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Abstract. We show the existence of a phase separation at low temperatures in a
one-dimensional one-component classical gas in the canonical ensemble with
interaction hard core —1/r*, 1<a<2. This implies that for sufficiently low
temperatures there are values of the chemical potential at which the pressure is
not differentiable as a function of the chemical potential.

0. Introduction

Most of the results on phase transitions in continuous models are for phase
separation in mixtures and, to the author’s knowledge, there are no results on the
existence of a phase transition in a one-component classical continuous gas, see
however Israel [1]. Extending ideas developed in Johansson [2] we will prove that
a one-dimensional continuous gas in the canonical ensemble with attractive
pair-interaction 1/r*, 1 <a <2, and a hard core has a phase transition at sufficiently
low temperatures. ’

In the proof we rewrite the partition function for the continuous model as an
integral of partition functions for discrete models. These discrete models are
similar to a one-dimensional lattice gas in the canonical ensemble.

In the first section we define the model and state our results. The second section
contains the representation of the continuous model as an integral of discrete
models, the definition of blocks, partitions, and the rearrangement procedure and
the main steps in the energy-entropy argument. In Sect. 3 and 4 we prove the basic
entropy and energy estimates.

Many arguments in this paper are similar to the corresponding arguments in
Johansson [2], which we will refer to as [I].
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1. Preliminaries and Results

Consider N particles at positions x,,...,xy in Q=[0,L], where LeZ*. The
particles interact via the potential

+o0 for O<r<1
V()=
") {—l/r“ for r=1,
where « > 1. Without loss of generality we have put the hard-core radius equal to 1.

As boundary conditions we let (L, o0) be empty and we put fixed particles at
x,=—(k+1), k=0,1,... in (—00,0). The total interaction energy is then

N N

Hx)=3Y ¥ Vix—x),

i=1 j=—o0,j*i
where x=(x, ..., xy) € Q". Since H(x) is symmetric with respect to permutations of
X1, ..., Xy W€ can restrict our attention to ordered configurations. Let
X={xe@"; x;>0, xy<L, X1 —x,>1,k=1,..,N—1}
and define for ACX,
Z(A)=£ e PEOdx .. dxy.

The configurational canonical probability measure for the ordered configurations
is

P(A)=Z(4)/Z(X), ACX. (1.1)

The density, d(z,,7,)(x), of the configuration x in the interval [[t,L], [t,L]+1),
0=, <1,<1,is the number of particles in x in this interval divided by the length
of the interval. Here [ -] denotes integer part. Let the asymptotic average density o,
0=<g<1, be given and write Q—R* for the thermodynamic limit N, L—co,
N/L—g. We can now define what it means for the gas to have a uniform/non-
uniform density in the thermodynamic limit exactly as in [I].

For a given small 6 >0 and given ¢ >4 we put

di=(1-0)""(¢—9), d,=(1/2-9)""e. 1.2)
The main theorem of this paper is

Theorem 1.3. Assume that 1 <a <2 and 0<g@<1/2. There exist positive constants
K, &, B, depending only on o and g, such that if > B, and 6 =K exp(—E&p), then for
each ¢>0,

lim P{xeX; d(t,,1,)(x)=1/2—25} =1

Q-R*
for any fixed 1,,7,, 051, <1,<d,;—¢ and
lim P{xeX;d(t,,7,)(x)<26}=1

Q-R*
for any fixed t,,7,, dy+e<1,<7,Z1.

The constants in the theorem are such that §<1/16 and 0<d, <d, <1 when
f=PBo. This means that we have a non-uniform density in the thermodynamic
limit. By an argument analogous to the corresponding one in [I] this implies
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Corollary 1.4. Let 1 <a<2. Then if B= B, there is a value of the chemical potential
u for which the pressure p(u, B) is not differentiable as a function of p.

2. Proof of the Main Theorem
2.1. The Discrete Model

Let A={0,...,L—1} and let K denote the set of all ne {0, 1}? such that n,=1 if
k<—1,nm=0if k=L and

L-1
Z ni=N.
i=0

Givenne K we define p(n)e A¥ byn,,,,=1,0=p,(n)<... <py(m) <L—1. For every
xe X wedefinen=n(x)e Kby n,,;,=1,k=1,...,N,n;=1if i< —1 and all other n;’s
are =0. We also define s=3s(x) [0, 1) by Seg =Xk —[%], k=1,...,N, and 5;,=0
otherwise. Given n and s, x is uniquely determined since

xk=pk(n)+spk(n)a k=1,...,N,

and consequently the map F:X—K x[0,1)? defined by F(x)=(n(x),s(x)) is
injective. Let

T={te[0,1]% t,<...<ty}

and f(t)=(t,1) ---»tsv) for o €Sy, the permutation group on {1,...,N}.

Note that for each x € X there are unique t =t(x) € T and o =0(x) € Sy such that
X, —[X ] =ts4 k=1,...,N. Given a subset ACX and a te T we write

AD)={xeA; tx)=t}
and
Q(t, A)=F(A@)SK x [0,1)?.
If F(x)=(n,s) then
1
H(x)=H(n,5)=—5 Bl

2 keAX,:leZ |k—1+s,—s,]*
k+1

Define
Z(_t, A) — Z e BH®@,9)
(,5)€Q(t, A)

This defines our discrete model for a given t. Q(t, X) is always non-empty since p(n)
+te A(t) for any te T and any ne K. Z(t, X) is the partition function for our
discrete model. The next lemma says that our continuous model is an integral over
these discrete models.

Lemma 2.1. For each ACX,
Z(A)=[ Z(t, A)d"t.
T
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Proof. For me K we let
J(m)={x—p(m); n(x)=m and xe 4}.

Thgq J(m).+ p(n_1), me K are disjoint with union A. The sets f,(T), 0 € Sy are also
disjoint with union [0, 1]" apart from a set of measure zero. Put I(m, 6)=f,” }(J(m)
Nf(T)) a subset of T. Then

.“e—ﬁH(x)de= Z Z e BH+pm) N,
A meK geSn J(m)n fo(T) (2 1)
=[ ¥ Y Ay aftle PHUOpmIgN )
T meK oeSn
For a given te T we define G: A(t)— K x Sy by x—(n(x), 6(x)). G is injective since
x=p(n)+£,(t). Now

G(A(t) = {(m, 0); pm)+f,(t) € A}
={(m,0); teI(m,0)}.

