2, 6, 11, 20, 27, 36].

Another approach is that proposed by Onsager. The basic idea is simple and
natural. One introduces a finite dimensional Hamiltonian system, called the vortex
model, which describes in some sense, the Euler flows whenever the vorticity field is
a linear combination of <5-functions concentrated in points of the physical space
[33]. Thus, one can consider the Statistical Mechanics of such point vortices and
the Gibbs measures associated to such a system can be considered as invariant
measures for the Euler flows. The parameters characterizing these measures are the
inverse temperature β, the number of vortices N, and their vorticity intensities
α1? ...,αN. If one believes in the possibility of having a universal theory of the
stationary turbulence, namely not depending on the details of the system (in this
case N and {αji = !,...,#) one can try to investigate the limit as N-+CO, α^O is such
a way that the total vorticity remains bounded.

As noticed by Onsager, we are not interested really in the thermodynamical
behavior of the system so that there is no reason to consider only positive β which
we will assume to vary over the largest possible subset of R.

Frόhlich and Ruelle proved that, in the standard thermodynamic limit of a
neutral vortex gas, no negative temperature states exist [19]. However, other
limits are conceivable.

We investigate here the above (Mean Field) limit and we find that the weak
7$

limits of the Gibbs measures, when JV-> oo, —: -» β e (— 8π, + oo), do concentrate on

very particular stationary solutions of the 2-D Euler equation. Although we prove
an absence of fluctuations in the above Mean Field limit, we believe that the
stationary solutions we obtain in this way might play a role in understanding the
2-D turbulence as we shall discuss later on. Anyway, these solutions are interesting
in themselves in particular since they satisfy a variational principle: they "minimize
the energy-entropy functional."

The paper is organized as follows: we first formulate in Sect. 2 our problem. In
Sect. 3 and 4 we study the Mean Field limit and we characterize the set of cluster
points of the Gibbs measures for the point vortex system. Sections 5 and 6
introduce some (almost) explicit solutions in the case of a rotationally symmetric
domain or in the case of the whole space R2. In Sect. 7, we develop a mathematical
analysis of the Mean Field equation.

At this stage, it is worth making a remark on the turbulence problem. As
noticed in [36], if one computes the energy spectrum via the canonical Gibbs
measure for a point vortex system, one finds some unphysical part of order fc"1

which corresponds to the self-energy of each point vortex. This part disappears in a
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Mean Field type limit. On the other hand, when doing so, we loose fluctuations
and this seems to indicate that the Gibbs measure might not be adequate to
describe turbulent phenomena. However, numerical simulations [7,8] show that
the vortices have a tendency to create local clusters which have approximately a
circular shape. We do not exclude that such clusters are indeed related to the mean
field solutions we obtain and study.

More precisely, we believe that, due to the rotational invariance, the vortices
likely arrange in clusters which look like the (negative temperature) solutions
described in Sect. 6. This is only a local description. The global measure, which we
are not able to construct, could be a superposition of such solutions. This cannot
be an invariant measure for the Euler flow, but we expect that, if suitably
constructed, it should be practically invariant on relatively large scale of times.

We now discuss the mathematical aspects of our analysis. Our starting point is
the canonical Gibbs measure associated to a system of N vortices with intensity
α = ί/N at inverse temperature β in a bounded domain Λ. We prove that such a
measure exists only for J5?e( — 8π/α2AΓ, +00). In the limit JV-»oo, β->oo,
ft/N-+β e (— 8π, + oo), we find that the typical configurations of the vortex system
arrange themselves to form a special solution of the 2-D Euler equation (or a
convex combination of them). Let us mention at this stage that we follow the
approach of Messer and Spohn [31] with some additional difficulties due to the
singularity of the point vortex interaction.

Let ψ be the stream function associated to such solutions, then we show that ψ
must satisfy the following non-linear elliptic problem:

(1.1)
Λ

ψ = Q ondΛ.

Moreover the solution(s) chosen by the vortex system minimize for β>0,
(respectively maximize for /?<0) both the free energy functional

/(vO=~f |Pv l 2 +^ίωlogω,
2 A PA

with the constraints ω ̂  0, J ω = 1 , (1.2)
A

where ω= — Aψ is the vorticity field, and maximize (this in fact equivalent)

which is obtained from / by using (1.1).
The analysis of Eq. (1.1) or the variational problem associated to the

functionals (1 .2) and (1.3) is very different for β ̂  0 and for β e ( — 8π, 0). In the first
case, existence and uniqueness for the solution of the problem is ensured [22]. The
second case (namely β < 0) is more delicate. Let us first recall that there have been
many studies of Eq. (1.1) when Z is a fixed parameter but the presence of such a
(nonlinear) term changes drastically the nature of the problem. Since we are mainly
interested in solutions of (1.1) which maximize (1.2) and (1.3), we first observe that
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the Mean Field limit yields in particular the existence of minima for β> — 8π and
we will show why this is the optimal bound. Indeed, by an inequality due to Moser
[32] - see also Onofri [33], Hong [26] - one can recover the existence of such a
maximizing solution for β > — 8π and one also shows that sup/ (or supg) becomes
+ oo when β< — 8π. We found rather striking the fact that a Statistical Mechanics
argument allows to recover the optimal constraint in a subtle inequality for
Sobolev spaces.

