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Abstract. We consider a one-dimensional lattice gas in the canonical ensemble
with interaction energy l/rα, 1 < α < 2. Using an energy-entropy argument we
show that the gas condenses at sufficiently low temperatures meaning that the
gas has a non-uniform density in the thermodynamic limit.

0. Introduction

Consider a one-dimensional lattice gas in the canonical ensemble, i.e. the number
of positions in [1,L] ΠZ occupied by particles is a fixed number N. Let the
interaction energy between two particles at distance r be — l/rα, 1 < α < 2. We
will show that, with appropriate boundary conditions, this lattice gas condenses
at sufficiently low temperatures, meaning that the gas has a non-uniform density
in the thermodynamic limit N, L —• oo, N /L —> ρ,0 < ρ < 1.

The proof is an energy-entropy argument which makes rigorous the fol-
lowing heuristic argument, see Landau-Lifshitz [6] abd Thouless [9]. Consider
configurations that are not condensed already, say those that are approxi-
mately uniform. Suppose that we can partition these configurations into blocks
A\,Bi9A2, . . ., Ak,Bk, where almost every position in A\, . . ., Ak is occupied and
almost every position in B\9 . . ., Bk is empty. Also assume that all these blocks
have length > d. Rearrange the blocks so that the condensed configuration
A1A2... AkB\ ...Bk is obtained. The change in energy is ΔE ~ — CkEa(d), where
Ea(d) = d2~a if 1 < α < 2, = logd if α = 2 and < const, if α > 2. The change in
entropy due to many configurations being mapped to the same condensed config-

uration is roughly AS ~ —log I j ~ —klog(L/k). The free energy thus changes

by ΔF = ΔE - β~ιΔS - k(-CEa(d) + β~ι log(L//c)). If α > 2 and k = o(N),
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then we cannot have ΔF < 0 with β finite and N —> oo. If α = 2 then J F < 0
if d > (L/k)1^c

9 and thus in this case the system could condense. Similarly for
α < 2 with a smaller d. This explains why we can expect a condensation when
α < 2 but not when a > 2. We see that in order for the above argument to work
d must be sufficiently large. If we do rearrangements only locally a smaller d
is possible. In the proof we will partition every configuration into blocks which
are alternatingly dense and dilute. By making local rearrangements we obtain
configurations with sufficiently long blocks to make the global rearrangement
sketched above work.

The existence of a phase transition in a one-dimensional system with long-
range interaction was first established by Dyson [2], who showed that there is
spontaneous magnetization in the Id Ising model with interaction Jy ~ l/\i—j\*9

1 < α < 2, at sufficiently low temperatures. That this also holds for α = 2 was
shown by Frohlich and Spencer [4]. Recently the understanding of the case α = 2
has improved considerably by use of the relation between the Ising model and
certain percolation models. In particular the existence of the Thouless effect was
proven. See Aizenman, Chayes and Newman [1]. Thus the existence of a phase
transition in long-range Id lattice models is not a new result. The novelty in this
paper lies in the character of the proof, where we work in the canonical ensemble
and establish the phase transition as a condensation. In an accompanying paper,
Johansson [5], we will show how the same ideas can be extended to prove the
existence of a liquid-gas transition in a one-dimensional continuous model.

The organization of the paper is as follows. In Sect. 1 we define the model and
state our results. In Sect. 2 we define the partition of a configuration into blocks
and the local rearrangement procedure. We then, in Sect. 3, state lemmas giving
the change in energy and entropy due to the local rearrangement. These two lem-
mas are combined into an energy-entropy argument for the local rearrangement
and we can then perform the global rearrangement and prove the main theorem.
The proof of the entropy and energy lemmas occupy Sects. 4 and 5. The last
section contains an argument which proves that, if the free energy is a strictly
convex function of the density, then no condensation occurs. As shown in the
first section this implies that at high temperatures the gas does not condense.

1. Definitions and Results

1.1. Definition of the Model

Let A = [1,L] ΠZ, Λc = Z\Λ, where L is a positive integer. With each site i e A
we associate a random variable n, taking the values 0 and 1 and satisfying the
constraint

£ > = iV, (1.1)
ίeΛ

where N is a positive integer. If nf = 1 we say that the site ί is occupied by a
particle, otherwise it is empty. Equation (1.1) thus says that the total number
of particles is fixed. As boundary conditions we set n\• = 1, if ί G Z Π (—oo,0]
and ftjί = 0 if i e Z Π [L + l,oo). We let n = (nOίez and call this a configuration
in A with the specified boundary conditions. Q = QN,L denotes the set of all
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configurations in Λ. The Hamiltonian is

where α > 1. We will work with the canonical ensemble probability measure
which is defined by

P(A) = PβiNiL(Λ) = Z 1 ^ exp(-]8H(n)), (13)
neΛ

where A^Q, β is the inverse temperature and

,L) = Σ exp(-βH(n)) (1.4)

is the partition function.
For x,y e Z, x < y and a given configuration n we define

ΛΓ(x,3θfe)= Σ ni' (L 5>
i:x<i<j;

N(x,y) (n) is the number of particles in [x,y].
Let ρ,0 < ρ < 1, denote the asymptotic average density, and let A -> Z4"

denote the thermodynamic limit AΓ,L —> oo, ΛΓ/L —• ρ. For 0 < τ\ < τι < 1 and
n e Q we define

, τ2) (n) = — N([τ{Ll [τ2L]) (n),
^(^2 τ )

where [•] denotes the integer part.

Definition 1.1. We say that the gas has uniform density in the thermodynamic limit
if for each ε > 0 and any fixed 0 < x\ < x2 < 1,

limP{n e Q ρ - ε < d(xux2)(n) < ρ + ε} = 1.

Otherwise we will say that the gas has non-uniform density in the thermodynamic
limit.

1.2. Results

For a given small δ > 0 and density ρ,0 < ρ < 1, we put

dx = (\-δ)-χ{ρ-δ), ί*2 = (l-<5ΓV (1-6)

The main result of this paper is the following theorem.