Thus the integrand in (2.1) can be written as

-_ H -—
e " PH(p(m) + fo(0) — Z e PHGE) — Z(L A). O
(m,0)eG(A®) xeA()

2.2. Definition of Blocks and Partitions

We now fix t e T and take Q = Q(t, X) as our configuration space. Let0Sa<a' <L
be two integers and (n,s)€ Q a configuration. Then

A = <aa al> = {(na’ na+ 15 22 na’— 1): (Saa sa+ 15 ¢+ sa’— 1)}

is called a block in (n, s). A is an o-block if n,=1, n,._,=1, and n,._,; =0, and an
e-block if n; =n,._, =0. We also define { — c0,a) and {a, c0) in the obvious way.
They are always an o-respectively an e-block. Two o-(e-)blocks A=<a,a’) and
B={d’,a"”) can be joined to a new o-(e-)block AB={a,a").

A set of integers y={ay, ...,q,},0=a, <...<a, <L defines a partition of (n, 5)
into blocks {a;,a; , 1>, k=0, ...,r, where a, = — oo and g, , ; = 0. We will say that
{ay, @ 41 is a block in (n,s,7). Our partitions will depend only on n and not on s
and we will write y=1y(n) to indicate this dependence.

For x, y € Z and (u, s) € Q we define N(x, y) (n) asin [1], (1.5). Fixa f = B, and let
be as in Theorem 1.3. The constants K, &, and B, will be defined in Sect. 2.4.

Definition 2.2. Let y be a partition. We will say that (n, s, y) has the density property
if the blocks in (n, 5, 7) alternate between o- and e-blocks and for each o-(e-)block
A=<{a,d’) in (n,s,7)
(i) N(a,x)(@)=(1/2—06)(x—a—1) (£5(x—a)).
() N(x,d —1)(n)=(1/2—-08) (@ —x—1) (2@ —1—x)if asx<d.

We will now define a partition y,(n) for every configuration (n, s) € @, : = Q(t, X).
Put

uk=2k—1’ vk=§4k_1’

k=1,2,.... Define

YO ={ieZ; (n;-5,n;-1,n)=(1,0,0) or =(0,0,1)}.
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The blocks in (g, 5, y®(n)) will alternate between o- and e-blocks. A 1 followed by a
double 0, (1, 0, 0), means going from an o- to an e-block and at the next 1,(0,0,1),a
new o-block starts. In the same way as in [I] we successively define y®(n),
k=1,2,.... We let

1@ =y"(n), 22)

where
ky=[wlogN] (2.3)

and v, w are constants depending only on a. They are given by (3.7) and (3.16)
respectively.

2.3. The Rearrangement Procedure

Let (n,s) be a conﬁguration and y={ay, ...,a,,_{} a partition into 2r blocks such
that the density property is satisfied. The operation S, ;. (n,s,7,0)= (n’ s,7,0"
defined by letting block number k change place with block number k + 1 is defined
exactly as in [I]. Recall that J is a set whose elements are old partition points

removed during the rearrangement procedure.
Lemma 2.3. If (n,5)€ Q(t, X), then Sy ;1 1(n,5)€ Q(t, X), te T.

Proof. From the definition of Q(t, X) it follows that (n,s)e Q(t, X) if and only if
Spr) = Loty K=1,..., N, for some g €Sy, all other s;=0, and

X= F~ 1(!’3 §) = (pk(!.l) + Spk(n))kN= 1€ X.

Recall that x € X if x satisfies the hard-core condition x;  ; —x,>1,k=1,...,N—1,
and x; >0, xy < L. Write (1, 5")= S, 1+ 1(1, s)andx F"(n s'). Since we get s’ from
sbya permutatlon of the elements of s it is clear that sl,k(,J y=toup k=1,...,N, for
some ¢’ € Sy. If <a,_,a,), k=1,...,2r, are the blocks in (n,s,y), then from the
definition of 0- and e-blocks we have thatn, _;=0,k=1,...,2r—1 and hence also
S4,.—1=0. Thus the hard-core conditions place no restriction on the order of the
blocks {a,_;,a;). Consequently x’ also satisfies the hard core conditions and

#,8)eQt, X). O

Write Ay =<{az4-1) 21> By=<{a 1,0, k=1,...,r,s0 that 4,,..., 4, are
o-blocks and By, ..., B, are e-blocks. 1 denotes a constant, depending only on a,
which will be specified in Sect. 4. We now turn to the definition of the elementary
rearrangement operation S. Assume first that an o-block 4, is the shortest block. If
one of its neighbouring e-blocks has length = A times the length of the other, we let
A, change place with the shortest of its neighbours. Otherwise we let 4, change
place with that neighbouring block which gives the lowest energy for the resulting
configuration. If an e-block, B, is shortest we take the shortest of its neighbouring
o-blocks and apply the procedure just described to this o-block.

More formally we consider the shortest block among A4,, By, ..., 4,, B, or the
leftmost if it is not unique.

(a) Assume that A4, is the shortest block:
(i) if |Bil 2 AIBy— 4|, then S=S5,; 5 31,
(i) if [By— 1|2 AIByl, then S=S8p,_; 2
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(iii) if l_llBk|<|Bk_1|</1|Bk|, then S=8-2,2k-1 in case
H(Szk—z,zk—1(Zl,§))§H(Szk—1,2k(Z'a§))

and S=385,,_,, 4 otherwise.
(b) Assume that B;is the shortest block and |4/ <|A4; ., ;|. Then S is defined as in (a)
with k=j. If |4;/>|A; |, then S is defined as in (a) with k=j+1.

We can now define Q; and partitions y(n) for each (n, s) € Q; precisely as in [I],
and the rearranged configuration we get starting from (m, s, y; - (m)) is denoted by

(R(m), R(s), Ry(m), Ro(m)).
It follows from Lemma 2.3 that Q;CQ=0Q,.
Lemma 2.4. (m,s)€ Q;_,, j=2, is uniquely determined by (R(m), R(s), Ry(m), Ré(m)).
This is proved exactly as Lemma 2.4 in [I]. The proof of the next lemma is,

apart from minor changes, the same as the proof of Lemmas 2.3 and 2.5 in [I]. The
necessary modifications will be outlined in Sect. 3.2.

Lemma 2.5. For every (n,5)€ Q;, 1 <j < ky, (1, 5,7(n)) has the density property and all
blocks in (n,s,y{n)) have length Zu;.

2.4. The Energy-Entropy Argument

We now turn to the proof of Theorem 1.3. Fix 0=, <t,=<d, —¢, where ¢>0 is
small and d, is given by (1.2) with ¢ as in the theorem. Define

A, ,={xeX; d(ty,1,)(n)<1/2—26}.

