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Abstract. In this paper I will first derive, based on energy estimations and geometric
invariance, the asymptotic behavior of solutions of linear spin field equations in
Minkowski space. It generalizes the result in [3] where it was proved for the spin-1
and spin-2 cases. The techniques are then applied to Yang-Mills equations, the
result improves the previous one in [1] by allowing the initial data to have charge,
dipole and quadrupole moments. The Lie derivative operator for spinors and some
properties will be also discussed; they can be used to simplify some algebraic
calculations of [4].

1. Introduction

There have been a lot of works which use energy estimates together with
the geometric invariance to prove the global existence of a small amplitude
solution of nonlinear hyperbolic equations. The highlight is the recent work of
D. Christodoulou and S. Klainerman who proved in [4] the stability of Minkowski
space; for the simpler case of nonlinear wave equations, see [8]. The most important
part of this type of work is to derive a good decay estimate through energy
estimations for the solutions of the linearized equations.

In this paper, I will study the asymptotic behavior for the solutions of spin-n/2
equations in Minkowski space R1 + 3. The special cases of the spin-1/2, spin-1 and
sρin-2 are respectively the Dirac equations, Maxwell equations and the linearized
Einstein equations in a vacuum. Recently, in [3], the asymptotic properties were
studied by using energy estimates for the sρin-1 and spin-2 equations without
referring to spinors. In this paper I will generalize them to the arbitrary spin case.
This result was first obtained by R. Penrose who used the conformal transformation
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from Minkowski space to the Einstein cylinder R x S 3 , see [11,12]. Application
of this method to the Yang-Mills equations was done in [1] to prove the global
existence of small amplitude solutions when the initial data do not have charge,
dipole or quadrupole moments. The decay properties were also obtained in this
case. By using the energy estimation, we will prove the similar result to include
the case when the initial data has charge, dipole and quadrupole moments. The
global existence will also be obtained in this way; it is very easy once we have the
necessary estimates.

Apart from the results, another important thing in this paper is the Lie
derivative operator for spinors. Some very nice properties of this operator will
also be discussed. In [4], a modified Lie derivative operator for the Weyl tensors
and Weyl currents was also defined, the operator I defined in this paper agrees
with that in [4], but it is much more natural in this spinor formulation, and the
properties are much easier to prove in this form. These properties can be used to
simplify some calculations in [4] (Part II). Because of this application, most of the
expositions in this paper will be done on arbitrary Lorentz manifolds, although
the final result will only be proved on Minkowski space.

Without being in their most precise forms, the following two theorems are the
main results of this paper,

Theorem 1. For the solution ψAB of linear spin-n/2 equations in Minkowski space
R1 + 3, we have the following uniform L°° estimate when t > 0 (similarly for t < 0),

x)!!^.,, (1)

where C is a constant independent of the solutions,

T 2 = l + ( i + r)2, τl = l+(f-r) 2 , (2)

and Hs δ is the weighted Sobolev space whose norm is

I I ^W »β = Σ f ( i + r2ΓWMI2. P)
*>δ k^s R^

The more precise form of this theorem is the so-called "peeling off" properties
of the solutions along the null directions.

Theorem 2. Let ΨAB be the curvature spinor of the Yang-Mills field. Suppose that
the initial data are smooth, satisfy the constraint equations and the following smallness
condition:

||f(0,x)|| ^ε0, (4)
H2,\

where ε0 is a small constant; the superscript g on the H2 1 norm means that it is the
gauge covariant norm, that is, we replace the usual derivative by the gauge covariant
derivative in the definition of (3), the inner product of the Lie algebra is taken to be
the Killing product (-,-) which is assumed to be positive. Then there exists a unique
global solution of Yang-Mills equations in Minkowski space; moreover it has the
following decay estimate, when t > 0,

\Ψ(t,x)\^Cτ^τ-^2\\Ψ(^,x)\\ . (5)
H2,l

The result in Theorem 2 still does not allow the initial data to have charge,
that is if the curvature only decays like r~2 at t = 0. But without too much more
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difficulty, I will also prove that for some initial data with charge the estimate (5)
is still true inside a fixed light cone, i.e. r ̂  t + C; outside the light cone we will
only have the following estimate:

) \ \ β . ( 6 )

The proof of Theorem 2 is based on the a priori estimate of some weighted
Sobolev norms. When the group G is non-Abelian, as we begin to differentiate the
Yang-Mills equations, we have to estimate some integrals over a region in the
space time of the error terms generated from the commutator of the gauge co variant
derivative operators. To estimate this integral under the a priori assumption that
the curvature spinor ΨAB decays like the solution of linear spin-1 equations, usually,
we split the region into a family of space like hypersurfaces Σt9 1 is a time function.
Then we do some manipulations such as the Holder inequality on the integrals
over Σt9 and hope to come up with something which is a priori integrable for
f e(0, oo). For our problem, we encounter serious difficulties in this approach.
Technically, this is because we cannot make full use of the a priori assumptions
that the components of curvature decay differently along the null directions. The
idea is that we can split the space time region into a family of light cones CU9 u is an
optical function, and perform the similar procedure as before, then integrate along
the parameter u. This small trick seems to be just a pure technicality, but I believe
it is very important in studying problems related to the radiation of solutions of
hyperbolic equations because radiation waves propagate along null geodesies,
while the concept of space and time is just purely a matter of intuitive convenience.

To illustrate, let's look at how the methods differ in estimating one of the error
terms (the notations are given in the subsequent sections):

J τ2r|^<F 1 |)<ί'_ 1 | |<F 1 |
0 < ί < 0 0

/V V/ 2

Σt

The a priori assumption

implies sup(r| Ψ_1\)<^C9 but this is terrible because the integral in time is not
Σt

convergent.
Now if we use the family of outgoing light cone Cu = {t - r = u}, the estimate

then proceeds as follows:

f τ\r\^ΘΨ,\\Ψ^\\Ψ,\
0 <ί < OD

00 / - \ 1 / 2 /
£ f ώisupίrl lF.J) Πτ^^l2

Cu \CM / \

1 / 2/ V/ 2

The a priori assumption implies sup (r | Ψ_ 1 \ ) <; C/( 1 + | u \ )3/2, which is integrable
£

for UE(— oo, oo). This is good!

The paper is organized as follows: in Sect. 2, I will first review the notations
of two component spinors; in Sect. 3, I will discuss the Lie derivative operators;
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Sects. 4 and 5 respectively give the decay estimates for the solutions of spin
equations and Yang-Mills equations.

2. Some Notations about Spinors

We will use throughout this paper the notations of the two component spinors.
In this section I will give a quick review of some of these; more details can be
found in [12].