Theorem 1.2. Let 1 < α < 2. There exist positive constants K and K, depending
only on oc, and βo = βo(ρ,(x) such that if β > β0 and δ = Kexp(—κβ), then for
each ε > 0,

lim P(n e Q;d(xux2) (n)>l- 2δ) = 1
Λ—» Z +

for any fixed 0 < x\ < x2 < d\ — e, and

}ira+P(n e Q;d(τuτ2) (n) < 2δ) = 1

for any fixed d2 + ε < x\ < x2 < 1.
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Thus for sufficiently high β the gas has non-uniform density in the thermody-
namic limit. We also want to show that for sufficiently small β we have uniform
density in the thermodynamic limit. To do this we will use the free energy of the
lattice gas. The free energy, f(ρ,β), is defined by

βf(ρ, β) = - lim y log Z(N, L), (1.7)
Λ-+Z+ Li

where Z(N,L) is the partition function defined above. It can be shown that this
limit exists if α > 1, is a convex function of ρ and does not depend on the choice
of boundary conditions, see Ruelle [8]. In Sect. 6 we will prove the following
theorem.

Theorem 1.3. If f(ρ,β) is a strictly convex function of ρ, 0 < ρ < 1 for a fixed β,
then the gas has uniform density in the thermodynamic limit for this β, and any ρ,
0<ρ< 1.

Using this we can now show

Theorem 1.4. If a > 1 there is a β\ such that if β < β\ the gas has uniform density
in the thermodynamic limit.

Proof If we put f(l,β) = lim f(ρ9β) and f(ρ,β) = +ao for ρ £ [0,1], then by
ρ->l-

the lattice analogue of Theorem 3.4.4 in Ruelle [8], f(ρ,β) is a lower semicon-
tinuous convex function of ρ € R. By the lattice analogue of Theorem 3.4.6 in
Ruelle [8] the pressure p(μ, β) as a function of the chemical potential μ is given
by the Legendre-Fenchel transform

βp(μ,β) = sup(ρμ-βf(ρ,β)).
ρeR

Theorem 5.2.1 in Ruelle [8] says that there is a β\ such that p(μ9β) is an analytic
function of μ when β < β\. By a theorem for convex functions, see Rockafellar
[7] p. 253, f(ρ,β) is essentially strictly convex when p(μ,β) is differentiate as a
function of μ. Thus /({?,/?) is strictly convex in [0,1) where it is finite. D

Corollary 1.5. If β > βo, then dp(μ,β)/dμ does not exist for all μ G R.

The lattice gas can be related to the Ising model by the substitution
H; = \ (Si + 1), Si = + 1 . This gives the following relation between the pres-
sure p(μ,β) for the lattice gas and the free energy ψ{β,h) for the Ising model with
interaction J I ; = \i — j\~* and magnetic field h,

, h) = 4βp(2h - 4βc94β)-

where c = 2£(α) and ζ(a) is Riemanns ζ -function. Thus, by Corollary 1.5, when
β > βo/4, (dψ/dh) (β,h) does not exist for all h e R. It is known that this can
only happen when h = 0 and that we then have spontaneous magnetization, see
Ellis [3], p. 105. The theorems above thus imply that the l/rα-Ising model in one
dimension has a phase transition when α < 2.

2. Blocks and Rearrangement

2.1. Definition of Blocks

We now begin the proof of Theorem 1. Basic for our proof is the partition
of configurations into blocks which alternate between having a high and a
low density of particles. Let l < α < α / < L + l b e two integers and n e Q a
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configuration. Then

A = (a, a!) = (na, na+u . . . , na>-\)

is called a block in n. A is an o-block if nα = na>-\ = 1 and an e-block if
nα = Πa!-\ = 0. The infinite block (—oo,α), nα = 1, is always an o-block and
(α,oo), nα = 0 is always an e-block, due to the boundary conditions. The length
of the block A is \A\ = a! — a, the number of positions in the block. Two
o-(e-)blocks A = (a9a') and B = (a'9a

rt) can be joined to a new o-(e-)block
AB = (a, a"). A set o f i n t e g e r s γ = [a\9 . . . , ar}, 0 < a\ <a2<-'<ar<L + l

defines a partition of a configuration n into blocks (flfc,#fc+i), fc = 0, ..., r, where
α0 = — oo, α r +i = oo. We will say that (ak,ak+{} is a block in fey). The number
of elements in γ will be denoted |y|.

Let δ be as in Theorem 1.2. The constants K and K: will be specified later.

Definition 2.1. Let y(n) define a partition of the configuration n into blocks. We
will say that (n,y(n)) has the density property if the blocks in (n,y(n)) alternate
between o- and e-blocks and for each o-(e-)block A = (a,af) in fey(π)),
(i) JVfax) (n) > 1 + (1 - δ) (x - a) (< δ(x - a))9

(ii) ΛΓίx,^ - 1) (n) > 1 + (1 - 5) (αr - 1 - x) (< ^(αr - 1 - x))
if α < x < a' - 1.

Thus if a partition has the density property the o- and ^-blocks that it defines
have a high, respectively low, density of particles.

We will now define a partition yι(n) for every neQ\. Put

The blocks in {n,y\(n)) will be the basic building blocks in our argument. y\(n) is
defined inductively. Let

The blocks defined by y^(rc) alternate between o- and e-blocks and in every block
either all n; = 1 or all nt = 0. Suppose that y^k~ι\n) has been defined and that
the blocks defined by it alternate between o- and e-blocks. Consider all o-blocks
in {n9y^k~^(ή)) of length > i^, Ajί9 ..., Ajp9 p > 1, ((—oo,αi) is always an o-block
of length > Vk). If the β-blocks in {n,y^k~ι\n)) between Ajr = (ajr,ajr+\) and
Ajr+X = ( ^ i ^ v+i+i} have total length < Uk we put ηr = [ajr+\, ajr+ί ] Πy^k~^(n).
If the e-blocks have length > Uk we put ηr = 0. Do this for r = 1, ..., p — 1 if
p = 1 there are no ηr's. In the same way we define λ\9 ..., λq-\ with e-blocks and
o-blocks exchanged. Put

y(*)(n) = γ^-^dOMm U U ηp-ι U λι U U V i )

It is clear from the construction that the blocks defined by y^(n) alternate
between o- and e-blocks. We now let

where

kN= ι ;

Lemma 2.2. Consider two o-(e-)blocks of length > Vk in (n,yi(n)), n € Q\. Then
the total length of the e-(o-)blocks between them is > Uk, 1 < k < 2kχ.
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Proof. Assume that the lemma is false. Then there is a fc, 1 < k < 2/cjv, and two
o-(e-)blocks {a,a!) and (b9V) in (n9yι(n)) of length > υk9 such that the length of
the e-(o)blocks between them is < uk and all o-(e-)blocks between them have
length < vk. d must have been a right endpoint of an o-(e-)block (a", a') and
b a left endpoint of an o-(e-)block (b9b") in {n,y^k~ι\n)). Since b and a! were
not removed at some later step the e-(o-)blocks between (a"9 d) and (b, b") in
fey(Λ~1}(α)) have length < uk and one of the blocks {a\d) and (b9b")9 say (α",α')>
must have length < vk. But d' φ. yι(n)9 and hence d' must have been removed at
some later step, whereas d remained. This is only possible if {a"9 d) has length
> Vk and we get a contradiction. D

Lemma 2.3. (n,yi(n)) has the density property for every neQi.

