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Abstract. In this paper I will first derive, based on energy estimations and geometric
invariance, the asymptotic behavior of solutions of linear spin field equations in
Minkowski space. It generalizes the result in [3] where it was proved for the spin-1
and spin-2 cases. The techniques are then applied to Yang—Mills equations, the
result improves the previous one in [ 1] by allowing the initial data to have charge,
dipole and quadrupole moments. The Lie derivative operator for spinors and some
properties will be also discussed; they can be used to simplify some algebraic
calculations of [4].

1. Introduction

There have been a lot of works which use energy estimates together with
the geometric invariance to prove the global existence of a small amplitude
solution of nonlinear hyperbolic equations. The highlight is the recent work of
D. Christodoulou and S. Klainerman who proved in [4] the stability of Minkowski
space; for the simpler case of nonlinear wave equations, see [8]. The most important
part of this type of work is to derive a good decay estimate through energy
estimations for the solutions of the linearized equations.

In this paper, I will study the asymptotic behavior for the solutions of spin-n/2
equations in Minkowski space R *3. The special cases of the spin-1/2, spin-1 and
spin-2 are respectively the Dirac equations, Maxwell equations and the linearized
Finstein equations in a vacuum. Recently, in [3], the asymptotic properties were
studied by using energy estimates for the spin-1 and spin-2 equations without
referring to spinors. In this paper I will generalize them to the arbitrary spin case.
This result was first obtained by R. Penrose who used the conformal transformation

* This research is partially supported by a grant from NSF under DMS-8610730



450 W.-T. Shu

from Minkowski space to the Einstein cylinder R x §3, see [11,12]. Application
of this method to the Yang—Mills equations was done in [1] to prove the global
existence of small amplitude solutions when the initial data do not have charge,
dipole or quadrupole moments. The decay properties were also obtained in this
case. By using the energy estimation, we will prove the similar result to include
the case when the initial data has charge, dipole and quadrupole moments. The
global existence will also be obtained in this way; it is very easy once we have the
necessary estimates.

Apart from the results, another important thing in this paper is the Lie
derivative operator for spinors. Some very nice properties of this operator will
also be discussed. In [4], a modified Lie derivative operator for the Weyl tensors
and Weyl currents was also defined, the operator I defined in this paper agrees
with that in [4], but it is much more natural in this spinor formulation, and the
properties are much easier to prove in this form. These properties can be used to
simplify some calculations in [4] (Part II). Because of this application, most of the
expositions in this paper will be done on arbitrary Lorentz manifolds, although
the final result will only be proved on Minkowski space.

Without being in their most precise forms, the following two theorems are the
main results of this paper,

Theorem 1. For the solution yy .,  of linear spin-n/2 equations in Minkowski space
R'*3, we have the following uniform L* estimate when t >0 (similarly for t <0),

W, x) < Crlte 2" 2 g0, x) 1y, s (1)

where C is a constant independent of the solutions,

P =14+0+r? E2=1+0-1r? @)
and H_; is the weighted Sobolev space whose norm is
lyel; =% f (14722 VR (x) &)
9 k<sR

The more precise form of this theorem is the so-called “peeling off” properties
of the solutions along the null directions.

Theorem 2. Let ‘¥, be the curvature spinor of the Yang—Mills field. Suppose that
the initial data are smooth, satisfy the constraint equations and the following smallness
condition:

PO, <éo @

2,1

where &, is a small constant; the superscript g on the H, | norm means that it is the
gauge covariant norm, that is, we replace the usual derivative by the gauge covariant
derivative in the definition of (3), the inner product of the Lie algebra is taken to be
the Killing product (-,-) which is assumed to be positive. Then there exists a unique
global solution of Yang—Mills equations in Minkowski space; moreover it has the
following decay estimate, when t > 0,

() S oy o232 0., ©)

The result in Theorem 2 still does not allow the initial data to have charge,
that is if the curvature only decays like r~ % at ¢ = 0. But without too much more
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difficulty, I will also prove that for some initial data with charge the estimate (5)
is still true inside a fixed light cone, i.e. r £t + C; outside the light cone we will
only have the following estimate:

[Pl < Coll e 2 PO, 0),, - (6)

The proof of Theorem 2 is based on the a priori estimate of some weighted
Sobolev norms. When the group G is non-Abelian, as we begin to differentiate the
Yang—Mills equations, we have to estimate some integrals over a region in the
space time of the error terms generated from the commutator of the gauge covariant
derivative operators. To estimate this integral under the a priori assumption that
the curvature spinor ¥, decays like the solution of linear spin-1 equations, usually,
we split the region into a family of space like hypersurfaces Z,, ¢ is a time function.
Then we do some manipulations such as the Holder inequality on the integrals
over %,, and hope to come up with something which is a priori integrable for
te(0, ). For our problem, we encounter serious difficulties in this approach.
Technically, this is because we cannot make full use of the a priori assumptions
that the components of curvature decay differently along the null directions. The
idea is that we can split the space time region into a family of light cones C,, u is an
optical function, and perform the similar procedure as before, then integrate along
the parameter u. This small trick seems to be just a pure technicality, but I believe
it is very important in studying problems related to the radiation of solutions of
hyperbolic equations because radiation waves propagate along null geodesics,
while the concept of space and time is just purely a matter of intuitive convenience.

To illustrate, let’s look at how the methods differ in estimating one of the error
terms (the notations are given in the subsequent sections):

[REUE A AT A

0<t<w

o R 12 12
gjdtsup(rl‘l’_1|)<jri[.f@‘f’llz) <fTi|Y’1|2> .
o = x 5

The a priori assumption
[W_ |SCt 232
implies sup (| ¥_,|) < C, but this is terrible because the integral in time is not
5
convergent.
Now if we use the family of outgoing light cone C, = {t —r = u}, the estimate
then proceeds as follows:
[ GrlZe? ¥ ¥

0<t<w
=] . 1/2 1/2
gydusup(rwcln(Jramw) (mw) |
— Cu Cu Cu

The a priori assumption implies sup (r| ¥_, |) < C/(1 + |u|)*?, which is integrable
Cu
for ue(— oo, o0). This is good!
The paper is organized as follows: in Sect. 2, I will first review the notations
of two component spinors; in Sect. 3, I will discuss the Lie derivative operators;



452 W.-T. Shu

Sects. 4 and 5 respectively give the decay estimates for the solutions of spin
equations and Yang—Mills equations.

2. Some Notations about Spinors

We will use throughout this paper the notations of the two component spinors.
In this section I will give a quick review of some of these; more details can be
found in [12].

(M'*3,g,,) is a Lorentz manifold, that is g,, has signature (1, —1, —1, —1),
the Greek letters run from 0 to 3. If we fixed a time function ¢t on M, then choose
x' to be the coordinate of X, = {¢ = 0}, they are also the coordinates of each time
slice X, = {t = Const} by following the time flow; the lower case Latin letters go
from 1 to 3. We will use D, to denote the covariant derivative on M, and V, the
covariant derivative on each time slice.

(V,645-0,") is the spinor structure of (M,g,,), where V is a rank 2 complex
vector bundle on M; the capital Latin letters such as 4 = 0, 1 are the index labeling
the fibre of V;4'=0,1" is the index labeling the conjugate bundle V;e,, is a

symplectic product on V, ie. it is nonsingular and ¢,,= —¢5,;0.% =g} is a
Hermitian spinor valued one form with the following property:
AA __ L
0uaa% =94 0,4408p =€48848> ()

and for any future-directed time-like vector field T, T* is positive definite.
We use the &’s to raise and lower the indices of spinors as follows:

wA = 8AB‘//B’ Yu= l//B'BBA- (®)

The following map defines an isometry from the tangent bundle TM to the
Hermitian subbundle of V® V:

X#o XA = X, )

In a similar way, any tensor is identified as a spinor; denote D, ,, = ¢ ,.D,, to
be the covariant derivative operator for spinors.