(M1 + 3,#μv) is a Lorentz manifold, that is gμv has signature (1, — 1, — 1, — 1),
the Greek letters run from 0 to 3. If we fixed a time function t on M , then choose
xl to be the coordinate of Σ0 = [t = 0}, they are also the coordinates of each time
slice Σt = {t = Const} by following the time flow; the lower case Latin letters go
from 1 to 3. We will use Dμ to denote the covariant derivative on M, and V, the
covariant derivative on each time slice.

(V,εAB,σμ

B) is ^e sPmor structure of (M9gμv), where V is a rank 2 complex
vector bundle on M; the capital Latin letters such as A = 0, 1 are the index labeling
the fibre of V;A' = Q',Γ is the index labeling the conjugate bundle V',εAB is a

symplectic product on V, i.e. it is nonsingular and &AB = ~ εBA>σμB = tfA *s a

Hermitian spinor valued one form with the following property:

and for any future-directed time-like vector field T, σAA' Tμ is positive definite.
We use the ε's to raise and lower the indices of spinors as follows:

ψA = εABψB, ψA = ψBεBA. (8)

The following map define^ an isometry from the tangent bundle TM to the
Hermitian subbundle of F® V:

χ»->χA* = χ*σA*. (9)

In a similar way, any tensor is identified as a spinor; denote DAA, = σβ

AA'Dμ to
be the covariant derivative operator for spinors.

Definition 1. If spinor ψ AB is totally symmetric with respect to the indices (AB . . .),

then it is called a spin-n/2 field', and

is called the (massless) spin-n/2 field equation.

As an example I will recall how to write the usual Yang-Mills equations as
the gauge covariant spin-1 equations. Let G be a compact Lie group, ^ be its Lie
algebra. A gauge field is given by its gauge potential φμ which is a ^ valued one
form. Denote Dμ = Dμ + [φμ, •] the gauge covariant derivative. Let Fμv = dμφv —
dvΦμ + LΦμ> Φvl> ^ is called the curvature of φμ.

Fμv satisfies the following Bianchi identity:

= o, (ii)
where F*μv = ±£μvΛβF«β,εΛβμv is the volume form
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The gauge field is said to satisfy the Yang-Mills equations if

=0. (12)

Let
if/ _ \_p> A'
:ΓAB~2ΓAA'B '

then
P _ ψ p _μ ψ o

v~ 'AB^A'B'* T A'B'^AB*

Therefore the Yang-Mills equations are equivalent to the gauge co variant spin-1
equations, namely

ΌAA ΨAB = ΐ>AA' ΨAB + W, ΨAB\ = 0. (16)

Lemma 1. For any spίn-n/2 field ψAB , define a n-tensor

QlίV...(Ψ) = ΨAB...$A'B'...> (17)

it is called the energy tensor of the spin field ψAB .

1. Qμv is totally symmetric and traceless with respect to any pair of indices.
2. // Xμ, Yμ, . . . are future-directed nonspace-like vectors, then,

3. // ψAB satisfies the spin equation (70), then

Remark that for the spin-1 field ΦAB,Qμv(Φ) is the energy-momentum tensor; for
the spin-2 field ΨABCD, Qμvaβ(Ψ) is the Bell-Robinson tensor.

Next, we will discuss the so-called Newman-Penrose formalism in general
relativity. This formalism is based on the following simple fact:

A future-directed real vector Xμ is null o there is a spinor ψA such that
XAA' = ψAψA'.^ suck a Spjnor js determined by the direction of Xμ up to the scaling
ψA -> λψA, λ is a nonzero complex number.

In this paper, we will foliate a space time by two families of null hypersurfaces
Cu and C'υ, where w, v are parameters which are called optical functions. Let
Suυ = Cur\ Cv\ they are two dimensional space-like surfaces. Let / be the null
generator of Cu, and ΐ be the null generator of C'υ, such that l'μl

μ = 1.
Choose the spin frame {ξA,ηA} such that

ξAη
A=l, lμ = ξAξA\ Γ = ηAήA\ (18)

then [ξA

9 ηA} is determined by Cu and C'v up to the following spin transformation:

(ξA,ηA)^(λξA

9λ-lηA)9 (19)

where λ is any nonzero complex number.

Definition 2. Let ψ be some quantity which depends on the choice of spin frame
{ζA,ηA}, if under the above spin transformation (19)

ψ-+λpλqψ, (20)

then ψ is called a (p, q) weighted quantity.
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Examples.

1. For any spin-rc/2 field ψAB , define

n/2+k times n/2-k times

where k = — n/2, — n/2 -f 1, . . . , n/2, then \l/k is a (2fe,0) weighted scalar. I remark
that for the spin-1 and spin-2 field, this decomposition is the null decomposition
for the electric magnetic field and the Weyl field defined in [3,4].

2. For a spinor J A, AB , i f J A > A B = JA'(AB...)> t^ιen ^ *s caMed a spin-n/2 current.

Forfc=-n/2, . . . ,π/2- l , le t

Γ _ FΛ

n/2+k times n/2-k-l times

Γ> _ _ / n - 2 j r Λ ' κAttκB „€ _ D
J-k-l~l *! ^ ^ '/ 'ί ^

n/2+k times n/2— k— 1 times

then Jfe is (2fe + 1,1) weighted, J^ is (-2k- 1, - 1) weighted.

Definition 3. For any given spin frame {ξA,ηA}, let

D = PDμ, D' = l'μDμ,

δ = m*Dμ, δ' = m'^Dμί (24)

where mμ = ξAήA>, m'μ = ηAξA' = mμ are tangent to Suv. Suppose

DξA = εξA - κηA, D'ηA = ε'ηA - κ'ξA,

δ'ξA = κξA - pηA, δηA = x'ηA - p'ξA,

δξA = βξA - σηA, δ'ηA = β'ηA - σ'ξA,

D'ξA = γξA - τηA, DηA = y'ηA - τ'ξA, (25)

then ε,α,..., etc. are called the Ricci coefficients of {ξΛ,ηA}.

In fact we have the following relations among the Ricci coefficients:

ε + y' = 0, ε' -h 7 = 0,

α + β' = 0, α' -f β = 0. (26)

ιc = 0, κx = 0,

p = p, p' = pf, (27)

where we differentiate ξAη
A = 1 to obtain (26), and (27) is a result of the Frobenius

Theorem for the submanifolds Cu and C'Ό.
The above notations are greatly simplified by using the primes. The reason for

this prime operations is that if we let

ξ'A = iηA, η'A = iξA, (28)

then {ξ'A9 η'A] is another spin frame. Under this spin transformation, we interchange
the two generators / and /'. A quantity associated with the prime frame is the



Asymptotic Properties of Solutions of Spin Field Equations 455

prime of the same quantity associated with the original frame. Obviously,
ψ'k = inψ _ Λ . From now on we will always omit writing down the prime quantities.