If d,+e<7,<1,<1 we define instead
A, n={xeX; d(ty,7,)(n)>26}.

We will show that there is a constant C independent of N and te T such that
Z(t, A C

tl,tz)

Lemma 2.1, (1.1) and (2.4) imply that P(4,, .,)—0 as 2—R"* and Theorem 1.3
follows.

The rearrangement procedure defines a map #:Q—Q, by (n,5)—>R* " !(n,3)
=(Z(n), £(s)). Let

H,(0)={(1,5)€ Q(t, X); 7 (2®)| 23}
and Hft)=R(H;_,(t)), 2<j<ky, for every te T

Lemma 2.6. Let d, and d, be given by (1.2). If 0<1,<71,<d,—¢ or d,+¢e=1,
<1,=1, then

Q(—t’ Atl,tz)ng(—t)
forallteT
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We postpone the proof of this lemma to the end of Sect. 3.2.
By Lemma 2.6, (2.4) will follow if we can prove

1 C
- e PHB.S < 2.5
Z(t, X) (n,s)eZH,(z) - N (2.5)

with C independent of t and N. The proof of (2.5) is an energy-entropy argument
which is completely analogous to the corresponding energy-entropy argument in
[1]. In Sect. 3 we will prove that Lemma 3.2 in [T] is true also in the present case if
we let C, =log(C'/d), where C; depends only on o.

The constants in Theorem 1.3 are defined as follows. Let

Bo=(1+41og(C'/do))/x,
where

do=min{g,1/4—¢L, 1/16, c,}

and c,, which depends only on «, is given by (4.12) below. For given = f,, d is
defined by f=(1+4log(Cy/d))/x so that B=p, implies 6=, This gives
d=Kexp(—£&p) with E=x/4.

If all blocks in (n, s, 7) have length = u; and (n, s, y) satisfies the density property,
then

H((n,5)—H(S((m, ) 2 25, (2.6)

where k is a constant that depends only on a. This energy estimate will be proved
in Sect. 4. It follows from repeated use of (2.6) that

H(n, s)— H(R(n, 5)) 2 x|R(n)|j 2.7
for every (n,s)€ Q;_,. Using the entropy estimate (3.1) in [I], (2.7) and xf—C, =1
we can do exactly the same computation as in Sect. 3.3 in [I] to show that

e~ BH@,S) <n e~ BH(@, ) +108(2kn) |y ®)] , (2‘8)
(o, s)e H(t) (B, 5)€ Hicpr ()

where 7 is a numerical constant. From the definition of H,(¢) we know that
[Vn(®) = 3 if (1, 5) € H,(t). We can now estimate the right-hand side of (2.8) using a
final global rearrangement in exactly the same way as in Sect. 3.4 in [I]. This gives

1
Z(t, X) (u,s)ezmm

where w is the constant in (2.3). At the end of Sect. 3 we will see that if § =, then
2kwf=4. (2.10
Thus (2.5) follows from (2.9) and we have proved Theorem 1.3.

¢~ PH@.9 < C[3(log N)>N ~ %<8 | 2.9)

3. Proof of Some Lemmas
3.1. The Entropy Estimate

The proof of Lemma 3.2 in [I] is based on the following lemma. Let

W=l wiEws g, (3.1)
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where { will be specified at the end of this section. Recall that A is the constant in the
definition of an elementary rearrangement. The constants A and { depend only on
a.

Lemma 3.1. There is a constant C, that only depends on A, such that for all
(n,5)€ Q;_ the distance from an element in Rd(n) to the closest element in Ry(n) is
écle—bj:z’ '--skN'

Proof. Denote the assertion in the lemma for a given j by (a);. The proofis similar to
the proof of Lemma 3.1 in [I] but is more involved due to the more complicated
definition of an elementary rearrangement. Let (b);, 1 £j <ky denote the following
assertion

Consider two o-(e-)blocks of length =w;, in (ns,7,n),
(n,s) € Q;. Then the total length of the o-(e-)blocks between them
iS guk,jékév(k]v_j"' 1)+kN'

Here v is the constant in (2.2). That (b), is true follows from the definition of y,(n) in
the same way as in [I]. We will prove Lemma 3.1 inductively by showing that
(b);—, implies (a); and that (b);_, and (a); together imply (b);, 2<j<ky.

Assume that (b);_, is true. Below 4 and B with some index will always denote
an o-block and e-block respectively. Consider first the elements of Rd(n) inside an
o-block A in (R(n), R(s), Ry(n)). A is built up from o-blocks A4;,...,4,, r=1 in
(m,s,7;-1(0)):

(n,s)=...ByAB;A,...B,_,A,B, ...,

(R(n),R(§))=...B0 "'BS—IAI ...ArBs...Br...,
=...BAB' ...,
where B, ..., B, are e-blocks in (n,s,7;-(n)).
We will prove that there is a t, 1 <t <r, such that
max{|A, ... A,_y|, |44, ... A} SCow;_ . (3.2)

The left-hand side gives an upper bound on the distance from an element in Rd(n)
inside A to the closest element in Ry(n).

Claim 1. Suppose that at some step in the rearrangement procedure from
(n,5,7;- 1(n)) to (R(n), R(s), Ry(n)) the elementary rearrangement

(m,r)=... A°BA'B'A*B> ...,
(S(m), S(r))=... A°B°B*A'4%B? ...,

was done. Then one of (i)—(iii) below must hold
() |4'|<u; |4'|<|A4%], and |B'| < 4|B°,

(ii) |A1|<\A2| and |B'|<u;,

(iii) 14°>|A", |B|<u;, and |BY|< A|BY|.

To see this we use the definition of the S-operatlon in Sect. 2.3. If A! is the
shortest block, then |4'|<u; and |4'| <|A?|. In case |B'| = 4|B°|, A' and B® would
have changed place instead. Thus (i) holds. If A' is not shortest block, either B® or
B! must have been shortest. If B! is shortest, [B'| <u; and since A" and B changed
places, |A'|<|A?|. Thus (ii) holds. If B° is shortcst |B%|<u; |A°>|A!| since
otherwise 4! would not have been involved. Furthermore if | B II| >|B%, A! and B°
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would have changed place. Consequently, |B'|<A|B°| and (iii) holds. This
establishes Claim 1.