The proof of this lemma will be given in Sect. 4.3.

2.2. The Elementary Rearrangement

Starting from a given configuration n and a partition γ = {«!,..., a2r-\} of
it, we will define a new configuration by letting two blocks in (n, y) change
place, (n, y) consists of 2r blocks and the elementary rearrangement operation, 5,
consists of letting the shortest block in (w, y) change place with the shortest of its
neighbouring blocks. To be more precise, let S/^+i denote the operation where
block number k changes place with block number k + 1. S^+i maps a triple
(n,y,δ) to a triple (n'9γ'9δ')9 where n,nr are configurations, y9y

r are partitions and
(5,(5' are sets which give the positions of the "old partition points." We define

n' = (α0,a{)... (ak-2,ak-γ) {ak,ak+i) (ak-Uak) (ak+uak+2)... (a2r-u

/ = (y\{ak-i,<*k,ak+i}) U {fl/c-i + fl/c+i - ak),

<5; = (δ\((5 Π [ak-\9ak))) U (δ Π [ak-Uak) + α f c +i - ak)

U (δ\(δ Π [ak9 ak+\)) U ((5 Π [α/c, α Λ + 1 ) - (ak - ak-\)) U {ak-U ak+1}.

We can now define the elementary rearrangement operation S as follows. If
(ak-ι,ak) is the shortest block in (n,y), the leftmost if there are several, then
S = S/c-u if \ak-i -ak-2\ < \ak+i-ak\ and S = SKk+1 if \ak-i-ak-2\ > \ak+ι-ak\.
To motivate the definition of / and δ\ write Ak = (fl2(/c-i)> «2fc-i)» /̂C = (aik-u a2k)>
k = 1, ..., r, and assume that Ap is the shortest block and |JBp_i| < |JBP|. Then
the partition points between Ap-i9Bp-i9 between Bp-ι,Ap and between Ap, Bp

are removed from y and the new partition point between AV^\AP and BP-\BP is
added to γ9 giving yr. The "old partition points" tell us how AP-\AP and BP-\BP

should be split up to give Ap^, Ap, Bp-γ and Bp; they are added to δ. We also
have to move previous "old partition points" lying inside Bp-\ and Ap. This
explains the definition of δ'. Compare Fig. 1.

1 i

Fig. 1. The dotted lines indicate the locations of the old partition points which are added to δ
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2.3. The Local Rearrangement

Starting with Q\ we will now by successive elementary rearrangements define
sets of configurations Qj, j = 1, ..., fejv, and for each n e Qj a partition y/(n).
Assume that Qj~\ has been defined and that each m G Qj-\ has been assigned a
partition y7 _i (m). For each m £ Qj-\ we do successive elementary rearrangements
until the shortest block is > Uj. This will surely happen after a finite number,
say /, of elementary rearrangements, where I of course depends on m. Let

(R(m\ Ry(m), Rδ (m)) = Sι(m9 yHl (m), 0).

We define Qj and y; (n) as follows

yj(n)= [J
meQj-ι ;R{m)=n

Lemma 2.4. m G β ; - i , y > 2, is uniquely determined by (R(m), Ry(m), Rδ (m)).

Proo/ It is clear that the blocks in R(m) defined by Rγ(m) alternate between
o- and e-blocks. Let Ry(m) = {au •••> «2r-i} and Rδ(m) = {b\, . . ., bs). Then
Λ = («2(/c-i),fl2Λ-i>, fc = 1, ..., r, are o-blocks and Bk = (aik-uaik), k = 1, ..., r,
are e-blocks. i^δ(m) tells us how to split these into smaller blocks, e.g. if
#2(/c-i) < bί < &/+i < < bi+p < aik-u then Ak should be split up into o-
blocks (ci2(k-i),bi)9 . . ., (bi+p,a2k-i)' Similarly the other blocks may be split up
into smaller blocks of the same type. The o- and e-blocks thus obtained are
the o- and e-blocks in (m,y7_i(m)). These blocks are correctly ordered since
in the rearrangement procedure we do not change the order of the o-blocks
among themselves or the e-blocks among themselves. We thus know the o- and e-
blocks in (m, γy_i (m)) in the right order and this enables us to reconstruct m
uniquely. D

The proof of the following lemma is postponed to Sect. 4.3.

Lemma 2.5. (n, y7- (n)) has the density property for every n e Qj and all blocks in
(n,yj(n)), neQj, have length > Uj.

3. The Energy-Entropy Argument

3.1. The Entropy Lemma

As a consequence of the definition of the original partition and the rearrange-
ment procedure there is a bound on how much a block can grow due to the
rearrangements. This gives an estimate of the maximal distance from an element
in Rδ(m) to the nearest element in Ry(m). More precisely we have the following
lemma.

Lemma 3.1. Let w; _i = 9j~2Vj. Then for all m e Qj-\ the distance from an
element in Rδ(m) to the closest element in Ry(m) is < 8w; _i, 2 < j < /QV

The proof of Lemma 3.1 is postponed to Sect. 4. We can now estimate the
entropy loss due to the rearrangement.
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Lemma 3.2. (The entropy lemma). Let n € Qj, 2 < j < k^ and let 1 < K < \yj(n)\,
M > 0 be integers. If LK,M(U) denotes the number of configurations m G Qj-ι such
that R(m) = n} \Ry{m)\ =K and \Rδ(m)\ = M, then

min(K,M)

w/iere Ci = log(72/<5).