Letting β goto — 8π is a natural problem that we consider here. First of all, in
the case of a ball, one knows by the results of Gidas, Ni, and Nirenberg [21], that
all solutions are radially symmetric and as it is well-known, they can be computed
explicitly. This is how we check that there is a unique solution of (1.1) for all
β> — 8π if A is a ball and when β—> — 8π, this solution concentrates at 0: more

precisely ω = — e~βψ, \ V\p\2 \\ V\p \\ ~ 2, ω logω/J ω logωV i converge (weakly in the
Z \Λ J

sense of measures) to <50.
We are not able to determine whether this concentration phenomenon occurs

for a given domain Λ. However, we prove that, as /?-> — 8π + , maxima of (1.2) either
converge to a maximum of (1.2) or concentrate, in the above sense, at a point x0 e A
which is a maximum point of y(x)=^y(x,x), where y is the regular part of the
Gren's function of the domain Λ. Furthermore, in the latter case, the behavior of ω
near x0 is then identical to the one of radial solutions concentrating at 0 (with an
appropriate scaling). We prove these facts by a convenient adaptation of some
arguments developed by Lions [28] (concentration-compactness method). Once,
the concentration phenomenon is established, the fact that x0 is a critical point of
the regular part of the Green's function which is physically obvious follows, exactly
as observed in Brezis and Peletier [10], Rey [37], Han [25] for somewhat related
problems, from a general identity (related to translation invariance) due to
Esteban and Lions [18].

It is not really surprising that such concentration phenomena take place in our
problem since equations like (1.1) but formulated on S2 do enjoy similar properties
- see Hong [26], Bahri and Coron [5], Chang and Yang [12,13], Chen and Ding
[14], Han [24]. In some sense, this type of equation is the analogue of the so-called
semilinear equations with the critical Sobolev exponents. For such problems and
related ones, concentration phenomena have been studied by many authors - see
Sacks and Uhlenbeck [39], Lions [28], Struwe [40]. However, one of the
difficulties we encounter here is the dependence of, say, supg(φ) (for β = — 8π) upon
the geometry of Λ, dependence which forces in fact the concentration point to be a
maximum point of the regular part of the Green's function and explains the above
alternative (regular behavior or concentration). Let us also mention at this point
that the regular part of the Green's function really appears in our argument as a
"renormalized" functional deduced from / when β= — 8π.

Let us also mention that there may exist solutions of (1.1) for some β< — 8π or
even for all β in the case of the annulus: there, such solutions are not maxima of/
for β< — 8π. On the other hand, when A is starshaped, Pohozaev's identity [35]
yields the existence of a critical value βc such that no solution of (1.1) can exist if
β^βc (βc= -8π when A is a ball).

Let us finally observe that possible concentrations have been studied for
general solutions of two-dimensional incompressible Euler equations (time-
dependent flows and steady flows) in Di Perna and Majda [15,16]. The punctual
nature of the concentration set in our special case is of course due to the special
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nature of Gibbs measures and exhibits an infinite energy limit while the possible
concentrations in [15,16] have bounded energy.

After this paper was submitted for publication, we were advised by M. Kiesling
that he obtained independently results quite similar to those proven here in a
preprint (submitted to Commun. Pure Appl. Math.).

2. Formulation of the Statistical Mechanics Problem

We consider a system of N identical point vortices in a smooth, bounded,
connected, open domain A of R2. The Hamiltonian of the system is given by α2[7,
where

U(Xl,...,Xlf)=ϊ Σ n*;,*, )+ Σ ?(*;), (2.1)
i φ j ^ l i = l

and where (xί9 ...9xN)eAN are the positions of the point vortices. Furthermore,
α > 0 is the vorticity intensity (the same for all vortices) and V(x, y) is the Green's
function of the Poisson equation in A with Dirichlet boundary conditions. As it is
classical, we have on A x A

V(x,y)= - ̂  Iog\x-y\ + γ(x9y)9 (2.2)

where γ :A x Λ-»R is symmetric and harmonic in each variable. Finally we set

y(x)=$y(x,x) on A. (2.3)

The canonical Gibbs measure associated to the above Hamiltonian is defined
by

μ^idx, ...dxJV)=ZαJ(ΛΓ)-1e-^2^' ..... *»>dXl ...dxN, (2.4)

where

~..dxN (2.5)

is the partition and β is proportional to the inverse temperature. Since we are
interested in the measures (2.4) as invariant measures for the JV-vortex system
given by the Hamiltonian (2.1), we may and we shall consider positive as well as
negative values of the parameter ft. /

The following lemma yields the exact range of temperatures for wnich the
measures (2.4) make sense and the integral in (2.5) converges.

Lemma 2.1. ZΛt~β(N) < + oo if and only if fte ί -- 3—, oo J. Moreover, in this range

of temperature, the following estimate holds:

ZΛ,~β(N)^C(faNκ,\Λ\f, (2.6)

where C is a positive constant, depending only on the products J5α, ΛΓα, and on

Proof. Suppose /?>0. By the positivity of the interaction V9

(2.7)
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Since y(x) diverges logarithmically when x-+dΛ, estimate (2.6) is proven.

For /?<0 we have:

^π
i = l

f 7 7 T—T T r V Λ t » *Jf

Idxi ...dxNll e 2 .

(2.8)

Since V(x,y)^ loglx — vl + c, it follows that the above integral is bounded,
2π

provided that —βot2N<$π. In this case estimate (2.6) follows easily.
On the other hand, we have

N N / I \-j3α 2 /4π\

AE i=l J--
J = l " /

g 2N(N-l)d

te-**2mNe* 2 , (2.9)

where

ε
-, ... (2.10)

and ΣR is the ball of radius R, centered at the origin (that we may always assume to

be in Λ) and jR< - -^ - . Moreover, m= inf y(x) and d>0 is a suitable
2 xeΣR

constant for which V(x,y)^ — ^— log|x — y\ — d.
2n

The integral appearing in (2.9) is bounded from below by:

The above expression does not vanish in the limit ε-»0 unless β> ^— and
this completes the proof of Lemma 2.1. Π

We are interested in the asymptotic behavior of μN>β'a in the limit JV-*oo when

α= — and β=βN with /? fixed. By Lemma 2.1, βe( — 8π, + oo). For fixed j55 the

sequence of Gibbs measures μN'β'a and the partition functions ZΛt~β(N) depend only
on N and will be denoted by μN and Z(N) respectively.