Claim 2. Suppose that at some step in the rearrangement procedure from
(n,5,7;—1(m) to (R(n), R(s), Ry(n)) the elementary rearrangement

e Ak—(j2+ I)Bk-j4 e Bk'—(j3+1)Ak_jz e Ak—(_f1+1)Bk—j3 o
"‘Bk—lAk—jl "'AdBk e

to
o Ay a e )Bu e Beo 1Ay Ay jy o AgBy

was performed. Assume furthermore that j,>2[2A]+1, |Ay_;, ... Ax—,+1)| 2
and_]3 >_]1 20. Then j3 = 1, IBk— 1| <u]', and

|Ak_j2"'Ak_(jl‘*'l)]éIAk_jl'.'Adl' (3.3)

It is clear that j,—(j;+1)<j, and thus j,<j,+j,+1. Since
[Ay—j, -+ Ax—(j, + 1)l 2 u; it follows from Claim 1 that either |B,_;, ... B, _;|<u; and
(3.3) holds, or

Be—j, - Be_asy|<u; and |By_j, ... B | <iu;.

In the first case we get j; =1 and | B, _ ;| <u;. In the second case we getj, =j; +1 and
j3=[24], since all B/’s have length =u;_ ;. Thus j,<[24]+1 and j, <j;—1
<[24]—1. This gives j,<j,+j; =2[24]+1, which contradicts the assumption
Jj2>2[24]+1, and the claim is proved.

If B,_, ends up to the left of 4 and B to the right of 4, then A, must have been
fixed throughout the rearrangement procedure, since if A has been moved B;_,
and B, would have been joined. We now define two integers g, and g, as follows. If
s=1 orif |4 <u; for 1 £i<s—1 we put q, =0. Otherwise

gy =max{i;|A,_|Zu; 1Si<s—1}.
If s<3 we put g, =1. If s=4 we define, for 1 <i<s—3, v;=0 if the first time 4, is
joined with another o-block, this o-block contains 4;._,, otherwise v;=1. If v;=0
for all i, 1 <i<s—3 we put g, =2, otherwise

g, =max{i;v,_;=1,3<i<s—1}.

Let g=max{qy,q,}. Then the following claim is true.

Claim 3. |4, ... A,_,_{|S34w;_,.

Since g=4q,, Ay, ..., A;_,_, all have length <u; and we can assume that s—gq
—1>73, otherwise the bound follows trivially. Also 4= ¢, and the definition of g,
givesthat A;_,_,, ..., A, werejoined successively with an o-block containing 4, _ ,.
According to Claim 1, when A4, is joined with the o-block containing A5 we must
have

AB,|2IB, ... B, ,_4l.

If|B,| = Aw;_, then |B;| = w;_, and by (b);_,, |4,| = u; and we get a contradiction.
Consequently |B,| <Aw;_;. Similarly we must have

AB,|Z|Bj ... By_4_4l,
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and hence |B; ... B,_,_;|<A?w;_; which implies s—q—3=<A?w;_,/u;_,. Thus
|4y .o A g1 S(—g— ;= 3/12Wj— 1

and the claim is proved.

Claim 4. |B,_;|</u; if 1=i<q,.

If g, =0 there is nothing to prove, so assume that ¢, =1 and |B,_ | = Au; for some
i, 1<i<q,. Since B,_, ends up in B the same holds for B,_,. At some step in the
rearrangement procedure an e-block of length = Au; containing B,_; must have
changed place with an o-block containing 4;_,, of length = u;. By Claim 1 this is
not possible. Thus |B;_;| < Au;.
It will be convenient to write
1=2[27]+3.

Claim 5. At least one of the following two assertions is true:
D 14 ... A2l SGA*+2)w;
(11) |A1 s q1— 1|<(312+X)W1 1 and ql

Assume that g > y. At some step in the rearrangement procedure an o-block

containing 4;_, must have been joined with an o-block containing 4. The o-block
containing A,_, must then have length >u; because if g=gq,, |4,_,/=u; and if
q=q,, A,_, is joined with some other o-block before it is joined with 4,_,, and
hence before it is joined with A, Thus we perform a rearrangement of the type
given in Claim 2 with k=s,d =5, and j, =g =j, + 1 since the o-block closest to the
left of A, is always B,_,. We see that |A;_;, ... A,_;,+ 1l 2u; and j, >2[22] +1.
F urthermore, j3>j; since the blocks B,_j +4)...,Bs—; must all lie in
B,_j, ... B;_,. Claim 2 now give313—1 j1=0, and |B,_,|<u;
Consequently at some previous step in the rearrangement procedure an o-block
containing A4;_, must have been joined with an o-block containing 4, _,. Again we
havea rearrangement of the type given in Claim 2, this time withk=s=1,d=s—1,
j3>ji, and s—1—j,<s—gq, ie. j,=q—1>2[24]+2. Claim2 gives j;=1,
|Bs—- 5| <u; and

14 Aol 1454 (G4

We see that at some previous step in the rearrangement procedure an o-block
containing A _, must have been joined with an o-block containing 4, _,. The same
argument as above using Claim 2 now gives

lAs—q"'As—-E)Ié'As—zl' (35)

Suppose that |[4;_,|=w;_. It follows from (3.4) that |A,_,|=w;_,, and hence
(b);— gives [By_,|2u; Tfns contradicts |B,_,| <u;and consequently [Ag— ol <wj_
and [4,_,... As_2|§2w _1 by (3.5). Combining thlS with Claim 3 we see that (1)
holds.

Assume now that g<y. If q gy, |Ay ... Ay g, — 1| =£34%w;_, by Claim 3 and (ii)
holds. In case g=gq,, |4; ... As—,, - 1|<3i w;_; by Claim 3 and

|As_q2 v A g | S@2— g = w4

and (ii) follows. This establishes Claim 5.
By symmetry we can apply the same argument to blocks to the right of 4, We
introduce integers p,, p, analogous to ¢,,q, and prove the next claim.

s—gq
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Claim 6. |B, ;| < Au; if 0<i<p, and at least one of the following assertions hold
(i) [Ags - AISGA2+2w;_y,
(V) |Asspy+1--- Al =(34? +x)W;-1 and py <y.