Proo/ By Lemma 2.2 m is uniquely determined if we know n = R(m), Ry(m) and
(m). It follows from (2.1) that the number of possible Rγ(m) with |-Ry(m)| = K

is not more than

Imagine that each element in Rδ(m) is assigned to the element in Ry(m) which
is closest to it. Suppose that r elements in Ry(m) have been assigned elements

from Rδ(m), r < K, r < M. There are ( j possibilities for these r elements.

Rδ(m) = {bu , bM}, bγ < b2 < < bM, is spl i t u p i n t o r s u b s e t s {b\, ...9bmι},
{ u •••? bmι+m2}, ..., {6mi+...+Wr_1+i, ..., femi+...+mr}? mi + + mr = M. This} 1 r

can be done in ί I < 2 M ways. By (α); the distance from an element in

Rδ(m) to the element it has been assigned to is < 8w7 _i. Thus the number of
possibilities for the positions of the elements in Rδ(m), given mi, ..., mr and the
elements in Ry(m) they have been assigned to, is at most

fl / 1 6 v v ; - Λ ^ ^logQβWj-O ^ eJM\og(72/δ)

i t v m^ /
where we have used that I j < exp(fclogn). Combining all the combinatorial
estimates we obtain (3.1). v v

3.2. The Energy Lemma

We also need an estimate of how much the energy changes when we perform
an elementary rearrangement. This is provided by the next lemma which will be
proved in Sect. 5.

Lemma 3.3. (The energy lemma). Let (n,y) satisfy the density property and assume
that all blocks in (n,y) have length > 2-7"1. lfn[ is obtained from n by an elementary
rearrangement of (n9y), then

H(n)-H(n')>2κj, (3.2)

where K is a positive constant that only depends on α.

Remark. When α < 2 the right-hand side of (3.2) can be replaced by κ:;2(2~α) ( /~1 ).

From the energy lemma it follows that for all m e βy-i, 2 < j < k^ we have

H(m) - H(Rm)) > κ\Rδ(m)\j. (3.3)

To see this note that the partitions we obtain in the intermediate steps as we go
from m to T(m) by successive elementary rearrangements all satisfy the density
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property. Thus we can use Lemma 3.2 repeatedly and since the total number of
elementary rearrangements we do is \Rδ(m)\/2 and all blocks have length > 2 7 " 1

by Lemma 2.5 we get (3.3).
We can now specify the constants appearing in Theorem 1.2. Let

<50 = min{ρ, 1 - ρ, 1/4,2(α - l)κ/5 log 2)}

and

For a given β > βo we let δ be given by

β = (3 + log(72/δ))/κ, (3.4)

i.e. δ = K exp(—κβ), where K is a numerical constant. Note that β > βo implies
δ <δ0.

33. Energy-Entropy Argument for the Local Rearrangement

Above we have defined maps R : β ;_i —• <2;, j = 2, ..., /CJV and together they
define a map & : β i -> βfcN. Define

Hi = {nGQi;|y f c w(Λ(n))l^3}

and if, = R(Hj-\). Note that /// c Q ; so we have a partition y;(n) for each
ne Hj. We shall prove that

=0. (3.5)

According to the next lemma, which will be proved in Sect. 4.2, this proves
Theorem 1.2.

Lemma 3.4. Let du &2 be defined by (1.6). If 0 < τ\ < %2 < d\ — ε, ε > 0, then

{neQ;d(τuτ2)(n)< 1-20)0:^

and if d2 + ε < τ\ < τι < 1, then

for all sufficiently large N9L.

We now turn to the proof of (3.5). The following inequality controls the
energy-entropy balance in the local rearrangements. For 1 < k < kN we have

V ~βH(n)

where ηk < n and η is a numerical constant. We will prove (3.6) by induction.
Assume that (3.6) is true for k = j — 1. Let D ;_i = log 2{j — 1). Then using
Lemma 3.2 and (3.3) we find

nβHj m€H;_i ;R(m)=n

=l M=0
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where we have also used that |y;_i (m)| = |#y(m)|+|#(5(m)|, which follows from the
fact that in every elementary rearrangement, S(n,y,δ) = (n!,yf,δr), \y'\ = |y| —2,
|<5'| = \δ\ + 2, and hence |y| + \δ\ = \y'\ + \δ'\. Using (3.1) we see that (3.7) can be
estimated by

V e-βH(nj y eDj.lK ί\Ίi (n)\\ G { κ n) ( 3 g )

neH K^\ \ K J

where
ΐl(K,M) / Ύr\

r=0 v 7M=0

According to (3.4) βx - Cγ = 3 > 1. Thus

( KM oo K

ΣΣ+ Σ Σ
M=0 r=0 M=K+1 r=0

Σ
r=0 ^ ^ M=0

Inserting this in (3.8) and calculating the sum over K using the binomial theorem
the expression in (3.8) can be estimated by

(1 + 2e~j)2 ^ e-βH®(l + eD^ (1 + e~j)Y^.
neHj

Since log(l + eDJ~ι (1 + e~j)) < log(2y') we have completed the induction step if
we put r\j = r\j-\ (1 + 2e~j)2. We see that

k oo

ηk = Π ! + 2 0 2 <
7=2

and (3.6) is proved.

3.4. Energy-Entropy Argument for the Global Rearrangement

We are now in position to rigorously carry out the argument sketched in the
introduction. In HkN all blocks have length > 2kN~x - jV(log2)/4 and this is suffi-
cient for that argument to work. For each m e HuN we will perform successive
elementary rearrangements starting from (m,^N(m),0). Every elementary rear-
rangement reduces the number of elements in the partition with 2. We apply the
S-operations repeatedly until we get a configuration (G(m),Gy(m),Gδ(m)) with
only one partition point, i.e. |Gy(m)| = 1. Just as in Lemma 2.2 we see that m
is uniquely determined by (G(m), Gy(m), Gδ(m)). It is clear by the rearrangement
procedure that \Gy(m)\ + \Gδ(m)\ = \ykN(m)\- \ykN(m)\ = 2M - 1 is odd and, by the
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definition of H\9 M > 2. Given G(m) the number of possibilities for Gy(m) and
Gδ (m) is less than

O A , <e ( 3 9 )

2M — 2)

When we go from m to G(m) we do \Gδ(m)\/2 = M—1 elementary rearrangements.
Repeated application of Lemma 3.2 gives

tf (m) - H(G(m)) > 2κ(M - l)kN (3.10)

since all blocks in HkN have length > 2kN~ι.
Thus by (3.6) with k = kN, (3.9) and (3.10) we obtain

P(H{) < — Y e~βH(n) y e\og(2kNL)(2M-l)-2βκ(M-\)kN

neG(HkN) M=2

M = l

for all sufficiently large N,L. Here we have used that j8κ > J?oκ; > 8. It follows
from (3.11) that (3.5) holds and we have proved Theorem 1.2.