The following three remarks are obvious to show:

1. If ψ is (p,q) weighted, then ψf is (— p, — q) weighted, and ψ is (q,p) weighted.
2. The Ricci coefficients τc,p,σ,τ are weighted scalars whose weights are
(3, 1), (1,1), (3, -1),(1,-1) respectively.
3. Scalars ε, α, /?, γ are not weighted, nor are the derivative operators D and δ, but
if we define the following two operators for any (p, q) weighted scalar t/f,

φ\l/ = (δ-pβ- qΰ)\l/9

then p,$ are weighted derivative operators with weights (1,1) and (1, — 1)
respectively, that is $pψ and φψ are respectively (p + l,q + 1) and (p-h !,<? — 1)
weighted scalars.

The weights are very useful to check whether or not the calculations are correct;
the prime operation reduces anything we have to do by half.

Lemma 2. If DAA'φAB = JA' , then for k= - n/2,...,n/2- 1,

pψk ~ PΨk+l = - (n/2 + k)κψk_ί + (n/2 + k + l)pψk

- (n/2 - k)τ'ψk + 1 + (n/2 - k - l)σ'ψk + 2 - Jk. (29)

If we do not need to know the exact numerical coefficients on the right-hand
side of (29), the equations can immediately be proved just by comparing the weights
of both sides. The actual proof is just a straightforward calculation, see [12].

In Minkowski space, we willvuse the following two optical functions: u = t — r,
v = t + r. Choose the generators of Cu = {u = Const} and C'v = {v = Const} to be

2\dt δr

then the spin frame {ξA, ηA} is determined up to the scaling (19) with \λ\ = 1. Hence
if ψ is (p, q) weighted, let 5 = (p - q)/2, then under (19),

ψ->λ2sψ, (31)

5 is called the spin weight of ψ.
For any spin-n/2 field ψAB , and any spin-n/2 current JA,ABm.m, both φk and Jk

have spin weight fe. This is why we arranged the definition as in (21), (22).
One can easily compute the spin coefficients of Minkowski space under this

spin frame to find

c = 0, ε' = 0,

κ = 0, *' = (),

'"7ί- '---^ (32)

σ = 0, σ' = 0,

τ = 0, τ' = 0.
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Therefore if DAA'ψAA = J£ , then

-^+1 = -Jk, (33)

W_k_1=J'_k, (33)

where D = (3, 4- dr)/^/29 D' = (dt — dr)/^/2; $ can be identified as the Dirac operator
on Sttf = {t = const, r = const}; ψk, Jk and J'k are defined in (21)-(23).

3. Lie Derivatives of Spinors

There is a conceptual difficulty in defining the Lie derivative for spinors. Recall

that for any one from φμ, the Lie derivative £fxφμ is defined to be — f f φ μ 9

where ft is the one parameter family of diffeomorphisms which generate the vector
field X such that /0 is the identity map of M. Unless X is conformal Killing, if
the one form φμ is null, in general f f φ μ is not null any more. But as we have
discussed in Sect. 2, a spinor naturally defines a null object through the spin
structure. Therefore it is not possible to define the Lie derivative of a spinor for
any vector field X such that it gives us the usual Lie derivative for tensors when
it is restricted to tensors; or equivalently, it is not possible to define a Lie derivative
operator for spinors such that it is compatible with the spin structure and the
usual Lie derivative operator for tensors. This is because the definition of the
spinor structure in Sect. 2 is a structure on a manifold with a Lorentz metric, while
the usual definition of Lie derivative operator for tensors has nothing to do with
the metric.

To define the Lie derivative for spinors, we will forget the usual definition of
the Lie derivative for tensors, instead we require that it is compatible with the
spin structure, that is

a? p _ π
°£ yfc A R — v,

This leads us to the following definition:

Definition 4. Given any tangent vector field X, define the Lie derivative of spinor

(34)

where

h — 1 D YA'nAB — 2UA'(AΛB)'

For other types of spinors, the corresponding Lie derivatives are defined in the usual
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fashion from (34). For example,

Remarks. 1 . Under this definition, the Lie derivative for an one form φμ becomes

Sexφμ = X*Dvφμ + ±φv(DμX* - D*Xμ).

This is because by the definition of hAB, we have

hAB*A B> + ΪA W*AB = &DμXv - DvXμ).

Therefore this new Lie derivative operator agrees with the old one for tensors if
and only if X is a Killing vector field.
2. In [3, 4], in order to preserve the traceless property for a spin-2 field (in tensor
form), they had to modify the definition of Lie derivative. Up to a correction term
with tr π, the definition given there agrees with the one / gave here for the spin-2
fields (see (40), (41) for the definition of j^x). The correction involving tr π can also
be removed if we do not require ^XZAB = 0 in the definition.

Let's first look at the relation between this Lie derivative operator and the
Newman-Penrose formalism in the previous section.

For any spin frame {ξA,ηA}9 define scalar functions z(X\ w(X) and z'(X\ w'(X)
by

(35)

It is easy to see that w(X) and w'(X) are weighted scalars whose weights are (2, 0)
and ( — 2,0) respectively. Since we normalize the spin frame {ξA

9η
A} such that

ξAη
A = l ? we know z'(X) = —z(X). Like the Ricci coefficients ε, α, β and 7, the scalar

z(X) is not a weighted quantity, neither is the Lie derivative operator Jίfx, but if
we define

(36)

for any (p, q) weighted quantity ψ, then $?x is a (0, 0) weighted derivative operator.

Lemma 3. For any spin-n/2 field ψAB , let ψk(yχψ) denote the components of

. (cf (21)\ then

ψk(^xψ) = ̂ xΨ* + (n/2 + k)w(X)φk_ ! + (n/2 - k)w'(X)ψk+1, (37)

where k= — n/2, ..., n/2.

Proof.

n/2 + k times n/2 - k - 1 times
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Because the right-hand side has to be weighted,

n/2 + k - 1 times n/2 - k times

£»•£ r^rf ΦΛB...

n/2 + k times n/2 —k—1 times

= #xψk + (n/2 + k)w(X)ψk_ 1 + (n/2 - k)w'(X)ψk + 1.

w(X) and w'pf) can be calculated explicitly as follows,

Lemma 4. For any vector field X, denote (X]πμv = VμXv + VvXμl it is called the
deformation tensor of X, let (X]π be the traceless part of it.
ί . I f X is tangent to the two surfaces Su tV9 then

2. Suppose the distribution spanned by the generators I and I' is integrable. If X is
perpendicular to Su>v, then

= ξAX»DμξA - hABξ
AξB

Proof. For any vector field X = ft + f'ΐ + gm + g'm', then

μξA - AB

= ξAX>'DμξA + %!"fXμ - m»pXμ)

= ξA(fDξΛ + f'D'ξA + gδξA + g'δ'ξA)

f'l'p + gmμ + g'm'μ)

= i{κ/ + (^ + 2τ - f )/' + σg + (p + 2p - p)g'}.