The family of correlation functions {ρ^}^=1 (see [37]) are defined as follows:

n (Ύ v ^ — f //v /7v ii (Ύ v ^ O \ r)\^/ j ^^V ^, . . . ^ A ^ — I W A' j _|_ ι . . . ti ^VjyjU, ^Λ/ -̂  . . . Λ-jy/ \ ̂ " /

and corresponds to the probability density of finding the first j particles in the
positions xί ...Xj. By an easy calculation:

(113)
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where Xj={x^ ...*,.} XN.j={xj+1 ...XN} and

W(Xj\XN.j) = £ Σ V(x,y). (2.14)
xeXj yeXN-j

To understand the asymptotic behavior of ρ? (for fixed j, when ΛΓ->oo) we find
convenient to rewrite the expression (2.13) in the following form:

The limit we are considering is of mean field type. If the empirical distribution of
the vortex system

^.Σ^*) (2.16)

[here δy(dx) denotes the Dirac measure concentrated on the point y] is going to
converge, with large probability (weakly) to a (smooth) vorticity profile ρ, then ρ*}
are going to factorize:

ρ^ρ®j (weakly). (2.17)

From (2.15), ρ must satisfy the following equation:

Ux) = Z-le-βv e*β<* v°\ (2.18)

where

(2.19)

(120)

and ( , •) denotes the usual scalar product.
The following identity is obvious:

Q) = ιe-βvQdXm (2.21)
A

In general, however, correlations can persist in the limit so that

ρ7->fv(dρ)ρ®' (weakly), (2.22)

where v is a measure on the space of probability densities. In this case, which
cannot be excluded unless (2.18) possesses a unique solution, v is expected to be
concentrated on solutions of (2.18).

The above heuristic arguments can be made rigorous.

Theorem 2.1. Let {dρ/} JL i be a weak cluster point (in the sense of the weak
convergence of measures) of the sequence ρ ,̂ i.e. there exists a subsequence Nk for
which

ί dρj(Xj)φ(X} = lim J dXjρ^X^Xj) (2.23)
fc->oo

for all j and for all bounded and continuous φ.
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Then, the measures dρj are absolutely continuous

(2.24)

and the following representation holds:

, (2.25)
k= 1

where v is a Borel probability measure on Lt(A) endowed with the weak topology.
Furthermore, v is concentrated on those solutions ρeL^Λ) of (2.18) minimizing

or maximizing, for β>0 or /?<0 respectively, the free energy functional

f(ρ)=~$ρ\ogρdx+^(ρ,Vρ) (2.26)
P A £

with the constraints ρ ̂  0, J ρdx = 1 .
Λ

Remarks. For /J>0, we know that there exists a unique solution ρ to (2.18)
(obviously minimizing /) so that ρ? converges (not only for subsequences) to ρ®7.
This factorization property is usually called "propagation of chaos."

For — 8π<β<0, uniqueness is not known for general domains (see the
discussion in Sect. 7). However, for the ball we can also prove uniqueness. In this
case, by means of Theorem 2.1, we obtain the same conclusions as for the positive
temperature case namely the convergence of ρ^ to a product state.

For the stream function \p, defined as

-Aιp = ρ, (2.27)

as a consequence of (2.18) we obtain (1.1). We remark that the velocity field
u = ( — d2ψ,dίψ) satisfies the stationary two-dimensional Euler equation.

We shall prove Theorem 2.1 in Sect. 4. We shall follow the strategy of Messer
and Spohn [31] who obtained the same result for a bounded, smooth interaction
potential V. Here, we need extra bounds on the correlation functions which will be
derived in Sect. 3.

3. Estimates on the Correlation Functions

In this section we prove an estimate on the correlation functions ρ^ which will
allow us to prove Theorem 2.1.

Theorem 3.1. For βε( — 8π, -f GO), there exists a constant C (depending only on β
and A) such that

onAj. (3.1)

Proof. Assume first β > 0. By definition

~NU(XJ}

j j Z(N)

where

(3'2)

W(X\Y)= Σ V(x,y). (3.3)
xeX
yeY
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Since V is positive, we have

, (3.4)

where we set, for fe<AΓ:

ew-idx*-*™- (3-5)
We have thus in particular

The denominator of the right-hand side of (3.6) can be estimated from below by:

upon using the Jensen inequality and setting

- 1 (3.8)
V= — sup$dyV(x,y).

\Λ\ A A

In conclusion, we obtain

(3.9)

and estimate (3.1) follows with C given by the right-hand side of (3.9).
For negative β the estimate is a little more involved. To estimate the integral

I = $dYN_je~"W(XjlYN~j)e~"U(YN~j) (3.10)

N N
we use the Holder inequality with p — — and, consequently q = ———. We have,

for a suitable constant C l 9

• v ' ^ mP

J N-j t

(3.11)

Here we have applied once more Holder's inequality. Since δ = ^—^ = — < 2,

<+00. (3.12)
A \\χ—y\

Therefore, the right-hand side of (3.11) is bounded by

~ ~ (3.13)
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Thus, we only have to estimate

~ - \ (3.14)

The above expression can be written as

»- (3.15)

for u > 1 . Applying, once again, Holder's inequality with conjugate exponent u and
w, we bound (3.15) by

(3.16)

The last equality follows by choosing w=j~ί(N — 2j)y, where

(here N is assumed to be large enough). By Lemma 2.1 the expression in
parenthesis is bounded by C^ so that, collecting all the above estimates, we obtain

I^C{ΘN(N-j). (3.17)

Finally, by the positivity of V:

Clje: Λ

(3.18)

By (3.18), (3.17), (3.10), and (3.2) we obtain (3.1). This completes the proof. Π

4. Proof of Theorem 2.1

We denote by {ρj(dXj)}f=ί the correlation measures obtained as weak cluster
points of the sequence of measures {ρ^(Xj)dXj}^=1.