4. Proof of the Entropy Lemma

4.1. Proof of Lemma 3.1

Call the assertions in Lemma 3.1 (a)j for a particular value of j . Let

Together with (a)j we will prove the following assertion which we call (b)j,
2 < j < kN.

Consider two o-(e-)blocks in {n,yj(n)), QEQJ, of length > w^. Then the total
length of the e-(o-)blocks between them is > Uk, j < k < 2kN — j .

From Lemma 2.2 we know that {b)ι is true. We will prove {a)j inductively by
showing that (fc)_/-i implies (d)j and that {b)j-\ and (a)j together imply (b)j.

Assume that (b)j-\ is true. (R(m),Ry(m)) has been obtained from (m, y7 _i (m))
by successive elementary rearrangements. Consider a block A in {R{m),Ry(m)).
Since there is a symmetry between o- and e-blocks we can assume that A is an
o-block. A has been built up from o-blocks A\, ..., Ar in (m,7/_i(m)). If we can
show that

min max{|i4i...Λp_i|,|4p +i...i4Γ |} < 8w; _i (4.1)
l<p<r

then (a)j follows. In (m,yj-\ (m)) we had e-blocks B\9 ..., β r_i between A\, ..., ^4r,

m = ... B0AiB1A2B2... Ar-iBr-iArBr....

Λ(m) = . . .£AB' . . . , where B = ...Bo...Bs_x and E ; = Bs...Br... for some 5,
1 < s < r. It follows that As must have been fixed throughout the rearrangement
procedure, since if As has been involved in a rearrangement J^-i and Bs would
have been joined.,
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Claim 1. If the elementary rearrangement ...A1B1A2B2... to ...AιA2BιB2... is
performed at some step, then \A2\ < |^4X| and II?1! < \B2\, and one of B1 and A2

has length < Uj. Here A1 can be an o- or an e-block.

This follows immediately from the definition of an elementary rearrangement.

Claim 2. Consider an e-block, Bp, to the left (right) of the o-block containing As at
some step in the rearrangement procedure. Let A1, . . ., Ap be the o-blocks built up
from Au... Ar to the left (right) ofBp. If \BP\ > uh then \A* \ <ujt j = I, ..., p

and \Aι ...Ap\ <3w, _i.

This is seen as follows. We have the configuration

...A1Bι...ApBpAp+1..., (4.2)

where Bι

9 . . ., Bp are built up from some (or all) of B\, . . ., Bs-ι. Assume that
\Aq\ > Uj, some q, 1 < q < p. Because Bp eventually ends up in B, at some step
an e-block containing Bp must change place with an o-block containing Aq, but
this is impossible according to Claim 1 since they both have length > Uj. Thus
\Aq\ < Uj, 1 < q < p, and (4.2) actually looks like

...AiB1A2...ApB
pAp+1...,

i.e. Ai = Au i = 1, ..., p.
If some o-block A\ is joined with A\-\ before it is joined with A\+\ (or Ap+1...)

we get an o-block of length > Uj to the left of Bp and a similar contradiction.
Thus Ap, ..., A]_ are joined successively to the o-block containing Ap+ι. It follows
from Claim 1 that when A3 is joined with the o-block containing A4 we must
have

\B2\>\B2...BP\. (4.3)

Similarly we must have

If IB21 > wy_i, then |Bi| > w; _i and by (b)j-ι, \A2\ > Uj a contradiction. Hence
|B 2 | < w -i and by (4.3)

and consequently

\Aι...Ap\< pUj < (Wy_i /Uj-i + 2)Uj < 3Wy_i .

Claim 3. Let t < s. If At-\ is joined with At before At-2 is joined with At-\, then
\A\...At-2\ < 3w/_i. Similarly for t > s, if At+ι is joined with At before At+2 is
joined with At+ι, then \At+2...Ar\ < 3w; _i.

This follows immediately from Claim 2, since when At-\ is joined with At

we get an ^-block of length > Uj either to the left or to the right of the o-
block containing At-\. Now At_2 must lie to the left of this e-block and hence
\Aι...At-2\ < 3w7 _i.

We can now prove (4.1) by proving that max{|y4i ...^4s_i|, |^4s+i . . .Λ l} <
Swj-ι. Assume first that \AS\ > w; _i. If \BS\ > Uj, then \A\... As_i| < 3w;_i by
Claim 2. Suppose that \Bs-\\ < Uj. Then (fc)7 -i implies that |^4s_i| < w7 _i. If As-ι
and As are joined before As-2 and As_i, then by Claim 3, \A\ ...As-2\ < 3w; _i,
and hence \A\ ...As-\\ < w ;_i. Otherwise, at some step an o-block As-j{ ...As-2,
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j \ > 2, is joined with As-\ which is not joined with Λs. If it is As-χ that
changes place we get an e-block of length > Uj to the right of As-ι and hence
|,4i...,4 s_i| < 3wj-\. In the other case we get \As-jx ...Λ-2I ^ 14,-11 ^ w/-i
and according to Claim 3, |^4i... v4s_;i | < w/_i. Thus |Ai... As-\ \ < 3w;_i. By a
symmetric argument we get \As+\ 4 1 ^ 4w;_i.

Now assume that | 4 I < w;_i and that 4 - 1 is joined with As before 4+1 is
joined with As, the other case is analogous. At some step an o-block Ajγ ... 4 - i
is joined with As and by Claim 1, \Ajγ . . . 4 - i | < \AS\ < w ;_i. By Claim 3,
\A\ mm.Ajγ-\\ < 3WJ-I and hence \A\ . . . 4 - i l < 4w/_i. At some later step an
o-block As+ι ...Akι is joined with an o-block Aj2 ...As. It follows from Claim 1
that \As+\...Ak-\\ < \Ah ...As\ < 5w/_i. By Claim 3, \Aki+γ...Ar\ < 3w; _i and
thus \As+\ ...Ar\ < 8w;_i. This concludes the proof of (a)j.