The validity of the above identity can easily be seen by comparing the weights on
both sides. Compute

= Kf + (f + τ')f - σg-(p + p)g'.

lίX is tangent to the two surfaces Su _„, i.e. / = 0, /' = 0, since p = β, we have,

w(X)=-iπm,

If X is prependicular to SUtV9 i.e. g = 0, g' = 0, then

From the Frobenius Theorem, that the distribution spanned by the generators /
and Γ is integrable implies τ = τ', thus

In particular, if X is a conformal Killing vector field such that it is either
tangent or perpendicular to the two surfaces SUtV, for each u and t?, then w(X) = 0.
Therefore we have the following corollary on the Minkowski space,
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Corollary. If X is the Killing vector field of time translation or spatial rotations

T = -9 ΩU^XI—.-X,—., (38)
dt J dxj Jdxl

or the conformal Killing vector fields of scaling or inversion

S = 4 + Λ K0 = ( l+ί 2 + r2)^ + 2tΛ (39)
dt dr δt dr

then w(X) = 0, w'(X) - 0. Therefore ψk(^xψ) = ̂ x\^k.

Finally we want to examine how the spin equations change after taking Lie
derivatives.

Lemma 5. For any spin n/2 field ι/ β̂ and any spin-n/2 current J A>AB . , define

x + ̂ trπV,..., (40)
16 /

for any vector field X, then

:=JA

B (X^). (42)

We mil also denote JA,AB_(X, Y,Ψ) = JA>AB...(Y,<&xΨ)

Proof. In the following proof, I will restrict myself to the case when the underlining
space is Minkowski space, but the same lemma holds true as well even in curved
space. The same proof will work, we just need to keep track of the terms involving
curvatures, but they will vanish eventually; this fact is actually rather remarkable,
for a detailed proof see [13].

First, the following identity is just a result of a simple calculation from the
definitions,

DAA'^ = ̂ DB.(B^AA.+^εA(BDQA.tτπ. (43)

The proof of the lemma is through the following calculation,

hA'c'εAC)Dcc,φΛB

ftAA'foC I ,( }\ΠA

U nAVCB...+(n~ 1>U rι(BV...)AC
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(n

i Π^^i Vtr 7Γ)//1 /^ (trπi//^

_ ι _ W ~ ~ * n AAA'CC'iλ

 4 ^c'(βπ V*

+ ̂ Dcc,x

) + "~
J l 16

n...,̂

•̂cc ̂

tr ir Γ)^

Γ\C
4 "c

\ 1

AB...

r...MC

4. Decay Estimates for the Spin-/ι/2 Equations
in Minkowski Space

In this section, we will prove the following theorem,

Theorem 1. IfψAB satisfies the spin-n/2 Eq. (10) in Minkowski space, let

[>](Γ)= sup ίτ"+

+1/2|^n/2|+ Σ τ^2+*+1τ«r1)/2-*|^|}, (44)
0<ί<Γ ( fc=-n/2 J

then
) ! ! ^ . (45)

The above decay estimate is called the "peeling off" property of the spin-n/2
field ψAB namely, along the null directions, say along ί = r, then the n different
components φk decay as follows:

I^I^Cr-"/2-*-1, fc=-n/2,...,n/2-l, |^/2| ̂  Cr~"-1/2. (46)

Remark that ψk decays one order (i.e. r"1) better than ι/^ f c_1 for k < n/2, but φnl2

decays only a half order (i.e. r~ 1/2) better than ψnf2- 1? while by using the Penrose
conformal transformation, one can prove that it is also one order better, i.e.
\\I/ΛI2\ ^Cr~n~l. Of course the initial data then have to decay faster. In terms of
decay at future null infinity, the worst term is ιA- Π /2» ^ decays like r"1. This is
what reflects the radiation property of the spin-n/2 field equations.

We will use the following notations to denote the different regions in Minkowski
space: for 0 < T ̂  oo, u = ί — r, v = t + r, let
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denote the interior and exterior regions by

Let Σt9 CU(T) and C'υ(T) be the level surfaces of ί, u and v inside Vτ, we will put
the superscripts "i" and "e" on them to denote their intersections with Vl

τ and
K* , e.g. Ce

u(T) = CMn Ve

τ. We will omit the index T if T = oo, for example, V = V^

For any spin-rc/2 field ι/ β̂ , define the following energy norms:

δo(0 = βoWW = ί βMV. a
Σ t

u}= f eμv...
CM

= ί βMv...

The integrals on the null hypersurfaces Cu and C'v are defined as follows:
For any given null hypersurface Jf in a space time, let / be a generator of .yΓ;

it is determined up to the rescaling

ί-*α/, (47)

where a is a nonzero real function on Jf. If / is a scalar function on Jf> which
depends on the choice of the generator / and which under the rescaling (47), / -» af.
Then define the integral to be

^ a Sr

where r is the affine parameter of e/Γ, that is l(r) = 1; Sr is the level surface on ^V
of constant r;jSα and 56^are the boundary of Jf. Clearly the integrands in the
definition of Q0(u) and Q'0(υ) have the right scaling, thus the integrals are well
defined.

Similarly we also define the norms on other regions such as on Σ\, Ce

u(T) and
C'*(T). Since T,l9l',K0 are all future directed, from Lemma 1, these energy norms
are all positive. Later in Theorem 2 we will prove they actually bound from below
by some weighted Sobolev norms.

For s = 0,1,..., let

QΪ(T)= sup Qs(t)+ sup βs(κ,T)+ sup β>,T), (48)
0 < / < T — oo <u< QO 0 <v < oo

where gs(ί) are defined inductivity as follows,

3

where Qs(^m)= Σ β,(^ft>)W. Similarly define &(«, T) and Q's(υ,T) by
i . J=l

using the null hypersurfaces CU(T) and C^T) respectively.
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Let
5 ~ )SUP κlw+ SUP ^(">Γ) + SUP ^e(^τ)K (49)

<ί<Γ - o o < w < o o 0 < ι > < o o J

where each term is defined as follows:

tfj(ί)= J (l + i)2(" + s~1} |V>|2,
*ί

n/2

Re

s(u,T)= J Σ Σ

where

w / 2 - 1

R'8
e(v,T)= J Σ Σ

m 2^ι 2 = Σ i
i + j = m

Σ

,, _0 σ .. .,, ,
IV7^^...! — σo σo ΨAB...ΨA'B'...-

Actually we can also bound from below the following norm on the exterior region
of each time slice, (but we are not going to use this fact),

n/2

W= ί Σ Σ τ"+

+2(fc+5"1)τr2*|D/yw^k |
2

Σ* k= -n/2+l l + m = s

n/2- 1

+ Σ Σ τ"+

+2(k + m)τ"^2(l~k-1}\D"γmψk\
2. (50)

k= -n/2 l + m = s

Theorem 2. // ψ satisfies the spin-n/2 Eq. (10) in VT, then

Rΐ(T)^CQί(T)^CQ8(Q), (51)

where C is a constant independent of T and the initial data.