We are now in position to prove (3.2). Let 1< u,, u, <y, let A, be the longest
block among A;_, , ..., A;4,, and 4, the second longest. If |[4,] <u;, then

max{|A;_,, ... A, [Apry o Agi ) S 20u;. (3.6)

If |4, Z u; it follows from Claims 4 and 6 that the e-blocks between A, and A4, have

length <|d—t|Au; < (u; + p,)Au; <2Axu; Now define the constant v in (2.2) and in
(b); by

v=[log,(2Ax)]+1. (3.7

If |Ad| g Wj_ 1,j+v and j+ v é V(kN_]+2)+ kN’ i.e. ]é V(kN _]+ 1) + kN’ then (b).l" 1
gives that the total length of the e-blocks between 4,and A4,is Zu;, ,>2Axu;. Thus
we get a contradiction and conclude that |4,/ <w;_, j.,=<(2Ax)*w;_,. Hence

max{|A;_,, ... Ai— 1l [Ars 1 oo Agr ) S20(240)*W5- 4 . (3.8)
There are four possible combinations of the assertions in Claims 5 and 6. For the
combinations (i) and (iii), (i) and (iv), (ii) and (iii), (i) and (iv) we choose respectively
wi=p=1, py=1, p=py, p1=qy, p,=1 and p,=p,, u,=p,. In all cases we
obtain (3.2) by combining the assertions in the claims with (3.6) or (3.8).
It remains to consider elements of Rd(n) inside an e-block Bin (R(n), R(s), Ry(n)).
B has been built up from e-blocks in (n,s,y;—,(n)), and one of these e-blocks must
have remained fixed during the rearrangement procedure, say that B, was fixed.
Then

(,8)=...A_B_yA_yi1... AgBoA,B, ...B,_;AB,,,...AB, ...,
(R@),R(s)=...A_...AgB_,...By...B,_ A, ... A,...AB, .,

Claim 7. (i) If |Bj| <Au; for t<i<s, where t=2, then
B, ... By 1| (643 +3A)w;_ .

(ii) If A, and A, are joined before A, and A, .  are joined then |B;| < Au; for t<i<s.

Let g, and y be defined as above. If g, >y then by Claim 5, |4, ... A;_,|
<(34*+2)w;_, and since all blocks have length >u;_, this implies

B, ... Bi_ 1| S(s—2)Au; S (BA> + 2w _ y Auyfu;_ = (33 + 2w, _, .
Assume that g, <y. By Claim 5 it follows that we always have s—q,—1
<(3A*+y)w;_ 1/u;_, and we get
B, ... By_ g, 1| S(s— gy — 1)Au; (64 + 20)w; _

and

IBs—q1 Bs— l| éqllujéxle— 1
This proves (i).
If A, and A, , have not been joined, B, lies to the right of 4,, When 4,_, and 4,

have been joined B, will lie to the right of the o-block containing A4, _ ; 4,. If | Bj| = Au;
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for some i, t <i<s, then at some step in the rearrangement procedure an e-block of
length =/Ju; containing B; must change place with an o-block of length =u;
containing A,_,A,, but this is impossible by Claim 1.

Claim 8. There exists a p<y such that
IB, ... B_ | S(64% 434 +2A%)w;_, (39
and |A;| <u; when 1 <i<p.
By Claim 4, |B_,| < Au; when 1<i<gq and hence Claim 7 (i) gives
|B B,_ | S(64° +320)w;_,

If s— g, <y we can take p=s—q,. Note that by the definition of g, |4, <u; when
1Zi<s—q,. Assume that s—q, >y. If A,_, and A, are joined before A4, and 4, ,
are joined for some t, 2<t<y, then Claim 7 shows that (3.9) holds with p=t.
Suppose that this is not the case. Consider the step when 4, and 4, , ; are joined.
Then, by our assumption, 4, _; and 4, have not been joined and consequently nor
have 4,_,and 4,_, or A,_;and 4, _,. The following elementary rearrangement
is done:

s—qy ***

A, 3B, 3A,_ B, (AB, .. B, ;A ...
to
Ay 3By, 24, B, \B,...By ;A A ..

By Claim 1, |B, ... Z+h[ <24|B,_,|. As in Claim 7 it follows that |B;| < u; when
i>x+j, and Clalm 7 gives

IBysji+1 - Bso 1| S04 +340)w;_ ;. (3.10)
At some later step 4,_,; and A, will be joined and the same argument gives
IB - x+]2‘<2}'lB1 2|

where j,2j;. If |B,_,|=24Aw;_, then |B,_,|=w;_; and since |4,_,|<u; this
contradicts (b);_;. ‘Hence |B ~1l<2iw;_, and we get |B,... B, ;|<4A? w
Together with (3.10) this proves (3.9) with P=x.
We can now prove the following claim by a completely analogous argument.
Claim 9. There is a <y such that
IB_, ... B_|S(64*+3Ax+2A%)w;_,
and |A_|<u;if 0Si<q—1.

Now let B, be the longest block among B_  ;, ..., B, _ ;. Using Claim 8, Claim 9
and (b);_, we can apply the same argument as that after Claim 6 to prove that

max{|B_,...B,_y|, [Bysy ... B ([} SCyw;

with a suitable C,. This completes the proof of (a);.
We now turn to the proof of (b); given that (b);_, and (a); are true.

Claim 10. Suppose that we have two o-(e-)blocks C and C' of length Zw;, in
(n,5,7/n)), (n,5)€Q; for some k, j Sk <v(ky—j+1)+ky such that the length of the
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e-(0-)blocks between them is <u,. Let v =[log,(3+21)]+1. Then there is a
configuration (m,1)€Q;_;, R(m,r)=(n,s) with the following property. In
(m,1,7;— 1(m)) there are two o-(e-)blocks C, and C, of length Zw;_, ;. ., such that
the length of the e-(0-)blocks between them is < 3u,+2Au;.

Since v'=v, k<wky—j+1)+ky implies that k+v' <vky—(G—1)+1)+ky.
Now 3uy, +2Au; <ty ., so Claim 10 contradicts (b);_ ;. Hence the assumption in
Claim 10 must be wrong and (b); follows.