We now turn to the proof that (fc),-i and (a)j imply (b)j. Assume that (b)j
is false. Then there is an n e Qj and two e-blocks, say, B and B' in (n9yj(n))
of length > Wjtk such that the length of the o-blocks between B and Br is < Uk,
k > j . We must have k > j + 1 since all blocks in (n,yj(n)) have length > Uj.
Let A\9 . . ., Ap be the o-blocks between B = (bo,aι) and B' = (bp,ap+\). Write
Ax = (cii,bi) and Bt = (foI?flI+i). By (2.1) there is an m e β ; - i , R{m) = U such that
a\ G Ry(m). It follows from the density property that at least one of the ft s must
belong to Ry(m), and we let bq be the largest such bx. In (R(m),Ry(m)) we have
two e-blocks C = (c,αi), where c < bo and C = (bq,c

f), where c' > ap+\. Hence
C and C have length > w^. Consider an o-block A in (R(m),Ry(m)) between C
and C'. Then A = (ar,bs) for some r, s, 1 < r < s < q. If r = s, then \A\ = |^4r|.
Assume that r < s. Then 4̂ = ArBr...BS-\AS. From the density property for
(R(m),Ry(m)) we get that the number of occupied positions in A is

On the other hand we get from the density property for (n, γ ; (n)) that the number
of occupied positions in A is

It follows that

14 < (^ + y ^ W l + + MM)

We have thus shown that the total length of the o-blocks in (R(m),Ry(m)) between
C and C is < (1 + (5(1 - 2δ)~ι) < 2 times the length of the o-blocks in (n,yj(n))
between B and B\ i.e. < 2uk = w/c+i

We will need the following two inequalities which are easily proved. If fe > y'+l,
then

/_i and

It follows from (a)j that there must have been e-blocks C\ and C[ in (m, y; _i (m))
of length > w,^ — 16w; _i > Wy -i^+i which are part of C respectively C. The o-
blocks in (R(m),Ry(m)) between C and C must have been built up from o-blocks
in (m, yj-\ (m)) between Ci and C[ because if an o-block is moved across C\ or
C[ then they must at least double their length. Since Wj,k — 16w/_i > 16w; _i this
contradicts (α) ;. We thus have two ^-blocks C\ and C[ of length > Wj-i^+i in
(^yy-iίm)), such that the total length of the o-blocks between them is <
This contradicts (6)7 _i if k + 1 < 2kN - (J - 1), i.e. k<2kN- j . D
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4.2. Proof of Lemma 3.4

We will need the following lemma, which we will prove in Sect. 4.3.

Lemma 4.1. Let yι(n) = {au ..., ar}, n e Qι. If 0 < x < x + z < aι and
N(x,x + z) (n) < (1 — 2δ)z, then x + L > Q z 2 , where C$ is a constant that
only depends on δ. Similarly, if x + z > x > ar and N(x9x + z) (ft) > 2(5 z,
x-ar> Cδz

2.

Let w G Qi\Hi and let m = @(n) e QkN. Then y/^m) only contains one element
which we denote by λ. Define

Then ft € Qi(m),QkN(m) = {m} and R(Qj-ι(m)) = β ; (m). In (m,y*N(m)), <-oo,λ>
is an o-block and (X oo) is an e-block. It follows from the density property that

N = N(l,λ- 1) (m) + N(λ,L) (m) < λ + δ(L - λ)

and
N = N(l9λ- 1) (m) + N(λ,L) (m) > (1 - δ μ .

Thus
( 1 - δ ) ~ ι { N / L - δ ) < λ / L < ( 1 - δ ) χ

Given ε > 0 we see that for sufficiently large AT, L,

where di and dι are given by (1.6). Define

Vj = min (min y, (ft)), j = 1, . . . , kN,
n e β ; (m)

μ ; = max (max γj (ft)), j = 1, ..., kN.

Let ft € β (m). Then min y, (ft) = min Ry(n') for some nf e β ;-i(m) such that
R(nf) = ft. It is clear from the definition of an elementary rearrangement that
minify^) > miny/_i(ft/) > v; _i. Thus Vj < Vj-\. There is an n" e β ;-i(m) such
that v/_i = minyy - i ^ ) . It follows from Lemma 3.1 that

mm Ry{f/f) — mm yj-ι(n") < 8w7 _i .

Furthermore minify (ft") > min y} \R{n!')) > v; since i^ft") € β ; (m). Thus v; —
Vj-ι < 8w; _i and we obtain

kN

λ - V! = vkN - V! < ]Γ wj-i < CTV ,̂ (4.4)

where C is a constant and y = \ log 36 < 1. Similarly we can show that
μi — λ < CNy. Hence for N,L sufficiently large,

d\ - ε < Y < y- <d2 + ε.
L L

If 0 < τι < τ2 < d2 — ε and n € β i W i then ([τ\L]9 [τ2L]) lies inside an o-
block in (ft, 71 (ft)). It follows from Lemma 4.1 that if d(τuτ2) (ft) < 1—2^, then
[τ\L] + L > C$([T2L] — [τiL])2, which is impossible if L is sufficiently large.
Hence d(τhτ2) (ft) > 1 —25. Similarly, if d2 + ε < τi < τ 2 < 1, then ([τiL], [τ\L]}
is part of an e-block in (ft, 71 (ft)) and Lemma 4.1 implies that we must have
d(τι,τ2) (ft) < 2δ. This completes the proof of Lemma 3.4. D
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4.3. Proof of Lemmas 2.3, 2.5, and 4.1

Proof of Lemma 2.2. The proof of (i) and (ii) in Definition 2.1 for o- and
e-blocks are similar and we will only give the proof of (i) for o-blocks. Let
y(0), ..., γ(2/CN) = yi be the partitions used in the inductive definition of y\. Suppose
that every o-block A = (a,a') in y^k~^(n) satisfies N(a,a + ί) > 1 + (1 — δk-\)t for
0 < t < d — a and some δk-i > 0 independent of A. This is obviously true for
k = 1 with δo = 0. Consider an o-block B = (ft, ft') defined by y^k)(n). Assume
that the length of whole or parts of e- and o-blocks in {n.y^^ {n)) between ft and
b + s < ft' is / and s — I respectively. The o-blocks between b and b + 5 contain at
least l-\-(l—δk-i) (s — l) particles according to our assumption. The construction
of yW(n) from γ^k~^(n) shows that the length of the o-blocks between b and
b + s must be at least Vkl/uk Hence s — I > Vkl/uk which gives / < Uks/vk and
(1 — δk-i) (s — I) > (1 — {δk + Uk/vk))s. Thus we can take δk = δk-ι + Uk/vk and
we have proved (i) since