Proof. Q*(T) ̂  Cβs(0) is direct result of Lemma 1 and Lemma 5. To prove
Rf(T) ^ Cβs*(Γ), we do induction with respect to 5 = 0, 1, 2, . . . . Since the norms

Re

s(u, T) and R's
e(v, T) are symmetric, we only need to estimate one of them, for

instance, take Re

s(u, T).
When s = 0, use

τ +2

to compute

k + 1 times n — k — 1 times
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τ2+kτ2(ι,-k-l)|^

Therefore we have

' k + l - n / 2 1
k = 0 l

f i/2

£
fc= -n/2+ 1

For R'0(t), since in V\ τ _ ̂  C(l + ί), and use T - — (/ -f /'),

β(Γ, K0, . . . , K0) = - CQtt KO> . . . , K0)

t)2'"-1' Σ ι
fc= -n/2

Thus

Suppose that the theorem is true for some 5 ̂  0, we want to prove that it is
also true for s + JL

Let ώΛn = &i

τ&l&l

(ΓlψΛR , where i + / H- / = s, then since' AD ... J o (v » ^4-D...' J '

, c

by induction, we know

ί Σ Σ τV2 (* + ί)τ"_-2t|D'y»+1^|2gCQr+1
Ce(T) k— —n/2 + 1 i + m = s

Use (33) to obtain the following estimate,

n/2- 1

ί Σ Σ τ"+

+2(ll+s+1)τr2('I + 1)!D' + 1ymι/' t |
2^Cρ

Cu(T) k ~ ~ n /2 + 1 / + m = s

The estimate for Dl+ίγmψn/2 is still missing, but (33)' gives us

J τ2

+<"+s- Dτi \D'γmD'φn/2\
2 £ CQf+l(T);

Cu(Γ)

by induction we also have the estimate for
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Therefore we have

f £ τ2

+<"+s>|D'+1rΆπ/2l
2^c<2*+1(Γ).

C«(T) ' + m = s

Thus

Because ί20 is degenerate on the spatial central line, to estimate the norm in
the interior, we will use the following lemma:

Lemma 6. Let φAB be a spin field on a time slice Σ = Σt, assume it has compact
support, let & be the Dirac operator on Σ, that is, 2\lι = σlAA'DiΨAB...>

f l W ^ 2 f W|2.
Σ Σ

Proof.

f \3ψ\2 = f GίAC'DUc>B'..°JCA'»ΨcB..°«AA'<B>'-
Σ Σ

_ C iAC' JCA' X Π Π i// /ΎBB'...
- ~ ] σ σ ^θAA'Ψc'B'...Lfiυjlf/CB...σθ

= ί ^AC'^ΛΛ'<A'Φc B ...(DίDj + DjDi
2 Σ

Now we continue the proof of Theorem 2. Let φAB = ηi - ΦAB...> where

η(s) is a cut-off function such that

. . f l if 5<l/3
η(s) = <

(0 if s>l/2,
then

I
r

Thus

The desired estimate in the interior is then an easy consequence of Lemma 6.
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Finally, we want to prove the Sobolev inequalities, which will also be used in the
next section, which will give us the proof of Theorem 1 from Theorem 2.

Isoperίmetric Inequality.

(52)

where S is any two dimensional sphere; C is independent of the radius of S /ίs
the average of / over S.

Lemma 7.
l/4-1

J

Γ / \ l / 6 / X l

sup J r6!/!6 + ^ sup J r4!/!4

- o o < u < o o L \C£(Γ) / Su,rC=Cu(Γ) \s u r /

/ \ l / 2 / \ l / 2

^ C J I/I 2 + (1 + r2)| V/l 2 + C sup f I/I 2 + τ2_ | V/|2

\£o / Q<t<T\Σι J

( \1 / 2

+ C SUP f |/|2 + r2 | Z ) / |2+ r2 | y / |2 ^ (53)

-oo<u<c» \C^(Γ) /

VF^ α/so ham a similar inequality on another family of light cones C'υ, its degenerate
version is

Γ / \ l / 6 / \ 1/4-

sup J rV|/ | 6 + sup J r V | /
0<ι;<oo L \C'v

e(T) / SU,rczC;e(Γ) \S^r

\ l / 2

| / | 2 - f ( l+r 2 ) |V/ | 2

J

\ 1 / 2

C j l / i 2 + r2 |y/|2-M2_|D'/|2 . (54)

Proo/. Let 5U r be the radius r sphere on the null hypersurface CJ (T); let rm(u) and
ΓM(M) be respectively the minimum and maximal radii of all such two spheres. Then

Surm(u) is either in the interior region Vl

τ or on the initial hypersurface Σ0;SU^M(U)

always lies on Στ. Apply the Isoperimetric Inequality (52) to r3 |/|3 on each
Su r, use the Holder inequality, then integrate with respect to r from rm(u) to rM(u\
we obtain,

J r 6 |/ | 6^C sup ί r*|/| ί |/|2 + r2 |y/|2 (55)
C*(Γ) r m (M)<r<r M (M) \sM > r

On the other hand,

J r4 |/|4^ J r4|/|4 + C J r4|/

l / 2 / \ l / 2

r6 |/|6 J l / l 2 +
\CM(Γ)
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Therefore we have

\ l / 6 /

J r6 |/M + sup j
Γ ' rm(")<» <' M(«) \S M r

l/6 / \ l / 4

sup j r'l/
(")<» <' M(«) \SM > r

Therefore we have

/ \ l / 6 / \ l / 4

ί r6 |/|6 + sup J r4 |/
\C^(T) / rm(u)<r<rM(u} \SM,r

1/4 / \ l / 2

But the same proof as above easily gives us the following inequality,

/ \ l / 4 / \ l / 2

J r4|/|4 g J |/|2 + ( l+r 2 ) |V/ | 2 + sup J |/|2+ (1+ί 2)|V/| 2 .
\Su,rmW / \Σ0 0<ί<Γ Σ\ /

Therefore we have proved (53). Equation (54) is proved in exactly the same way,
one just replaces Ce

u(T) by C;e(T), and replaces r3 |/|3 by r 2 τ _ | / | 3 in (55) before
using the Isoperimetric inequality.

Lemma 8. There is a constant C < oo which is independent of T and f such that,

\ l / 2

I/I 2 -Ml + r 2 ) |V/l 2 + (1 + r 2) 2 !V 2/| 2

) /

/ \ l / 2

C sup J l/|2 + (l + ί2)|V/|2 + (l + ί2)2 |V2/|2

0<ί<Γ \ΣΪ

- 0 0 < U < G O

sup ( J
•)

WI2Y'2, (56)

/ \ ι
| g C sup j | / | 2 +(l+r 2 ) |V/ | 2 +(l+r 2 ) 2 |V 2 / | 2

0 < t < Γ \ Γ 0 /

l /2

+ sup j |/|2+r2 |y/|2

0 <υ< oo

/2

. (57)

This lemma is evident from the following Sobolev inequality:
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Sobolev Inequality.