Definition 1. If spinor 45 is totally symmetric with respect to the indices (AB...),
——

n times

then it is called a spin-n/2 field; and
DY 45 =0 (10)
is called the (massless) spin-n/2 field equation.

As an example I will recall how to write the usual Yang—Mills equations as
the gauge covariant spin-1 equations. Let G be a compact Lie group, 4 be its Lie
algebra. A gauge field is given by its gauge potential ¢, which is a % valued one
form. Denote D, =D, +[¢,, ] the gauge covariant derivative. Let F ,=0,¢,—
0,9, + [&,,#,], it is called the curvature of @,,.

F,, satisfies the following Bianchi identity:

D*F¥ = D'F¥ + [¢* F¥1=0, (11)

where F¥ =3¢, F*%,¢

38400 is the volume form of (M'*3,g, ).

afuv
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The gauge field is said to satisfy the Yang—Mills equations if

D*F, =D"F, +[¢*F,]1=0. (12)
Let
Y= %F AA'BA" (13)
then
Fo=¥gpeip+ Vyptyn (14)
FY =iV, tp +i¥ optap (15)

Therefore the Yang—Mills equations are equivalent to the gauge covariant spin-1
equations, namely

DAYY o =DY + [, ¥, ;1=0. (16)
Lemma 1. For any spin-n/2 field \ ,, , define a n-tensor
Qe W)=V ap. Yoy (17)

it is called the energy tensor of the spin field y ,, .

L. Q,, . is totally symmetric and traceless with respect to any pair of indices.
2. If X* Y* ... are future-directed nonspace-like vectors, then,

QX Y,...)=0Q,, X*Y"...20.
3. If ., satisfies the spin equation (10), then
D"qu... = 0

Remark that for the spin-1 field ¥ ,5,Q, () is the energy-momentum tensor; for
the spin-2 field ¥ 4505, Q,,44(%) is the Bell-Robinson tensor.

Next, we will discuss the so-called Newman-Penrose formalism in general
relativity. This formalism is based on the following simple fact:

A future-directed real vector X* is null < there is a spinor y* such that
X4 = y4y*’; such a spinor is determined by the direction of X* up to the scaling
Y4 — Y4, A is a nonzero complex number.

In this paper, we will foliate a space time by two families of null hypersurfaces
C, and C,, where u,v are parameters which are called optical functions. Let
S,,=C,nC,; they are two dimensional space-like surfaces. Let | be the null
generator of C,, and I' be the null generator of C,, such that [ [* = 1.

Choose the spin frame {¢4,#4} such that

=1, = =gt (18)
then {¢4, 7} is determined by C, and C/, up to the following spin transformation:
(&4 - (A4 A7 1Y), (19)

where A is any nonzero complex number.

Definition 2. Let \y be some quantity which depends on the choice of spin frame
{&4,n*}, if under the above spin transformation (19)

W — APANY, (20
then \ is called a (p, q) weighted quantity.
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Examples.

1. For any spin-n/2 field ¢ ,, , define
Y= &8 e Y pep (1)

n/2 +k times n/2 —k times
where k= —n/2, —n/2 +1,...,n/2, then y, is a (2k,0) weighted scalar. I remark
that for the spin-1 and spin-2 field, this decomposition is the null decomposition
for the electric magnetic field and the Weyl field defined in [3,4].
2. For a spinor J . AB... > ifJ 445 =J 4us..) thenitis called a spin-n/2 current.

n-1 times

For k= —n/2,...,n/2—1, let

A zA B C D
Je=8¢" &8 n N J gapep.. s (22)
n/2+k times n/2 —k—1 times
J/‘k—l‘_:in—-ZﬁA’ éA"‘éB ',,C.__’,,D J
—
n/2 +k times n/2 —k—1 times

then J, is (2k + 1,1) weighted, J; is (—2k—1, — 1) weighted.