έί *
Proof of Lemma 2.5. We first prove that (n,y;(n)) has the density property for all
n e Qj by induction on j . This is true for j = 1 by Lemma 2.3. Assume that
(m, y7 _i (m)) has the density property for all m e Qj-\. Then clearly {R{m),Ry{m))
has the density property for all m e Q -i

Let (a,d) and \a\a") be two consecutive blocks in (n,y;(n)). Assume that
na = 1. By (2.1), a G Ry{m\) and a! e Ryimi) for some mi, m_2 G βy-i, ^R(mi) =
R(m2) = n. Let fo be the element closest to the right of a in Ry{m\), and b' the
element closest to the left of d in Ry{mi). Then fc > d and fe7 < a. Since nα = 1,
(α, ft) is an o-block in (n, jRy(mi)) and thus N(a, d - 1 ) (n) > 1 + (1 - δ) (d -1 - a).
We see that (ft',^) must be an o-block and hence na>-\ = 1 and na> = 0.
Consequently (a,d) is an o-block and it satisfies (i) and (ii) in Definition 2.1
since (a9b) and (bf,d) satisfied (i) and (ii). In the same way we show that na> = 0
implies that (d,dr) is an o-block and that it satisfies (i) and (ii). Hence o- and
e-blocks alternate in (n,y; (n)) and they satisfy (i) and (ii) in Definition 2.1.

Let A = (a,d) be the shortest block in (π,y;(n)), a e Ry(m\), R(m\) = n, where
m\ € Qj-\. We take A to be an o-block, the other case is similar. If \A\ < Uj then
d £ Ry(mι) since all blocks in (R(mι),Ry(mι)) have length > Uj by definition.
To the right of A in (n,y;(n)) there is an e-block B = {d,a") of length > \A\. By
(2.1) the next point to the right of a in Ry{m{) is > a". Hence

N(a9 a") <d -a + δ (a" - a) < (1/2 + δ) (a" - a).

But since δ < 1/4 when β > β0, 1 — δ > 1/2 + δ and thus this contradicts the
density property of (n,Ry(mι)) which gives N(a,df) > (1 — δ) (d! — a). Π

Proof of Lemma 4.1. We prove the first part of lemma, the second part is
analogous. The assertion will be proved inductively for (n, y^k\n)), k = 0, ..., 2kχ.
The case k = 0 is trivial since N(x,x + s) (n) < (1 — 2(5 )s is impossible. Assume
that the assertion is true in (n,y^~^(n)) and let A = (—oo,α) be the first o-block
in (n,y(k\n)). If (—oo,α) is an o-block also in (n,y^k~^(n)) we are done, otherwise
A = A\B\A2...B-\AV, where Aι,...,Ap are o-blocks and J5i, ...,2?p_i are e-
blocks in (n9γ^k~^(n)). It is clear from the construction that A\ and Ap both have
length > Vk. Let the length of the β-blocks which wholly or partly lie in (x, x+s) be
y and suppose that juk < y < (J' + l)w .̂ It follows that (x,x + s) contains at least
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j o-blocks of length > v^ Then s — y> jvk and N(x,x + s) (n) > (1 — δk-\) (s — y),
where δk-ι is the same as in the proof of Lemma 2.3. We get

N(x, x + 5) (n) > (1 - δk-i) (1 - j / φ

)5 > (1 - 2δ)s9

which contradicts our assumption. Hence y < Uk, and from the inequalities
(1 -δ)(s-y)£N(x,x + s) (n) < (1 - 2δ)s we find

s < 5~l(l - δ)y < δ^iί - δ)uk.

If (x, x + s) lies inside A\ the result follows from the induction hypothesis.
Otherwise the closest x can be to —L is L — (s — y) > Vk — (s — y). Thus

• L > Vk — (1 — '•

2 . D

5. Proof of the Energy Lemma

In this section we will prove Lemma 3.3. Suppose that ...A1B1A2B2- —•
...A1A2B1B2... is the elementary rearrangement that has been performed and
that A1 is an 0-block. The case when A1 is an e-block and thus B2 an o-
block is completely analogous by symmetry. We also assume to begin with that
α < 2. Write A1 = (aiM), B1 = (bua2), A2 = (a29b2) and B2 = (b2,a3) and let
xi = Î L1!, y\ = IB1!, X2 = \A2\, yι = \B2\. The elementary rearrangement above is
only performed if xi > X2 and y\ < y2.

Note that we gain energy when two blocks are moved closer to each other
and loose energy when they are moved away from each other. If we take all
energy losses into consideration but only include the energy gain due to A1 and
A2 having been moved closer to each other, we get the following estimate

m j

1

a^<b2

 ;vc/ -oα u-i+yirj ^ ( / - o
; > f c 2 a2<j<b2

1 1

V 0 - »)•

- Σ
i<bι xO'-0α U-i + xi

h<j<a2

= Eι-E2-E3-E4-E5. (5.1)

Here E\ is the energy gain due to A1 and A2 moving closer, Ei the energy loss
due to A2 moving away from everything to the right of B2, E3 the energy loss
due to separating B1 and A2, £4 the energy loss due to A2 moving away from B2

and finally £5 the energy loss due to Bι moving away from A1 and everything
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to the left of A1. Our problem is to estimate E\ to £5. Since nz is 0 or 1 we have
ΠiΠj > 1 — (1 — Hi) — (1 — fij). If we use this in E\ we get an estimate of E\ from
below by three sums E[^ — E^ — E^ corresponding to 1, 1 — nf, and 1 — ir-
respectively. If we replace all n\ and Πj in E2 by 1 we get an upper bound on E2.