To prove Claim 10 we first show that there is an (m,r) € Q;_ ; with R(m,r)=(n, s)
and blocks C, and C' in (R(m), R(r), Ry(m)) of length =w; ,, such that the length of
the e-(0-)blocks between them is < 3u,. Assume first that C and C’ are e-blocks and
letA,,...,A,and By, ..., B,_, be, respectively, the o- and e-blocks between C and
Cl iIl (Zl, S, yj(tl)) We Write C= <b03 a1>a C= <bp3 ap+ 1>9 Ai = <aia bi>’ and
B;=<b;,a;, ). There is a (m,r)e Q;_, with R(m,r)=(n, s) such that a, € Ry(m). At
least one of b;, 1 <i<p, must belong to Ry(m) since otherwise we would have an
o-block <a,,b), in (R(m), R(r), Ry(m)) with b=a,, ;. Since |4,|+ ... +|4,| <u, and
|C’'| 2 w;,; this would contradict the density property of (R(m), R(r), Ry(m)). Let b, be
the largest among b, 1 <i < p, that belongs to Ry(m). In (R(m), R(r), Ry(m)) we have
two e-blocks C, ={c,a,) and C =<{b,,c'), where c<bh, and ¢’ >al,+ 1- Clearly C,
and C both have length 2w ,. Consider an o-block A= {a;,b;,»,1=5i;Zi,<q,
between C, and C] in (R(m), R(r) Ry(m)).If iy =i,,|A| =|A;,|. Suppose that i; <i, so
that A=A4; B;, ... Bi2 —14;,. Using the density property of (R(r_n), R(r), Ry(m)) we get
that the number of occupied positions in 4 is

2(1/2—-0)|412(1/2—0)(|4;,|+ By | + ... +[By, - 1[ +145,)).-

On the other hand, using the density property of (n, s, y (1)), we see that the number
of occupied positions in A4 is

SIAil+ ..+ AL+ (B, |+ ... +Bi, - ).
This gives

12446

< < .

41 (1 + 1/2_25>(|A [+ A SHA ..+ 14D

since 6 <1/16. It follows that the total length of the o-blocks in (R(m), R(r), Ry(m))

between C, and C) is < 3u,. The case when C, and C} are o-blocks is analogous.
If we let { in (3.1) be given by

{=4(3+21)*+(2+1)C,, (3.11)
it is easily shown that

—2C,Wi_ { Z Wi k4
" Wi—1=We—1,k+ (3.12)
(Wj’k—zc;'wj_l)>cle_1.

The o-(e-)blocks C, and C'; have been built up from o-(e-)blocks in (m, r, y; - ;(m)). It
follows from (a); that there exists o-(e-)blocks C, and C; in (m, 1, y; - 1(m)) contained
in C, respectively C, such that C, and C), havelength w; , —2C,w;_; 2wy _; 14
Assume first that C, and C’, are e-blocks. Let Ay, .., A, be the o-blocks between C,
and Cj in (m,r,7;—(m)). If an o-block contalmng one or several of 4;,...,4,

changes place with an e-block containing one of C, or C3, it follows that the length
of this e-block increases by at least A~ 1|C,| or 17 1|C)| respectlvely, i.e. using (3.12)
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by at least C,w;_,. But this contradicts (a);. Thus all 4,,..., 4, are included in
o-blocks between C, and C' in (R(m), R(r), Ry(m)) and it follows that |4 |+ ... + |4,
<3u,.

Assume now that C, and C), are o-blocks and let By, ..., B, be the e-blocks
between C, and C, in (m,r,7;-,(m)). Suppose that an e-block B' containing
e-blocks among By, ..., B, changes place with an o-block A" containing C,:

...A°B°A'B'A*...—... A°B°B' 44> ...

By Claim 1 either |[A'| < |A?|, which will contradict (a); in the same way as above, or
|B°| <u; and |B'| < A|B°| and consequently |B'| < Au;. Since |B°B*| > u; this second
case cannot be repeated. The same argument can be applied with C’, instead of C,,.
It follows that the length of the e-blocks between C, and C| is at least
|By|+ ... +|B,|—2Au;. Hence |B,| + ... +|B,| — 2Au; < 3u;. This establishes the claim
and completes the proof of Lemma 3.1. [

The proof of the entropy estimate using Lemma 3.1 is now exactly as the proof
of Lemma 3.2 in [I], except that 16w;_, is replaced by 2C,;w;_, and { in (3.1) is not
=9 but is given by (3.11). This gives C, =log(C}/d), where C) can be taken to
be =8¢.

3.2. Proof of the Density Property for the Partitions

The proof of Lemma 2.5 is very similar to the proof of the Lemmas 2.3 and 2.6 in
[I]. The proof that (n, s, y,(n)) satisfies the density property for all (n,s)€ Q, is the
same as the proof of Lemma 2.3 in [1]. The only difference is that y‘®(n) is defined
differently. If {a, @’) is an o-block in (n, s, y'”(n)) then n,=1,n,. _,=1,n, _, =0and
we do not have two consecutive zeros in the sequence n,, ..., 1, ;. This means that
1— 4, has to be replaced by 1/2—§, everywhere. The proof, by induction on j, that
(n,s,7(n)) has the density property for every (n,5)€ Q; is the same as the proof of
Lemma 2.6 in [I] except that 1— is replaced by 1/2—4.

We will now prove that all blocks in (n, 5,y (1)) have length =2 u;. Let A=<{a,a’)
be the shortest block in (n,s,y{n)) and let B=<a’,a") be its right neighbour,
|B| = |A|. There is a (m,r)€Q;_, such that R(m,r)=(n,s) and ae Ry(m). If |B|<u,,
then a’ ¢ Ry(m) since all blocks in (1, 5, Ry(m)) have length = u;. The next point, b, to
the right of ain Ry(m)is = a". If A is an e-block then Bis an o-block and <{a, b) must
be an e-block in (n, s, p(m)). The density property gives

N(a,a"—1)(n)<d(a"—a). (3.13)
On the other hand the density property for (n,s,y{n)) gives
N(a,a"—1)(m)=N(a,a'—1)()+ N(d’,a" — 1) (n)
20+(1/2—90)(a" —a)=(1/2—9d)5(a" —a), (3.14)
since |B|=|A|. Now (3.13) and (3.14) are contradictory if 6 <1/16 so we must have
. %sus{lme now that A4 is an o-block and hence B is an e-block. Recall that a<a’

<a’"<band a”"—a=d —a. {a,b) must be an o-block in (n, s, Ry(m)). We will prove
the following property for the o-block {a,b):

If ag<x<x+s<b and N(x,x+s)(n)<dd, then x—a=2s. (3.15)
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Thus ¢’ —a=2(a"—a—1) and we get a contradiction. Hence if we can prove (3.15)
we are finished.

If every o-block <a,b) in (n,s,y) satisfies (3.15), then so does every o-block in
S(n, s, 7). To see this suppose that the o-blocks 4, and 4, have been joined to 4,4,
=<a,b). Let a’,a<a’ <b, be the position of the old partition point. If a’ € (x, x + s),
then since N(x,x+s)(n)<ds we must have either N(x,a'—1)(n)<d(a’—x) or
N(a',x+s)(n)=(x+s—a’), which both are impossible by the density property.
Hence {x,x+s) must be completely within 4, or 4, and we are done.