By the Hewitt-Savage theorem, there exists a probability Borel measure v(dρ)
on the space Jίf of all probability measures in Λ, endowed with the weak
topology, for which

j) = J v(dρ) J dρ(Xί) . . . dρ(Xj)f(Xί . . . xj (4.1)

for all j and all bounded measurable functions f:Λj-+J!ί.
By Theorem 3.1, Q3{dX^ is absolutely continuous. Denoting by QJ the densities

we have:

NL^C'. (4.2)

Moreover, denoting by

(4.3)
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we have, for a positive / and p> 1,

Therefore:
lleωW^CII/IL (4.4)

yielding:

ρ(dx) = ρ(x)dx ρeL^Λ) va.a. ρ. (4.5)

Since v is supported on L^ functions, the representation formula (4.1) can be
written as

$ d v ( ρ ) f [ ρ ( x i ) = ρj(x1...xj). (4.6)
i= 1

For any pair v and {ρ^jt i satisfying (4.6) we define the free energy functional

(4.7)
μ

where
1

s(v)= lim τfίOf-ρ logρ (mean entropy), (4.8)
7 ->α> J

e(v)=^dxdyρ2(xy y)V(x9 y) (mean energy). (4.9)

By the subadditivity of the entropy, the limit (4.8) either exists or it is infinity.
Moreover, it is well known that (see for instance [38])

9), (4.10)

where

5(ρ)=fρlogρdx. (4.11)

Note that, in physics, this entropy is usually — s.
We consider also the free energy functional:

(4.12)

We want to prove that

limFJV=/(v), (4.13)

where the above limit is taken on the subsequence for which ρ; is the weak limit of
ρ'j and v is given by (4.6). In fact, by the convexity and subadditivity property of the
entropy:

ij^log/Λ (4.14)
IV
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and thus

ί^logμ*. (4.15)

Moreover, it is easy to get

}ίm^iμN(xN)U(xN)dXN = φ) (4.1 6)

as a consequence of Theorem 3.1. Thus, we deduce

for β>0, (4.17a)

for β<0. (4.1 7b)

On the other hand μN minimizes for β > 0 (maximizes for j8<0) the free energy so
that

~ N N ~ N U N i f β>0 (4.18)

and the reverse inequality holds for β<0. Thus, by (4.17) and (4.18) we finally
obtain (4. 13).

We finally prove that

/(v)=min/(v) j8>0 (4.19a)
\&M\

= max/(v) β<0. (4.19b)
veJί\

Consider β>0. Then:

FN^ ~^$QNlogρN + j^$ρNU(XN), (4.20)

where ρ^ and v are related by (4.6). Thus we find

(4.21)

and the reverse inequality holds for β < 0. Π

In fact, the proof above together with the remark following Theorem 2.1 yields
the following.

Corollary 4.1. // β > 0 or if β < 0 and we assume that there exists a unique ρ e L^(Λ]
which maximizes /(ρ) over all ρeL^Λ), §ρdx=\, ρ^O, then ρ^ and ρ^

A
j

converge a.e. and in L^Λ*) respectively to ρ7 = Π ρ(xf) and ρ^logρ^. Π

Indeed, we then have ρ^ — f] ρ(xi) and the above proof yields the convergence of
ΐ = 1

J ρ^logρ^ to J ρjlogρ^ . The strict convexity of the entropy allows to conclude.
A3 ΛJ

Another proof can be made using (2.15) and some heuristic arguments which
can be made rigorous as in the proof of Theorem 2.1. This yields the pointwise
convergence while the Lί convergence follows from the dominated convergence
theorem and Theorem 3.1.
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5. Solutions of the Mean Field Equation with Radial Symmetry

If we consider the case when

A = {x eR2/|;x| < 1} or A = {x eR2/0 < |x| < 1},

where α e(0,1), that is the case of a connected domain with rotational symmetry
(up to a simple dilation), we may look for radial solutions of Eq. (1.1). In addition,
we know from the general results of Gidas, Ni, and Nirenberg [21], that if
A = {x e R2/|x| < 1} they are the only solutions such that, say, ρ e L00(ί2) [or in fact

]. Such radial solutions that we denote by ψ(r) satisfy

= -ie-^, (5.1)

which after using the classical change of variable ί = logr becomes

TJ O'jr—l^H /c 1\
~T^Γ •" = P^ e ί P ~)at

where we set

H(t)=-βψ(et) + 2t. (5.3)

Equation (5.2) corresponds to an autonomous, one dimensional Hamiltonian
system which can be solved explicitly. Setting y = eH, we deduce

where

E=^H2-leH (5.5)

is the constant energy and A is a constant to be determined by the normalization
and boundary conditions. In the case when A is the unit disk (that we denote by A0)
we have ψ(l) = 0 and t//(l) can be determined by integrating the equation over A0.
We then find a solution for β > — 8π determined by the choices

Z = π(ί-A), E = 2. (5.6)

The vorticity distribution ρ takes the form

, ί-A

(1-Ar2) 2. (5.7)

We therefore observe that there are solutions of the mean field equation (1.1) if and
only if β> — 8π and that when β-^ — Sπ this solution concentrates at 0: indeed,
ρ-><50 weakly in the sense of measures.

In the case when A = Aa = {xEJR2/a<\x\<l} [and αe(0, 1)], we obtain as
before

(5.8)
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and we have to determine E, A, Z by means of the normalization and the boundary
conditions: ψ(ά) = ψ(l) = Q. In this way, we obtain for all βeJR. a unique radial
solution. Notice that in an annulus there is not a particular point at which radial
solutions can concentrate as /?-> —8π.