By rewriting the sums we get the following estimate:

2 - 1

-v y
O' + '

(5.2)
\ i / -+- / -t- i i r i i -+- / -+- / i;i i1* /

i=l 7=0

where in the second inequality we have used xi > x2 and y\ < y2. Assume first
that y\ >x2. The terms in the first double sum in (5.2) are increasing functions
of y\, whereas the terms in the second double sum are decreasing functions of
y\. Hence (5.2) is smallest, for fixed x2 and y\ > x2, when yγ = x2. Now assume
that xi > y\. If we use cancellation between terms in the double sums in (5.2)
they can be rewritten as follows :

1 \ xi yi-1 1

1 i _ y y Iy -_i

yy f ^

2 l !

y _ J _ _

^ 3 ^ 1 + ^ 2 1 4

(»+ 7 + ̂ ) α (i + + 2x2)
α

= y y ( i 1
fΐ ^ V(j + ;)α (i + 7-7=1 ϊ=0

vp ^ / 1 1 \

J § {(i + J + X2)« ~ (i + j+2x 2)"J " (5'3)
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The same argument as above shows that if X2 > yi, y\ fixed, the last expression
in (5.3) is smallest when X2 = y\. If we put x = min(x2,yi) we obtain the estimate

£(i> _ E 2 > Σ Σ ( • 1 . α - 2

 a) (5-4)
ί=l 7=0 ^

Split this sum into a sum over i,j such that i + j < x and a sum where ί + y > x.
If k = i + j we find

1

1 2
-k)«

where /(ί α) = 2(1 + ί)~α + 2(3ί - l)-α - {It - 1)"«. If x = 1 the sum in (5.5) is
zero. At the end of this section we will show that

sup/(t;α) = l - 4 < l (5.6)
ί>l

Define g(x) = 1 + (2 - α ) " 1 ^ 2 " 0 1 - 1). If we use (5.6) in (5.5) we get

x-l .

E[ι) -E2> min{l - 21-*, da} ^ ^ > d'xg(x). (5.7)
k=l

We will now show how £5 and E{2) are estimated. £3, £4 and Ef* are estimated
similarly. By the density property

If we use n, < 1, summation by parts and estimation of sums by integrals we get

ί ί jlί

i = l ; = 1

where x = min(x2,yi). The density property gives

k

.-nbι-ι <(5(fe-l), k =
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Using this estimate in a summation by parts we find

bι-1 b2-l

CO X 2 - l

_δ y J; 1 \

A similar argument gives the same estimate for JE{3), £3 and £4, and together
with (5.7) this gives

f ^ y (5.8)
Note that g(x) > 1 + log* and that g(x) -• 1 + log* as α -> 2-. Put ^ ==
4/c/log2 and assume that δ < 5 (α - I)2κ;/log2. Since x > 27'""1, (5.8) gives that
H(n) — H(n') > 2κj which is what we wanted to prove.

We have proved Lemma 3.3 except for (5.6), the proof of which we outline
below. We have

df = log(l + Q log(3t - 1) log(2t - 1)

d (t+iy ( 3 ί l ) α
da (ί-fl)α (3ί — l)α ( 2 ί - l ) α

With some work the right inequality in

log(2ί - 1) log(l + ί) log(2ί - 1)

(It - l)α (1 + ί)α log(l + ί) ~ V x +'•

can be poved for £ > 1 and consequently df /da < 0 if t > 1. When t > 1
it is not difficult to see that /(ί α) < 1. When 1 < α < 2, /(l α) > 0 and
(df /da) (l α) > 0. Hence /(x α), for fixed α, attains its maximum at some point
ία > 1 ία only depends on α. Thus

f(t;a) < /(ία;α) < /(ία;l) < 1

for all t > 1. If we put 1 — da = f(tu; 1) we are done. D

6. Proof of Theorem 1.3

Fix a β such that the free energy f(ρ,β) defined by (1.7) is a strictly convex
function of ρ and fix iV,L. Let n e β be a configuration and let Xμ(n) denote the
μ:th occupied position in A, i.e. the position of the μ:th particle, μ = 1, ..., N.
For a given small ε > 0 we define

Iμ = {xeA;\x/L-μ/N\>ε}

and
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Let v = v(N,L) be such that
V

is maximal when μ = v and let ξ = ξ(N9L) be such that

V e~βH(n)

neM£ > A;xv(n)=x

is maximal when x = ξ. Note that ξ e Iv. If we define

X"1 'Hnj rj V^ fliΠj

i,je[μ)nΛ ' Z ~ " 7 ' i,je(ξ,L)nΛ \l~J\

then H(n) — H\(n) — fyin) > o(N), where o(N) is positive and does not depend
N

on n. Let Mε= [j Mε^. Then
μ = l

N

Σ̂ Σ
μ = l «G

neMεtμ ,xv(n)=ξ n;xv(n)=ξ

< e°{N)Z(v - l ξ - 1)Z(N -v,L-ξ). (6.1)

We want to show that
l i m s u p P ( M ε ) 1 / L < c < l , (6.2)

where c is a constant (that depends on ε). Choose a subsequence Np —• oo,
Lp -> oo and Np/Lp —> ρ as p —>> oo which gives the upper limit in (6.2) and such
that

ί = lim p> p and s = lim
P-KX) Aίn

exist. Now, using (5.1) and the definition of free energy we see that

lim sup P(Mε)VL < exp β Γ/(ρ, β) - sf Q ρ, ̂  - (1 - s)f (1=1Q

Observe that ξ e Iv implies \ξ/L — v/N\ > ε and consequently \s —1\ > ε. Since
ξ > v and N — v<L — ξwQ must have 0 < 5 < 1. Thus ρt/s φ ρ(l — ί)/(l — s)
and the strict convexity of / gives

and we have proved (6.2). It follows from (6.2) that

limsupP(M ε) = O (6.3)
Λ-+Z+
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for every fixed ε > 0. We will prove that

Q\Mεr cz {n e Q ρ - ε < d(τuτ2) (n) < ρ + ε}, (6.4)

where εr — ε/3ρ. Equations (6.3) and (6.4) together prove Theorem 1.3.
If n € β\M ε S then \xμ(n)/L - μ/N\ < εf for μ = 1, . . . ? N. Thus for each

τ, 0 < τ < 1, we have μ > (τ + ε')N, which gives Xμ(n) > τL, and hence
ΛΓ(0,τL) (n) < μ - 1. Consequently JV(0,τL) < (τ + ε')ΛΓ. Similarly μ < (τ - ε')N
implies Λί(0,τL) (n) > [(τ - εf)N]. These two estimates of N(0,τL) (n) give

ρ ( l - 3 ε / ) < d ( τ i , τ 2 ) ( n ) < ρ ( l + 3ε/),

and we have proved (6.4). D
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