/ \ l / 4

supl/I^Cr' 1 ' 2 ί|/|4 + r4 |Y/|4 , (58)
s \s /

where C is independent of the radius of S.

Proof of Theorem 1. From Lemma 8, we have the following estimate:

M2(Γ)^CΛ*(Γ). (59)

Therefore Theorem 1 follows from Theorem 2.

5. Yang-Mills Equations

It is easier to state the initial data for the Cauchy problem in the language of
tensors because the spinor structure are naturally adapted to the null structure of
the space time. It will be more convenient to use spinors if we want to solve the
Goursat problem.

Let (<pi(x), Efa)) be the initial data, xeR3, φ^x) is the gauge potential of a gauge
field on R3, Et is a gauge covariant one form. It has to satisfy the following constraint
equation:

Y ί£ i = Vi£i + [φi,£ί] = 0, (60)

where V means the gauge covariant derivative on R3 with respect to (Pi(x).
The curvature tensor Fμv, and thus its equivalent spinor form ΨAB, on the

initial surface Σ0 can easily be expressed by the initial data as follows:

F.0(0, x) = £,.(*), Fy(0, x) = di9j(x) - dj9i(x) + [Φί, φj. (61)

Except for the initial data, everything else in this section will always be gauge
covariant, i.e. we will never refer to any quantity which is gauge dependent. For
gauge covariant quantities, we will adopt as before the same notations and concepts
such as Lie derivative, energy norms, etc., just simply replacing the usual derivative
by the gauge covariant derivative.

The goal is to prove the following theorem:

Theorem 3. Suppose the initial data are smooth, satisfy the constraint equation and
the following smallness condition:

)||βlιi^β0, (62)

where ε0 is a small constant, H2 1 is the gauge covariant weighted Sobolev norm (see
(3) in Sect. 1). Then there exists a unique (up to gauge transformation) global solution
of Yang-Mills equations in Minkowski space; moreover it has the following decay
estimate,

ί Ψ ] ^ C \ \ Ψ ( Q , x ) \ \ H 2 t ί . (63)

Almost the entire section is devoted to the proof of this theorem; the case when
the initial data has charge will be discussed in the end. The proof of local existence
is rather standard (see [5] or [7]). The following conclusion is also simple to prove
([6]):
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The solution blows up at finite time T0 < oo if and only if sup \ Ψ\ = oo.
FTo

So from now on we are always assumed to be given a guage field in Vτ for
some T> 0. Let ΨAB be its curvature spinor, it satisfies the gauge co variant spin-1
equations.

Lemma 9. For any gauge invariant spin-l field ψAB in Vτ, then

-k(ΦAcDC

B^
CA' + ΦACD

cc'nA

B

A:). (64)

The right-hand side of (64) will be denoted by JB(X,φ). We will also denote
Jμ(X) = Jμ(X, Ψ), and Jμ(X, Y) = Jμ(X, £Y Ψ).

Proof.

+ (hACεA'c' + hA'c'εAC)Όcc,ψAB

The rest of the proof is the same as Lemma 5.

Lemma 10. For any gauge invariant spin-l field ψAB, if ΌA,ψ A

gauge covariant one form, then
1.

l's some

+ C ί τ^l^llJ'.J + l ^ o l l J o l )
VT

+ C J τid^r,! U^I + l ^ o l l J ' o l ) , (65)
V'τ

where ψk and Jk were defined in (21), (2 2).
2.

\J0(&,φ)\ ^ Cr(\ Ψ i | |^ol + I Ψ0\ \Φ!\) + \$eJ0\, (66)

(6V)

l )
(68)

l
(69)

By taking the prime, we get the corresponding estimates of J'0 and J _ t. In particular,

| ̂  Cι + \ Ψ t | Cτ_(| Ψ _ t | 1 1P0I
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in Vi

τ,forX = ΩiJ9T,S,

\J(X,ψ)\ ^ C(l + t)\ Ψ\\ψ\ + C(\ + t)\ΌJ\. (70)

Proof. This lemma can be proved either by the direct calculation or by using the
weights. In the following we will prove 1 by direct calculation and 2 by using the
weights:

Therefore

Vτ

+ C f τl(\ξBξAφA

VT

+ C f τ2_(\ηBξAιlfA

VT

^cρ0(θ) + c J (i +
VT

+ C J τ'ίl^lJ'.J + l ^ o l l J o l )
κ

+ C j τid^oM^I + I^.JlJ.J).
κe

τ

In order to prove 2, remark that from Lemma 9 we know that for the conformal
Killing vector fields X = Ωtj, T or S, Jk(X, ψ) — <$?xJk is the linear combination of
l Ψ i 9 ψ j ] and ίΨi9ψj'] with coefficients Xm.

Let X = Ω^ = a^m + α2m
/, the weights of ̂  and α2

 are (— 1> 1) and (1, — 1)
respectively, and 1^ | + \a2\ ^ Cr. Because the weight of JQ(Ωij9 ψ) - 3?ΩijJ0 is (1, 1),
the only terms of form [̂ ,̂ -1 and [ίPi,^], which can possibly appear with the
coefficient aί have to have weight (2,0), so they can only be [Ψί9 ^0]

 and C^GΪ ̂ ι]ί
in the same way, the only term that can appear with the coefficient a2 has weight
(0,2), so it must only be [^ι,^0] Therefore

|J0(0^)- Wo I ̂  Cr(| ^1 |^ol + I ^ol l^i I)-

_ For J'_^ij9il/)9 its weight is (1, —1), thus the only term with coefficient a1 is
[ Ψ_ ί , \l/ _ j ]; the only terms with coefficient α2 are [ ̂ Q, ̂ 0] and [ ̂ o, i^0]. Therefore

For X = T or S,X = aj + α2/
;, the weights of coefficients αA and α2 are

respectively (—1,1) and (1, 1); j α j g Cτ + , |α2 | ̂  Cτ_. The rest of the proof is the
same as before.

Proof of Theorem 3. From the local existence theorem, we can assume there is a
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solution in Vτ, for some oo ̂  T > 0, such that either T = oo or sup | ψ \ = oo. Let
FT

T0 = sup{ί<7Ί#*(f)(ί)<ε2}, (72)

where ε! is a small constant to be fixed later, then

R*(T ) < ε2 (73)

Claim. Under the a priori assumption (73), z/ε : is sufficiently small (independent
of T0 and the initial data), then there is a constant C = C(εJ such that,

R*(τo) ^ Cβ2(0). (74)

Choose ε0 such that 2Cε2 ̂  ε2. If β2(0) ̂  ε2, then R%(T0) ^ ε2 < ε2. Therefore
T0 = T= oo this proves Theorem 3.