A'ABCD...> (23)

Definition 3. For any given spin frame {&4,n*}, let
D=I'D,, D'=1I"D,,
s=mD, &=m"D,, (24)
where m* = EATA m* = nEY = m* are tangent to S, . Suppose
D¢t =gt —xnt, Dt =gt — ket
51611 — (XéA _ pf]A, 517,4 — OC'V]A . plfA,
6€A=ﬂ§A—GﬂA, 5!'1A___ﬂ/”A_O_/éA’
D¢t =yt —mt,  Dnt=ynt -7, (25)
then ¢,q,..., etc. are called the Ricci coefficients of {&4,n*}.

In fact we have the following relations among the Ricci coefficients:

e+y =0, &+y=0,

a+f =0 o+p=0. (26)
k=0, «=0,
p=p, p =0, 27)

where we differentiate & ,#* = 1 to obtain (26), and (27) is a result of the Frobenius
Theorem for the submanifolds C, and C,.

The above notations are greatly simplified by using the primes. The reason for
this prime operations is that if we let

gh=int, nt=id, (28)

then {£4, n'“4} is another spin frame. Under this spin transformation, we interchange
the two generators [ and I'. A quantity associated with the prime frame is the
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prime of the same quantity associated with the original frame. Obviously,
Y, ="y _,. From now on we will always omit writing down the prime quantities.
The following three remarks are obvious to show:

1. If ¥ is (p,q) weighted, then /' is (— p, — q) weighted, and ¥ is (g, p) weighted.
2. The Ricci coefficients «x,p,0,7 are weighted scalars whose weights are
(3,1),(1,1),(3, — 1), (1, — 1) respectively.

3. Scalars ¢, a, B,y are not weighted, nor are the derivative operators D and 4, but
if we define the following two operators for any (p, q) weighted scalar ,

oY = (D — pe— q&)y,
P = (6 —pB—qo)y,
then ,# are weighted derivative operators with weights (1,1) and (1, —1)

respectively, that is oy and @y are respectively (p+ 1,9+ 1) and (p+1,9—1)
weighted scalars.

The weights are very useful to check whether or not the calculations are correct;
the prime operation reduces anything we have to do by half.

Lemma 2. If DAYy ,, =J4 | then for k= —n/2,...,n/2 1,

U= PV = — 2+ By + (/2 + k+ 1)py,
—m2-ktY,  ,+W2—k—1dY,,,— (29)
If we do not need to know the exact numerical coefficients on the right-hand
side of (29), the equations can immediately be proved just by comparing the weights
of both sides. The actual proof is just a straightforward calculation, see [12].
In Minkowski space, we will use the following two optical functions: u =t —r,
v=t+r. Choose the generators of C, = {u = Const} and C, = {v = Const} to be

1 (0 0 1 /o 0
l=k - ~ ) l/=__ ~. A ] 30
\/5(@: +ar> \/2((3: ar> (0

then the spin frame {&*,#*} is determined up to the scaling (19) with | 4| = 1. Hence
if ¥ is (p, q) weighted, let s =(p — g)/2, then under (19),

W — A2y, (31)

s is called the spin weight of .

For any spin-n/2 field  ,, , and any spin-n/2 current J ,.,, , both ¥, and J,
have spin weight k. This is why we arranged the definition as in (21), (22).

One can easily compute the spin coefficients of Minkowski space under this
spin frame to find

e=0, g =0,
k=0, k' =0,

. 1 . 1 32
p \/2—5 14 \/ir’ ( )
O'=O, O"=0’
=0 T =0.



456 W.-T. Shu

Therefore if D44y ,, =Jg , then

1
D+m2+k+1)— Wi =90V, = —Js 33
( (n/ )ﬁr>¢ 7y (33)
1
D—m2—k+1)— WW_,—y_,_,=J_,, 33
( (n/ >ﬁr>w Py K (33)

where D = (9, + 8,)/</2, D' = (8, — 3,)/</2; # can be identified as the Dirac operator
on §,, = {t =const, r =const}; ¥,,J, and J, are defined in (21)—(23).