Thus if every o-block in (m,r,7;_,(n)), (m,r) € Q;_, satisfies (3.15), then so does
every o-block in (R(m), R(r), Ry(m)) and since o-blocks in (n,s,y{n)) are parts of
o-blocks in (R(m), R(r), Ry(m)) for some (m,r)eQ;_,, R(m,r)=(n,s), we see that
(3.15) holds for o-blocks in (n, 5, y (n)). Hence it suffices to show that (3.15) holds for
every o-block <{a,b) in (n,s,y,(n)) for each (n,s)e Q,. This is done inductively by
showing that (3.15) holds for o-blocks in (n,s,y®(n)), k=0, ..., vky. That (3.15) is
true for k=0 is trivial since N(x, x + s)(n) = Js is impossible. The argument is now
very similar to the proof of Lemma 4.1 in [1]. Assume that (3.15) s true for o-blocks
in (n,5,y*~ Y(n)) and let A= {a, b be an o-block in (n, s,y®(n)). If y is the length of
the e-blocks in (n, s, y* ~V(n)) that wholly or partly lie in {x, x + s, then just as in
the proof of Lemma 4.1 in [I] we get x—a=v,—(s—y), y<u,, and

N(x,x+5)(@)z1/2—)(s—y).

Together with N(x,x+s)(n)<Js and 6=<1/16 these estimates show that (3.15)
holds.

We will now discuss the proof of Lemma 2.6. The proof is almost exactly the
same as that of Lemma 3.4 in [I]. Fix te T. If F(x)=(n,s), x€ X, then

d(ty,72) (¥)= 7 ——— N([r, L], [x,L] (1).

1
L(ty—1y)
Hence if 0= 1, <7, <d; —¢, then

ot 4:,,.,)= {(n )€ Q(t, X); ———— N([t,L], [t,L) @) < 5 _25}

( 1)

and similarly for d, +e=7; <7,=<1. Thus we can copy the proof of Lemma 3.4 in
[I] almost verbatim, except that 1—2§ and 1—0 must be replaced by 1/2—26
respectively 1/2— 4. The only other modification is that 8w;_ , in [I] is replaced by
C,w;_, and formula (4.4) in [I] changes to

kn
A=v=2C; ¥ Wi SCN?
=2

with y=wlog4{, where w comes from (2.3) and { from (3.1). Put

1
" 2log4l

so that y=1/2; o depends only on a.
We can now verify (2.10). We have

2xB = 81og(C'/5,) = 81og(16 - 80)=8log4{
since 8 £J,=<1/16. Hence 2xfw = 4.

(3.16)
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4. Proof of the Energy Estimate

Let (n,s) be a configuration and y a partition such that (»,s,y) has the density
property. Denote by 4,, By, ..., 4,, B, the blocks in (n, s, y). By assumption all the
blocks have length =u;. An elementary rearrangement is always of the form that
an o-block, A, say, changes place with one of its neighbouring e-blocks, B, _; or B,.

Recall that these operations are denoted by S, _, ;- | respectively Sy, _; 5. Let

4E, =H(Szk~2,2k— 1(m,9))—H(n, s),
AE,=H(S 5 1,2k(ﬂ,§))_H(Zl, s).

We want to show that:
(i) If By 2 AIBy—,| and [A,_| 2|4, then AE, = 2kj.
(i) If | B, |2 A|B;| and |A;| 2|4, 4|, then 4E, 2 2kj.
(iii) If A7 !By— | <|B £ ABy-,|, then max{4E,, AE,} > 2kj.

Here x is a constant that only depends on a. Write A;_,=<a;,b,),
B, _1=<(by,a5), A=<azb,), Bi=<b,,a3), and 4, ,=<as,b;3). The lengths of
Ak—l’ Bk—-la Ak, Bka Ak+1 are reSPCCtiVCIy X1, V15 X2, V2, and X3.

We write AE, = AE$— AE} and AE,= AE3— AE}, where AE{ and AEJ are the
changes in energy which we would have if the e-blocks B, _; and B, were empty,
and 4E} and AE} are the changes in energy due to the particles in B,_, and B,.
Then

AES = i;ﬁ nn((j—i+s;—s;—y;) " —(—i+s;—s)7%
a25j<b2

_=a <Z<b nim((k—j+s,—s) " —(k—j+sc—s;+y1) "%
zk=gja3 2
and

AEO= ; . njnk((k_'j+Sk‘_Sj—yz)—a—(k—"j‘*‘sk_sj')—a)
a2 j<b2
k=a3

= Y mn((j—it+s;—s) *—(—it+si—s;+y)7 9.
i<bi
a2 j<b2
If we write 6;;=s5,, 1 j— Sy, —; and Ty =S$,, 1 — S, - ; these formulas can be rewritten
as

o x2—1

AEO=,21 'Zo My, gy + (G +Hi+0y) " —(+ito,;+y) ")
515
xz b . -_— . _—
_‘Zl kzonbz—jna3+k((k+]+Tjk+y2) f—(k+jtTaty+y)7"
51 kS

and

X2 [e) —x
AEg:jg,l k;o My, — My +i{(K +j+Tp) = k+jitTEty) ™)
© xz—l . . — . . —a
-y ¥ ”bl—ina2+,((]+l+0'ij+}’1) a‘(]+’+“ij+)’1+)’2) ).

i=1 j=0
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We will use the following facts, the proofs of which will be sketched at the end of the

section.
(a) If 1£x <2z, then
X4 —(x+2)7* =1 —(2/3)%)x“.

(b) For x,y,,y, define
F% Y1 y2)= ﬁ—j(x-“—-(x+y1)-“)—«x+yl)—“—<x+y1 +2)79).

Then f(x,y,,y,)>0 and f(x,y,, y,) is a decreasing function of x for fixed y,, y,.
Furthermore there are constants ¢, and c,, depending only on «, such that,if 1 <x
=S¢y and y,/y, 21/4, then

S, y1,y2) Zea/x". “.1)

We assume to begin with that 1 <o < 2. Consider first the case (i). Then y, = 1y,
and x, >x,>2. Let us prove a lower bound on 4E?.

From the definition of o-blocks we know that n, _,; =0 and the density
property gives

$ i 2(12-8)(p—1), 1=p<xy,
i=1

, 4.2)
; ng,+;2(1/2-0)(p+1), 0=p=x,—1.
If we use 0=<n;<1 and —1=0;;, 7, <1 we obtain '
x; x2—1
AE?%.Z .Z My, gy + (GHI+1) =G +i+1+y,)7%
- Zl kZ (+k—=14y) " *—(+k—14+y,+y)™%.
=1 kS
A summation by parts using (4.2) gives
x1 x2—1
E22(1/2—0* Y, ¥ (+i+)*=(+i+1+y)7")
i=2 j=o0
X2 0
=3 ¥ Urk—14y) (kb)) (43)
=

Let z=min{x,, y,} and introduce the function
82)=Q2—0)" (227 = 1) +1.