It remains to prove this claim. The proof is divided into three steps in the
following: the first step is to prove the equivalence between the energy norms
β|(T) and the Sobolev norms R*(T); the second step is to estimate β*(T), the
third step is to estimate β*(T). Step 1 is rather easy to prove, step 3 is very similar
to step 2. All of the estimates are under the a priori assumption of (73).

Step 1. Equivalence of Norms: there is a constant C depending on ε1 ? such that

As in the proof of Theorem 2, we divide it into an interior and exterior part. The
interior part relies on the following lemma which is the gauge covariant version
of Lemma 6,

Lemma 11. For a compact supported gauge covariant spin field ψAB on a time slice
Σ, let V denote the gauge covariant derivative on Σ,@ the corresponding Dirac
operator, then

Σ Σ Σ

where Ψ is the curvature spinor of the gauge field.

For the exterior part, the estimate R\(u, T) and R'*(v, T) is the same as that of
Theorem 2 because we only used the Yang-Mills equations without taking any

derivative. To estimate Re

2(u, T) (same for R'*(v9 T)), we use (33), (33)' to obtain the
following estimate for X = Ωίj9 T0, S,

J τ2

+τ2_\D#xΨQ\2£CQ*(T) + C f τ 2

+ τ 2 _ | J0(X)|2,
Cu(T) C*(Γ)

f τ\τ2_\D'$xΨ,\2^CQ*(T) + C J τ\τ2_\J'_ ,(X)\\
cl(T) ce

u(T)

So one has to estimate the following two integrals for X = Ωtj, T0, S,

J τ2τ2_|J0(*)|2 and J τ\τ^\J'_,(X)\2.
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We use Lemma 10,

ί τ\τ\ X (
Ce

u(T) X = Ω,},T,S

τ2

+ |

Thus
Re

2(M,T)gCβ*(T) + Cε2ρ*(Γ).

This then completed the proof of Step 1.

Step 2. Estimate o/Q*(Γ): i/ εt is sufficiently small, then

Qm^CQM (76)

Apply 1 in Lemma 10 for ΨAB = ^X^AB^ where X — Ωij,T,S, we have to
estimate the following error terms:

+ ί (l+t2)\&xΨ\\J(X)\.
vτ

Each of the above three integrals are estimated as follows:

1. S\(X\ X = fly, T,S: From (70),

T

J ί ( l+ί 2 ) 2 |V P | | « P | 2

0 z

= J (l+ί)3 / 2

2. ^(^): From (66), (67),
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f r^\^φΨl\\Ψ^\\Ψi ^C j du
ι/2
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v l / 2

<c~
M)

3/2

1/2 2

o,ιrϊSUP
ce

u

τ-

f T2 I
J T-!

1/2

ι l ^ C J du
1/2 /r2 Ψ \\ί \1 / 2

sup - ̂  f τ2!^!
\ τ- / \

Thus

^^ 2 can be estimated similarly by using another family of light cones C'*(T).
3. '<f;(S): and ^(T): From (68), (69),

)̂l ̂  Cτ +| ^1 I ̂ i + Cτ_(| ̂ J | Ψ,\ + | ίP0| | «P0|),

We will estimate them term by term as before,

ίJ

l/2

sup(r |?Pol
l/2

vί.

^C J du
~°°

^C[f](

J r^& Fo

du

l/2

1/2 2

sup
c. τ-

l/2

1/2
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ί
v'

00 / Y/2 / \ l / 2

5SC j du j τ2_|^sf0|
2 supίrl F-il) J r 2 | ¥ Ί I 2 )

~°° \C* / Cu \CS /

/2 / Γ 2| U/ |\ / \ l / 2

gC J du f τ i l & Ϊ Ό I 2 sup

Thus

<fίtl(S)^C[ίP](T)[Λ*(T)R*(T)]1/2.

We can similarly estimate <^2(S)an(* δ\(T). In conclusion, we obtain the following
estimate:

From the norms of equivalence in Step 1,

QtW^CQ^) + C*ιQ*(T).

Therefore we proved Step 2 by choosing ε^ small, s.t. cεί <f.

Step 3. Estimate o/β*(T): i/ε j is sufficiently small, then

β*(T)^Cβ2(0). (77)

The proof is very similar to that in Step 2. Apply Lemma 10 for ^X^YΨAB,
where X, Y = Ωtj,S, T, we have to estimate the following error terms:

δ2(x, Y) = <r2(*, Y) + β\(x, Y) = £°2tl(x, Y) + ̂ ι2(x, y> + ̂ 2(x, y)

= j τ^l^^^MJ'^^v*τ

+ f τi

The interior part is obvious,

r
gl

2(x,Y)^l J (
0 Σ\
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The exterior parts are estimated term by term as follows:

1. g\(&, &): Applying Lemma 10'with ψAB = &Ύ ΨAB, for X, Ye&,

I J0(β, &)\ g Cr(| Ψ, \\$6 Ψ0\ + I Ψ0\ I #„ Ψ1 1)

\J'_,(&,&)\ ^ Cr(\ ψ,\ \$eψ^\ + 1 Ψ _ t | IJ^ΪΊI + 1 y0| l^ni).
Thus

J r3 |#s.&!P1 | |«F_1 | |#y«P1 |

"T 00 / ^ , \1/2 / λ 1 / 2

^C J du( Jr2!^^^!2 supίrl P.J) J

To estimate

we need to be a little more careful because the energy estimate does not give us
any bound on the integral of $?Q Ψ_ l over CU(T\

f

l/2

^ f du \r2\

11/2PM(K) / V / 2 / V/ 2 Ί
f dr ( J rΊ^ϊ^r) ( f Γ W)

Lrm(u) \s u r / Vsu,r / J

/ - \ 1/4

« / χ i / 2 SUP ( ί

^ f Λ,( '
-oo VC. /

C 'M(") / \ 1/2 T1/2

JL*^1*"'1*) ]
Apply (54) of the Lemma 7 for / = τ _ | Ψ_ 1 1 to obtain

/ ^ \ ι/ 2

J rVl^^J 4) £R*(T). (78)
\SM,r /

Applying to / = r3 | Ψ^\2 the Isoperimetric inequality (52) and then integrate from

rm to TM,
r\ι(u) / \ l / 2 ΓM(H)

f drl Jr 6 !^ ! 4 ^ f ί/r J (r2 | lF1 |
2 + 3r 2 | «F 1 ( 2 -f2r 3 | i F 1 | | y»F | )