3. Lie Derivatives of Spinors

There is a conceptual difficulty in defining the Lie derivative for spinors. Recall

) . . d
that for any one from ¢, the Lie derivative Zy¢, is defined to be —|  fF¢,,
=0
where f, is the one parameter family of diffefomorphisms which generate tthe vector

field X such that f, is the identity map of M. Unless X is conformal Killing, if
the one form ¢, is null, in general f}¢, is not null any more. But as we have
discussed in Sect. 2, a spinor naturally defines a null object through the spin
structure. Therefore it is not possible to define the Lie derivative of a spinor for
any vector field X such that it gives us the usual Lie derivative for tensors when
it is restricted to tensors; or equivalently, it is not possible to define a Lie derivative
operator for spinors such that it is compatible with the spin structure and the
usual Lie derivative operator for tensors. This is because the definition of the
spinor structure in Sect. 2 is a structure on a manifold with a Lorentz metric, while
the usual definition of Lie derivative operator for tensors has nothing to do with
the metric.

To define the Lie derivative for spinors, we will forget the usual definition of
the Lie derivative for tensors, instead we require that it is compatible with the
spin structure, that is

Lxeap=0,
Lyai? =0.

This leads us to the following definition:

Definition 4. Given any tangent vector field X, define the Lie derivative of spinor
Y4 by

gxlpA = X”Du‘l’A + hﬂ'l’s, (34)

where
1 A’
hAB - 7DA'(AXB)'

For other types of spinors, the corresponding Lie derivatives are defined in the usual
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fashion from (34). For example,
L= XD — YO,
Lxha=X"DY 4+ 5y,

LxWap=X"DW 4+ hG¥cs + h5¥ 4c.
Remarks. 1. Under this definition, the Lie derivative for an one form ¢, becomes
Lx0,=X"D,p,+30,D,X"—D"X).
This is because by the definition of h,5, we have
hagtan +hygeap=3D,X,—D,X,).

Therefore this new Lie derivative operator agrees with the old one for tensors if
and only if X is a Killing vector field.
2. In [3, 4], in order to preserve the traceless property for a spin-2 field (in tensor
form), they had to modify the definition of Lie derivative. Up to a correction term
with trz, the definition given there agrees with the one I gave here for the spin-2
fields (see (40), (41) for the definition of .#). The correction involving tr z can also
be removed if we do not require ¥ ¢,z =0 in the definition.
Let’s first look at the relation between this Lie derivative operator and the
Newman—-Penrose formalism in the previous section.
For any spin frame {4, 7}, define scalar functions z(X), w(X) and z/(X), w'(X)
by
&yt =2(X)E — w(Xm*
&y =2/ (Xt — w(X)EA 35)

1t is easy to see that w(X) and w'(X) are weighted scalars whose weights are (2,0)
and (—2,0) respectively. Since we normalize the spin frame {4, 74} such that
& =1, we know z/(X) = —z(X). Like the Ricci coefficients ¢, «, § and y, the scalar
z(X) is not a weighted quantity, neither is the Lie derivative operator ¥y, but if
we define

Lx¥ =Lxy — pz(X)W —qz(X)y (36)
for any (p, q) weighted quantity i, then ¥ is a (0, 0) weighted derivative operator.

Lemma 3. For any spin-n/2 field y ., let Y, (£ x) denote the components of
Lx¥ apcp... (L. (21)), then

Yl L xY) = Lx¥i+ (/2 + WX W, _, + (/2 — kW' (X)W, ., (37
where k= —n/2,...,n/2.
Proof.
Yl Lxp)= &8 nCn® Ly pen...

n/2 +ktimes n/2 —k times

=yx‘//k_(n/2+k)($x§A) g8 nP-on® Yap...
S ——

n/2+k—1times n/2—ktimes

— (2= kN Lxn) &8 Pt Yy

n/2 +ktimes n/2 —k— 1 times
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Because the right-hand side has to be weighted,
Ui Lx) = Ex— W2+ k)L &Y 880 nPnt Yy

n/2+k~—1times n/2 —ktimes

— 2=k (Fxn?) EB-EE pPenE Yy

n/2 +ktimes n/2 —k— 1times
= $X¢k + (n/2 + k)W(X)Wk_ 1t (n/2 - k)W/(X)'l/k+ 1° n
w(X) and w'(X) can be calculated explicitly as follows,

Lemma 4. For any vector field X, denote ®n,,=V X +V X, it is called the
deformation tensor of X, let 1 be the traceless part of it.
1. If X is tangent to the two surfaces S, ,, then

wX)=—1D2 . wX)=—19%,,.