Let us also notice that for such an annulus (or for similar geometries with one or
many "holes"), one may impose different boundary conditions like tp(l) = 0,
ψ(a) = α. The analysis performed in the preceding sections easily adapts to that
situation yielding similar results. Now, for a given α (which corresponds physically
to a circulation assigned a priori), one finds in a similar way a unique radial
solution for all β e R. We finally observe that in order to recover the solution in the
disk from the solution in the annulus in the limit α->0, we need to prescribe a large
value of α when β is close to — 8π.

6. A Mean Field Equation in R2

Consider a system of N vortices, with intensity α, in all R2. The equation of motion
is

-xjl, i = l . . . Λ Γ , (6.1)

where VL = (<92, — d^). It is well known that (6.1) admits the following first integrals:

α2 N

H=— Σ togl*/-*/! (energy), (6.2)
4π ί t j /= i

i= 1

(center of vorticity) , (6.3)

N

I = α Σ xf (moment of inertia) (6.4)
i = l

connected with the time, translation and rotation invariance of the Hamiltonian
(6.2) respectively. Therefore, the following measure

-*a-ί'-'' u (6.5)

is invariant with respect to the evolution given by (6.1), for I>0, βeR, η eR2. For
positive I, / plays the role of an external field confining the system around the
origin. Thus, all the considerations of Sects. 2 and 3 can be extended to this case
with minor modifications. In particular the Mean Field equation takes the form

1 ^in the scaling a= —, /I—βN, λ = λN
N

_Alp=^e-βv-λ\χ\2 (6>6)

associated, as above to the variational principles relative to the functionals

1 1
(6.7)
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Here we have eliminated the linear term in η by means of a suitable change of
coordinates.

Following the previous analysis we can prove the following theorem.

Theorem 6.1. Let βe( — 8π, oo) and let λ>0. Then, there is a unique ρeL^fJR2)
which maximizes for β<0 and minimizes for β>0 the functional f given
by (6.7). And there is a solution - determined up to a constant - of Eq. (6.6) with

ρ=-πe~βψ~λ^2 such that J |Fι/;|2<oo. Moreover, ρ and ψ are radially sym-

metric. Finally, the correlation functions ρ^ associated to the sequence of mea-

sures (6.5) converge pointwise and in L1? as 7V->oo, to f] ρ(xt).
i = l

The arguments of Sect. 3 and 4 apply with minor modifications so that we have
the convergence of the correlation functions and the existence of a limiting
solution. We now apply the methods of Sect. 5 to find radial symmetric solutions
for j£?e(—8π, +00). Adding if necessary a constant to ψ, we may assume that Z = 1
and we have to find a unique radial ψ solving (6.6). We then set H(t)= —βψ(r)
— λe2t + 2t with ί = logr and we obtain

H = βeH-4λe2t. (6.8)

Unfortunately, since this system is not autonomous, we cannot give an explicit
solution of (6.8). However, we can prove that there is only one trajectory for which
Z = l and

lim #(ί) = 2. (6.9)
f-> - oo

This condition follows from the fact that

limrιp'(r) = Q (6.10)
r->0

due to the regularity of ψ (recall that ρ e L^).
More precisely, we are interested in solutions of (6.8) behaving like 2ί + χ as t

goes to — oo. We remark that such solutions depend monotonically on χ. Indeed
by a change of the time scale: 2ί->2ί — χ, we see that increasing χ, we decrease the
force opposing the motion. Since

Z = 2π+j°eHdt (6.11)
— oo

we also realize that Z is increasing with H, so that to find χ such that the
corresponding Z = 1, it is enough to observe that Z->0 as φ-> — oo and Z-»C as
χ-> + oo and C > 1 if β > — 8π. The last statement follows by a direct computation.
We conclude the proof by showing the uniqueness of maximizing solutions. This
follows by a standard argument based on Schwarz symmetrization: given a non-
symmetric maximizer solution ψ, its symmetric rearrangement leaves Z invariant
while the energy decreases. Thus, a maximizing solution must be symmetric. Π

It remains to investigate the problem of the behavior of the solutions when
/?->8π+. As in the case of the disk the solutions converge weakly in the sense of
measures to the Dirac measure supported at the origin. We shall give later on the
proof of this statement.
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7. Some Properties of Solutions of the Mean Field Equation

We consider in this section solutions ψ e (H^AjnL^A)) of the mean field equation

in A, ψ = Q on dA. (7.1)

We will only consider the case when β < 0 in this section since the case β > 0 is
completely solved in [22]. Let us first remark that ψ is in fact smooth [C°°(A) if A is
smooth]: this follows easily from elliptic regularity. Let us also recall that if
ρεL^A), ρ^O, and J ρ = l and if ψ solves

Λ

— Aψ = ρinA, ιp = OondA (7.2)

then ψ and V\p are relatively compact in Lp(A) for all p<oo, p<2 respectively.
Furthermore, if ρ logρ e L±(A\ then ψ ε #o(Λ)nC°(Λ) (and is thus smooth). Also, if
ipεH^A) solves (7.1) then (see [31]) e^εL^A) for all μ<oo, therefore in
particular ρ e Lq(A) for all q < oo and ψ ε C°(A).

We begin this section with a few observations on general solutions of (7.1). First
of all, if A is starshaped, Pohozaev's identity ([34]) yields

1 - δψ do, (7.3)

where v is the unit outer normal to dA, and we assume that A is starshaped with
respect to 0 (translating the origin if necessary). Let us recall that (7.3) follows from
the multiplication of (7.1) by x - Vip and integrations by parts. We will say that Λ is
strictly starshaped if there exists a constant α0 > 0 such that

(x v ) f j dσYl ^α0 on dΛ . (7.4)

\
Observe that if A is a ball, we may take α0= — . 1 Then, (7.3) and (7.4) imply

V 2π/

\β\ 2 \yJ

Λ dv J 2

since ί — —dσ=\—Aw = \. And we have shown the
dΛ dv A

Proposition 7.1. Let us assume that A is strictly starshaped. Then, there does not exist
4

a solution o f ( 7 Λ ) i f β ^ -- .
α0

We recover in particular the fact shown in Sect. 5 that if A is a ball there does
not exist a solution of (7.1) if β^ — 8π. On the other hand, for domains which are
not starshaped, solutions may exist for all β < 0 as we saw in Sect. 5 when A is an
annulus. It might be worth, at this stage, going back to the example of the annulus
to show how radial solutions may be built for all β < 0 by a variational argument.