Γmί") \SM,r / rw(u) Su,r

(79)
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Therefore we deduce

vτ

Next,

/ ^ ^ v l / 2 / Γ 2| ψ ι \ / \ l / 2

//ivί f τ2 I <^ <^ <^ I 2 I ci inί ° I / Γ r2! Φ tί/ I 2

αi/i i i_\~f> ft),*?fl\T{\\ \ supi I I i r i c i r / π Γ i i

'2

Thus

Similarly we can estimate ̂  z(^' ̂ )
2. S'^Θ), £e

2(T,&\ <$e

2(&,S) and ^(C>, Γ): The proofs are all very similar. For
example, we will estimate <f |(S, ̂ ) as follows,

Thus

1/2 / X 1 / 2

sup(r|?P0 |) J r2\^eΨ1\

!/2 / r 2 I V J \ / ^ \1/ 2

f <rl \ Φ U/ |2

C ( Γ ) \ t- /\cJ(Γ)
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^ , /2 / V/ 2

^C J ciu

-oo \Ce

ΓMΓ) / ^ V / 2 / \ 1/21 1/2

• J Λ - ί j Γ Ί ^ y - i l 4 ) J rW
Ue(u) \SU f Γ / \Su.r / J

, sup f j r V | J

1/2 Λ 1/2fM(M) / X l / 2 ^ )

• J dr Jr^r
Lrm(ll) \Su,r / J

where in the last inequality, we use the similar reason as that in (78) and (79).
Γ y 3 i ( X > Φ Ψ \ \ Φ Ψ \ \ψ \
J r \¥&¥s*\\ 1^5^01 I * O I

ι/2 / Γ 2ι ψ |\ / \ l / 2

^C f du ίr2|J^s<F0l
2 sup -i-̂  J r ί |^ s !P 0 ^

^c j ^ίr2|^^sni2)

1/2 / ^ λ 1 / 2

2 \ o n ^ r v i i ί / hi f τ 2 ι^.^J 2

C J dw
~°° \cs

fM(«) / \ l / 2 / \ 1 / 2 ) 1/2

- J drijr'l^*'-,!*) J r V | f 0 | M
(rm(u) \Su,r / \Su,r / J
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where in the last step, we use the same trick as that in (78) and (79).

J r^

ί - - V / 2 (rλ\Ψλ\(
^C j dui $τ2_\¥^sVo\2} sup M-Ll J

-oo \c* / c*(Γ)\ τ- / \ c (Γ

f

/ \ l

^C j f Γ2|J?P^5ΪP0|
2

0<t;<oo \c;e(T) /

^f r3 |

Therefore we have the following estimate

/e

2 2(S,&) can be estimated in the same way.

3. <Γ2(S,S):

l/2 / \ l / 2

^C j rfw Jτ2_|^^s^0|
2 supίrl^J) J r2!^^!

l/2 / \ l / 2

- - 1/2 / r 2 l i P J l \ / - /2

< r Γ Λi ί f τ2 I ̂  Φ iί/ I 2 \ CIIIΛ I ' ^' II f »« 2I <^ V I 2sc j au\ j τ_|^^^ s^0) i sup I - 11 j r |^rs'r1|

/ ^ Λ \ l / 2 / ^ V/2

J r2|^6^sf0l
2 s u p ί r l ^ l ) J r2\<?eΨ0\

2)
\c^(T) / c ( T ) V /
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The estimates for these terms are essentially the same as before, so we will omit
them.

Summing up, we have proved the claim. This completes the proof of
Theorem 3.

Now let's investigate how the presence of charge on the initial data will affect
the asymptotic behavior of the solution. I conjecture that this long range effect of
the initial data will only change the asymptotic behavior at the space like infinity,
it will not change the asymptotic behavior of the solution along the time-like and
null infinity. I can only verify this statement under the assumption that the initial
data is Abelian outside a compact set, say {r ̂  1}, that is if

φi(0,x) = φi(x)σ, Ei(0,x) = fi(x)σ, r = |x |^ l , (80)

where σe& is fixed, <pf(x) and /t (x) are two real functions. For this type of initial
data the charges are defined as follows:

* = ̂ f-E£(0,x) = -ί-lim f-Eί, (81)
4πs00 r 4πr^cc Sr r

q = -L J - tf;(0, x) = 1 lim f - Ht, (82)
4πsro r 4π> ->oo Sr r

e and q are respectively called the electric and magnetic charge. For the general
case, the first question to ask is how to give a gauge independent definition of the
charges. I am not aware of any answer to this question.

Lemma 12. For any spin-s weighted scalar ψ,

C f |«|2, 5^0,
St,r

(84)
St,r St,r

where Ave(^) is the average ofψ over Str.

For spin-0 weighted scalar ψ the Lie derivative $ Θψ is just the usual derivative,
therefore (84) is just the usual Poincare inequality; (83) is a result of direct
calculation (for the tensor version see [3] ).

Theorem 4 Suppose the initial data is smooth, Abelian outside a compact set, say
{r^ 1}, and satisfies the constraint equation (60). Assume

\\&0Ψ(0,x)\\H2ιl + k(0)| + 1 3(0)1 g 60, (85)

where ε0 is a small constant. Then there exists a unique global solution of Yang-Mills
equations', moreover the curvature spinor has the following decay estimate:

\Ψ,(t,x)\^Cεϋτ~ίl2 (86)

IIP-Λί .xJIgCεoτ 'τ:3'2, (87)

ί r2\γψ\2 + \ψ\2^C f |«|2, 5^0, (83)
St,r St,r
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Cε0τ +

 2 τ_ 1 / 2 , if r < l + ί (gg)

Cε0τ +

 2, if r > l + r

Proof. Because the initial data is Abelian when r ̂  1, from Hygence principle, we
know when r ̂  1 + ί, ΨAB(t, x) = ψAB(t, x)σ, where ψAB is a usual spin-1 field which
satisfies the usual spin-1 equation. Therefore the same proof as Theorem 1 in Sect. 4
yields the following estimates,

where β°ut(T) and Q's
out(v,t) are the similar energy norms as Qs(t) and Q's(v9T)

except now we only integrate over the corresponding regions intersecting with
r ̂  1 + ί.

We integrate (33), (33)' over Str (r ̂  t + 1) to deduce

(91)

(92)
\ r /

therefore

(93)
/2r2

Thus from Lemma 12 and the assumption (85), we obtain

Q2(\)= sup β2(l,T)^Cε2. (94)
0< T< oo

The rest of the proof is the same as that of Theorem 3 except we always restrict
ourself to the region {r ̂  1 + t}.

Finally I make the following remark:

Remark. The same proof works as well to prove the global existence for the
solutions of the initial value problem of the Yang-Mills equations in Schwartzchild
space-time outside the black hole. The only problem is that we no longer have
the conformal Killing vector fields S and X0, but we can use the following two
asymptotically conformal Killing vector fields,

where r^ = r + 2m In (r — 2m). The details were given in [13]. I also remark that
by combining with the work of Christodoulou and Klainerman in [4], one should
also get the global existence of the solutions of the Einstein-Yang-Mills equations.
Of course, the proof of such a result will also be very long.
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