We want to show that if we choose A sufficiently large, depending on a, then 4E$
= c;g,(z) for some constant c; >0 that only depends on o. Consider the first double
sum in (4.3) and assume that z=2. Using property (a) above and estimating sums
by integrals obtain

1 X

i=2
= i Ezl G+D7*=0+i+y)™)

i=2 j=1

E GH+i+ ) =i+ 1+)™

2(1-(2/3)) Z Z (G+)7*2(1—(2/3))cgu2), (4.4)

i=2 j=1
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where ¢ only depends on o. This is easily checked to hold also for z=1. Now
consider the second sum in (4.3). Cancellation between terms and estimation of
sums by integrals gives

3, T Gk T4y k= 4y )

= Z Z (+k—1+y,)™*< Z Z (+k+ty,—1)""

j=1k=0
Sl-o)7'2-0)” l[(Z+yz—2)2 *—(,—277"]
Sc[A=1)*""—(A-2*""1g,02), 4.5

where ¢’ only depends on «. We have used the fact that y, =1y, = Az. If we use
6<1/16 we get (1/2—38)>=1/6, and combining (4.4) and (4.5) we see that by
choosing 4 sufficiently large, depending on o, we get AE9>c,g,(2).

We must also estimate the effect on energy changes, 4E1, of particles in B, _,
and B,. If we only consider energy losses and not energy gains, there are three
quantities to be estimated: the change in interaction energy between B,_, and
everything to the left of B, _;, between B, _; and A4,, and between A, and B,. These
quantities are all estimated in a similar way and we only treat the first one. The
density property gives

P
'Zonb|+j§5p5 0=sp=sy,—1.
=

Using this in a summation by parts, 0<n; <1 and cancellation between terms we
see that the change in interaction energy between B, _ , and everything to the left of
B,_;is

Y onnl(4s;—i—s) " —(j+s;—i—s5;+x)" "]

i<by
bi1sj<az

=5 yj';_lnb1+j[(i+i—1)’“—(i+i—1+x2)-“]

x2—1 y1—1 x2—1y

=y Z Ny, + Ai+]) " =<6 Z Z i+n"

i=0
= 5c4ga(2) ;

where ¢, > 0 only depends on a. The estimates for the other quantities are the same
and we get
AEY <36c,8,(2). (4.6)

Thus
AE; 2(c3—30c,)8.(2) 2 2x(logz +1) =2 2xj,

if 6<c3/6c, and x <4c,log2. The second inequality follows from the fact that as
« 72, g,(2) v 1+1logz. It can be checked that c; and c, remain positive as « /2, so
the same estimate holds for «=2. The last inequality comes from z>2/"1.
Claim (ii) is handled in exactly the same way and one proves that AE9> c;g,(z')
and
AE; <35¢,8,(7), 4.7)

where z' =min{x,, y,}.
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It remains to treat Claim (iii). We thus assume that A~ <y,/y, <1 and we will
prove that

;—ZAE?ME%;cha(c), 4.8)
1

where {=min{x,, y,,X,, V5, X3}. From this it follows immediately that

max {4E$, 4 1 >_g (). 4.9)
Using (4.6), (4.7), and (4.9) we want to conclude that
max{4E, AE,} 2 ccg () 2 2] , (4.10)

where cg>0 only depends on o, and k <%cglog2. There are three possibilities.
Either A, is the shortest block and z=z'={, or B,_, is shortest, z={ and z’ < A{
since y, <1y,, or B, is shortest, z’={ and z<1{ since y, <4y,. Thus we always
have z,z' < A{ and (4.6) and (4.7) give, after some computation, that

max {4E}, AE}} <lc,g,(0). 4.11)
Equation (4.10) follows from (4.9) and (4.11) if we assume that 6 <c5(2A(A+1)cy) ™ L.
Hence we know that (i)—(iii) hold with x =min {}c;log2, 3c¢log2} if
8o £min{cs/6cy, c5(2A(A+1)cy) Y =c,. (4.12)
We still have to prove (4.9). If f is defined as in (b), then

o x3—1

ﬁzAE°+AE°— T, T M-t S+ 40151 32)
1

+ '21 kZO My, — s+ (K +j+ T Y1, ¥2) -
51 kS

Using the properties (b) of f and the density property we can sum by parts and get

1 2 X1 x3—1
y—zAE?+AEg§ (5_5) I:Z Y fli+j+1,y:,¥2)
y i=2 j=0

1

X2 Xx3—1
+3 X Skti+d, yl,yz)] (4.13)
; <
Let ¢, be the constant in (b). If ¢,{/2 <2 we estimate (4.13) by keeping only the first
term in the sums.

2 c 4c
Y2 B9+ AESZ 2 13,71, y2) 2 s 2 B +{—1)Z 2 g (0).
32 6 14 ¢y

Here we have used the fact that f(3,y,,y,)=3c; if y,,y, =1, where cg>0 only
depends on a. To get this estimate we can argue as follows. If ¢, y, <3, there are
only finitely many possibilities for y,, y, and we can take 3cg less than the smallest
of the possible values of f(3,y,,y,), which are all positive. If ¢, y, =3 we can use
(@.1).
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If ¢,{/2=2 we use (4.1) to get
fe1¢/21 [e1¢/2]
Y2 AR+ AES2 2 7Y Y (i) ZcogdD)

2= "o
Y1 35 =

where ¢, only depends on a. Equation (4.8) now follows with ¢s =min {c,, 4cg/c, }.
We will now sketch the proofs of (a) and (b) above. (a) is obtained as follows:

ctearrer{i- () -~ ()

if 1 <x<2z. That >0 follows immediately from the strict convexity of x—1/x%,
and that f is decreasing as a function of x follows from 0f/0x <0, which is a
consequence of the strict convexity of x—1/x** . The inequality (4.1) is obtained as

follows:
1/1 1 1
X, V1 g— wa al 4
St soy) A(x (x+y1>> G

A () (x )
— x*\4 A)\x+y,

1/1 1 ¢, \* c,
> (=— - >
=xm<}L <1+/1><01+J’1>>_xa

where ¢, > 0if ¢, is chosen sufficiently small. This completes the proof of the energy
estimate (2.6).
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