Proposition 7.2. Letβe(- 8π, 0) and A = {x e R2/« < | x\ < 1 }, where a ε (0, 1). Then,
there exists a unique radial solution ψ of (7.1) which is the unique maximίzer of

maxί- Ilogf J e-*Λ - \ f \Vψ\2^eH^Λ\ ψ is radial! (7.3)
( P U
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and ρ = — Aψ is the unique maxίmizer of

max \-ί f ρ(x)ρ(y)V(x, y)+-j$ρ logρ/ρ 6 L^(Λ\ ρ ̂ 0,
(̂  Λ*Λ P Λ

Jρ = l, ρ is radial >. (7.4)
Λ )

We only have to explain why (7.3) for example admits a maximum in view of the
analysis of radial solutions performed in Sect. 5. This follows easily from the fact
that, if Ψ£HQ(Λ) is radial, we have for all re(0,1),

ίψ'ds
/2

α~1/2

(7.5)

By inequality (7.5) it follows that - - log J e~βv - - J | V\p\2 is bounded in #J(Λ)
P Λ 2 Λ

and that the maximum is actually achieved since, for a maximizing sequence ψn9

the bound ||FφJ|L2< const holds.
It is possible to give other examples of domains with holes for which solutions

exist for some /?<— 8π (domains with symmetries for instance): it might be
possible to have some results a la Bahri-Coron [5],

Let us come back to the solutions in R2 discussed in the previous section. An
application of the Pohozaev identity applied to the domain A(R) = {x/\x\<R}
yields:

J e
Λ(R)

, _
β β j e-β*-*** '

A(R)

Taking the limit R-> oo, we find the inequality β > — 8π. Moreover, for β = — 8π we
get J ρ(x)x2dx = 0 which ensures the concentration of the solution.

We now turn to the class of solutions we are really interested in namely those
which satisfy a variational principle involving the functionals

g(ψ)= — — logί^e~βψ\ — - J |Fιp|2 on HQ(A) (7.7)

or

2 Λ*Λ βΛ β

where ^= ίρeL^yi), ρ^O, f ρ = ll, ,f = —- f.
\ A } A \Λ\ A

We first recall an inequality due to Moser [32] (see also [33,26]): there exists a
positive constant C such that for all ψ e H$(Λ\

1 1
(7.9)



518 E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti

To simplify notations, we will introduce β = — β and when needed we will recall
the dependence of g and / upon β by writing g-β or f-β.

The following result is essentially a simple consequence of (7.9).

Proposition 7.3. 1) We have for all β> 0, 1-β(Λ) = supg^φ) < + oo if and only if β^ 8π

I-β(A) = supf(ρ) for all β>0, (7.10)
ρe&

I-β(Λ) is a continuous increasing function of β on [0, 8π] , (7.11)

for all β>0, t>0, (7.12)

where AQ = {x eR2/M < 1 }•
2) If βe (0, 8π), every maximizing sequence of I-β(A) converges, up to the extraction
of a subsequence, to a maximizer. In particular, there exists a maximizer (φ9 ρ) of
Iβ(Λ)ίfβε(0,8π).
3) There does not exist a maximizer of I8π(A0).

Remarks. Or course, the convergence in 2) depends on which (equivalent)
formulation of I-β(Λ] we choose: if we take the maximization in ψ as in (7.9), the
convergence is in HQ(A) while if we maximize in ρ as in (7.10) the convergence is the
following:

n L, ,

I V ( x 9 y ) ρ n ( y ) d y - S V ( x 9 y ) ρ ( y ) d y in f f j .

Let us observe that, by convexity, ρlogρ-h 1 ̂ ρ^O. Π

We now prove Proposition 7.3: the claim (7.11) follows easily from Jensen's
inequality and (7.9) - the continuity is a straightforward exercise using the bounds
on ψ in HQ(Λ). The claim (7.12) follows from scaling arguments and Schwarz
symmetrization which decreases the Dirichlet integral. Or course, (7.9) shows that
Iβ(A)^I8π(A)^I8π(AQ)< oo if β^ 8π. But it also shows that if β< 8π, maximizing
sequences of I-β(A) are bounded say in HQ(Λ), bounds which imply immediately
part 2) of Proposition 7.3. Part 3) follows from our analysis in Sect. 5 since we
showed there that (7.1) does not admit a solution if β= — 8π and A = Λ0. In fact,
this also shows that I-β(A0)=+co if β>8π since otherwise we would find a
maximum for I8π(Λ0).

Next, if β> 8π and if we take a small enough ball Λ' included in A we observe
that if ψeH^(Λ') then

(7.14)

where we recall the dependence of g upon A by writing gΛ and where we extend ψ
by 0 into a function in HQ(A). And (7.17) shows

log (7.18)

and we conclude since Iβ(A') = Iβ(A0)= +00 if β>8π.
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There only remains to show (7.10) which follows from the simple observation
that, if ψ solves (7.1) and ρ = — Aψ, then

/(<?) = g(φ) Π (7.19)

We now want to investigate the maximization for JJ= 8π. The main result in
that direction is the following theorem. Let us mention before that, when we
consider a maximizing sequence ρn for I%π(Λ\ we mean that ρn is a maximizing
sequence for the problem defined in (7.10). Recall also that we denote by y(x, y) the
regular part of the Green's function V(x9y) and by y(x)=iy(x,x) and that

Theorem 7.1. 1) The following inequality holds

/8π(Λ)^/8πμ0)+maxy(x)+ j j - l o g . (7.20)
xeΛ oπ \Λ\

In addition, every maximizing sequence ρn of /8π(Λ) remains bounded that is
J ρπlogρw + l remains bounded if and only if we have
A

/8π(Λ)>/8π(Λ0)+maxr(x)+ ̂ og^ . (7.21)
xeΛ oπ \Λ\

In particular, if (7.21) holds, there exists a maximum of I%π(Λ).

2) // ISπ(Λ) = I8π(Λ0)+ maxy(;c)+— log— £-, there exists an unbounded maxi-
xeΛ oπ \Λ\

mizing sequence ρn. And any such maximizing sequence, up to the extraction of
a subsequence, satisfies the following properties: denoting by ψn the solution of

-Aψn = ρninA, ιpne H*(A) , (7.22)

then Qn, |PφJ2||FVJ£2

1» ί» logoff Qn^BQn}'1 converge weakly, in the sense of
\Λ /

measures, to δxo where x0eA is a maximum point of y. Furthermore, ρn = ρn(x + x0)
(extended by 0 to DA0) is a maximizing sequence of I8π(DA0), where D>0 is such
that

Remarks. 1. Of course, if Λ = A0, max y(x) = y(0) = 0 and since /8π(Λ0) is not
xeΛo

achieved, we know that any maximizing sequence concentrates (in the above
manner) at 0.
2. We shall give in the sequel an example of a domain A satisfying (7.21). However,
we do not know an example of a domain A for which the equality holds (except of
course in the case when A = A0).
3. A particular exemple of a maximizing sequence of ISπ(A) is obtained by
maximizing I-β(A) for β< 8π and letting β go to 8π.
4. It is possible to precise the behavior of some maximizing sequences and since
this analysis does not seem to help elucidating the alternative between maximi-
zation and concentration, we will not continue this analysis here.
5. The set of maxima of y may contain several points, even for simply connected
domains. It may be a curve as in the case of the annulus. However it is known that if
A is convex and different from an infinite strip, y has only one critical point (see
[23, 24]). One could conjecture that the concentration does happen in this case.
We shall show later on that this is not true.
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6. There is a physical reason why, if concentration occurs, it must be localized at a
critical point of y. Actually, y is the Hamiltonian for the motion of a single point
vortex in Λ so that the critical points of y are the equilibria of such a motion. Since a
solution Q of the mean field equation is the vorticity profile of a stationary solution
of the Euler equation, whenever it degenerates in a ^-function, its support "has" to
be an equilibrium for the point vortex motion.

Proof of Theorem 7.1. The proof is rather long so that we split it in the following
steps.

Step 1. Proof of (7.20) and the "only if part" of the claim 1).

Step 2. We take (ρn,ψn\ the sequence of maxima of /8 ι_(Λ) as a maximizing
n

sequence for ISπ(Λ) and prove that if it is unbounded, it must satisfy the
behavior of claim 2). In this case (7.20) becomes an identity.

Step 3. The same claim as the previous step can be proved for an arbitrary
unbounded sequence together with the proof of claim 2) and the "if part of
claim 1).

Proof of Step 1. Choose a maximum point x0 of y and δ>0 so that

{x/\x-x0\<δ}cA.

Then, consider the explicit maximizing sequence ρn for /8π(Λ0) built in Sect. 5 by
solving ISn_ι(Λ0) and set

*"" ρΠW=^Π(^L). (7.23)

One then easily checks that

7ΛeJ =£i0(&) +^-iog^ + ̂ f ί Qjίχ)Qjίy)γ(χ,y)
Sπ \Λ\ 2 AXΛ

-^ ί Uχ,y)δJίχ)Qj(y), (7.24)
£ Λ0xΛo

where y0 is the regular part of the Green function in Λ0.
Letting n go to + oo, we find

Iaπ(Λ)^I8π(Λ0)+ ^log^ +y(jc0), (7-25)

since ρn -̂  δxo and y0(0,0) = 0. If the equality in (7.25) holds we have just
constructed an unbounded maximizing sequence. This proves Step 1.

Proof of Step 2. Let (φn, ρn) be maximizing solution of the mean field equation for

βn= — 8π+-. By virtue of Proposition 7.3, this is a maximizing sequence for

I8π(A). Suppose the sequence is unbounded and define the following probability
measures:

\\rψn\\l2'
 2~ \\rΨn\\L
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The above measures converge weakly (up to the extraction of subsequence), in the
sense of measures, to some probability measures denoted by μl9 μ2, μ3, μ4 on A. We
now prove that μ1 = μ2 = μ3 = μ4 = δxo, x0eΛ.

We first show that μί = μ2. Indeed, multiplying — Δ\pn = ρn by ιpnφ9 φ e C^(Λ) we
find:

Φ + f PW VψΨn = ί QnΨnΨ (7-27)

Since Jρπ = 1, φn is bounded in Lp for all p< oo and in particular in L2. Dividing
(7.27) by ||PφJi2 and letting w->oo we obtain

!φdμι=!φdμ2 (7.28)

provided that HPtpJi^00- This follows easily by the fact that the sequence is
unbounded.

We now prove that μ^ =1(̂ 3 + ̂ 4). By the mean field equation and identity
(7.27) we have:

- jv
8π--

»/

(7.29)

On the other hand, by the variational principles, we have:

Λ *. J_j(ρr |logρΠ+l)

-1, 8^ - -l (7-30)

Thus, dividing by ||Pφn||i2 the identity (7.29), we obtain

). (7.31)

Finally, we want to prove that μ1=μ3 = μ4 and that this measure reduces to a
Dirac mass. Consider φeCί(A) and assume φ^O, j φdμ3>0. Then, for n large

_

enough, J φρn > 0 therefore /^ρnφ Q ρφ'j " Λ^ C0 = /8π(>4), that i

^J J Qjίx)φ(x)Qj(y)φ(y)V(x9y)dxdy(ίQHφ]-2

£ ΛXΛ \Λ

(7.32)
nΨ \Λ

Λ

We then observe that

ί ί Qn(χ)φ(χ)Qn(y)φ(y)V(χ,y)
Λ*Λ

=ίQnψnφ
2+$ ί Qn(χ)Qn
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and since φ ε Cl(Ά\ the second term in the right-hand side is bounded. Therefore,
dividing (7.35) by J \V\pn\

2 = J Qnψn

 and using the above information, we deduce
Λ A

J φ2dμ, = j φ2dμ2 ̂  (\ φdμ3] . (\ φdμλ . (7.33)
A A \A ) \A )

Replacing φ by φ + δ with δ > 0 and letting δ go to 0, we see that this inequality
holds in fact for all φ g O, φ ε C^(A) and by density for all φ ̂ 0, φ ε C°(Λ). Since

μί = — ̂ — — -, this implies in particular

Sφ2dμι£($φdμλ2

9 for all φ^O,φeC 0 (Λ), (7.34)
κ U /

and it is well-known that this implies μι = δxo for some x0εA. We then easily
conclude that μγ = μ2 = μ$ = μ4 = δXQ.

Notice that we have only shown that the "concentration" point x0 belongs to Λ.
We finally prove that x0 maximizes y so that, in particular, x0 εA. To this end we
observe that

- - J J Qn(x)Qn(y)yo(x ~x<»y- yQ)dxdy , (7.35)
^ (XQ + DΛ0) x (XQ + DΛ0)

where y0 is the regular part of the Green's function in DΛ0. In particular,

+ ί ί ρn(χ)ρn(y)y(χ,^x^ + ̂ , (7-36)
^ κ *Λ

where ^n>0, in->0. Since ρn -^ δxo, this shows that x0^A and we deduce from

(7.36) letting n go to + oo,

I8π(Λ) Z I8π(Λ0) + ±- log ̂  + T(x0) . (7.37)

This inequality combined with (7.20) concludes the proof of Theorem 7.1.

Proof of Step 3. Consider an unbounded maximizing sequence {ρn}. We want to
modify it into another maximizing sequence close to the previous one which is now
an approximate solution to the mean field equation.

Let ψn be a solution of the Poisson equation

-Δψn = ρnmΛ, ψneHl

Q(A). (7.38)

We argue as in Lions [29] using I. Ekeland's perturbed optimization principle
[17] in the space Lί(A)nH~1(A\ and we find a new maximizing sequence ρn such

that ρn-ρn-Qm L^nH'^A) and

ψn-ogρn = εn + θn a .e . inyί , (7.39)
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where 0MeR, ψn solves (7.39) with ρn replaced by ρn and

β» = fiί + <£, fiί->0 in LJΛ), ε2^0 in H&Λ). (7.40)

Observe also that multiplying (7.39) by ρn and using the fact that ρn is a maximizing
sequence of I8π(Λ) we obtain

L2, (7.41)

where δn — >0 and C is some positive constant not depending on n.

Next, since ρn — ρn — >0 in H~ί(A), we deduce first that

(7.42)

and thus J ρnlogρw — > oo because ρn is maximizing. Finally,
A n

and (J I V\pn\
 2) (J | FtpJ 2) ~ * -> 1 . Therefore, using once more the fact that ρn and ρn are

both maximizing we also deduce that / J ρnlogρΛ~ 1 /J ρπlogρΛ — > 1.
Vi / v* / »

All the above information allows us to extend Step 2 to a general unbounded
maximizing sequence. Summarizing, we have proved that if the equality sign

occurs in (7.20) then there is an unbounded maximizing sequence (Step 1). On the
other hand any maximizing unbounded sequence leads to the equality in (7.20) and
has the behavior described in claim 2) (Step 3). The last statement in claim 2)
follows easily by the previous considerations. Π

As we mentioned above, although we are not able to solve the alternative even
for domains close to a disk, we can exhibit an example of convex domains in which
the concentration does not occur. Consider for example a rectangle with sides α
and b. By virtue of Theorem 7.1. If the concentration takes place, we would have

- J - l o g . (7.43)

Taking b sufficiently large the above expression can be made negative, since y(x0)
stays bounded from above. On the other hand g(ψ = 0) = 0 and this contradicts the
concentration. It has to be noticed that on the basis of Proposition 7.1, if there exist
solutions of the mean field equation (necessarily not maximizing by Proposi-
tion 7.3) they must disappear for sufficiently large negative β. We can give many
more examples of "non-concentration" phenomena for instance for thin annuli.

We conclude the section by discussing the stability properties of the solutions of
the mean field equation thought of as stationary solutions of the 2-D Euler
equation. Following Arnold [3,4], we consider the ratio:

If jβ>0, by virtue of the first Arnold's Theorem the solution of the mean field
equation is stable with respect to the norm \ J \Vψ\2 + \Aφ\2. If β<0 we can apply
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the second Arnold's theorem ensuring the stability if

I f l l '-*'fM,n |2 (? 45)

xeΛ \p\ φ }\Δφ\

which is certainly fulfilled if \β\ is small.
We do not know whether the solutions for negative β close to — 8π are unstable.

However, for the particular cases of the symmetric solutions studied in Sect. 5, we
can use the results of Marchioro and Pulvirenti [30] in order to prove the stability
(in the norm $\Aψ\) for all βe( — 8π, +00).

Note added in proof. After final submission of the paper, the following reference was discovered
which is also relevant to our subject: Lundgren, T. S., Pointing, Y. B.: J. Stat. Phys. 17, 323-355
(1977)
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