2. Suppose the distribution spanned by the generators | and I is integrable. If X is
perpendicular to S, ,, then

wX)=10f  w(X)=1P% ..
Proof. For any vector field X = fl+ f'l' + gm + g'm’, then
W(X) = — & Lyt =Lyl = XD, E 4~ hypCHEP
=X DLy + 319X, — mrp X )
=EUfDELH'DE + 9ol +g'Cy)
+ 39+ [, + gm, + g'm))
—smup(l, + ', +gm, + gm)
=3{Kkf +(@ +20=7)f +0g + (0 +2p—p)g'}.

The validity of the above identity can easily be seen by comparing the weights on
both sides. Compute

Ry =1"9X, +mipX,
=kf+@+7)f" —0og—(p+p).
If X is tangent to the two surfaces S, ,,i.e. f =0, f' = 0, since p = p, we have,
w(X)= —3#,,.
If X is prependicular to S, ,, i.e. g =0,9' =0, then
W(X) =3 +(t—T)f".
From the Frobenius Theorem, that the distribution spanned by the generators [
and !’ is integrable implies t = 7/, thus
w(X)=1%,,. N

In particular, if X is a conformal Killing vector field such that it is either
tangent or perpendicular to the two surfaces S, ,, for each u and v, then w(X) =0.
Therefore we have the following corollary on the Minkowski space,
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Corollary. If X is the Killing vector field of time translation or spatial rotations
0 0 0

Tz'—‘, ,"=xi—.—X"., 38
ot ! oxs T oxt (38)
or the conformal Killing vector fields of scaling or inversion
0 7R 0 0
S=t—+r—, Ko=(1+t>+r?)_—+2tr—, 39
ot o Ko= Yo ar %)

then w(X)=0,w'(X)=0. Therefore Y,(L x¥) = L xs.

Finally we want to examine how the spin equations change after taking Lie
derivatives.

Lemma 5. For any spin-n/2 field  ,, and any spin-n/2 current J ,. ., , define

~ n+2
“ngAB.‘.:<°(£X+Ttrn>¢/ﬂ3...’ (40)

- n+4
“?XJA’AB‘..:('$X+ 16 trn)']A’AB‘.. (41)

for any vector field X, then
DAA’QX"’AB‘.. = QXDAA#’AB‘..

1 AAA'CC’ 1 A AA'CC’
t37 Dechyp. +3Dectt Yap..
n—1
AAA'CC’ C AAA'C
+ 4 {wAC(”.DB)C'n + Cotty ...)AC}

=J8 (X, ) (42)
We will also denote J , 5 (X, Y,¥)=J 5 (Y, Lxt).

Proof. In the following proof, I will restrict myself to the case when the underlining
space is Minkowski space, but the same lemma holds true as well even in curved
space. The same proof will work, we just need to keep track of the terms involving
curvatures, but they will vanish eventually; this fact is actually rather remarkable,
for a detailed proof see [13].

First, the following identity is just a result of a simple calculation from the
definitions,

Dy yhge= %DB’(Bﬁg;AA’ +5848Dcpu tr . (43)
The proof of the lemma is through the following calculation,
DAL\ 4y =D {X'DY 4y + WGy +(n— 1)‘/’AC(..,hg)}
= XuDgDAAl‘//AB... + XCC‘[DAA,’ DCCI]‘I’AB...
+ 3D gy + (T RN Yy
+ hiDAA'lpCB‘.. +(n— l)h(CBDAAl'//..,)AC
+ D" h Yy +(n— 1)DA4 hey

...)AC
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=ZLxDY 45 +itr DAY AR Decgp...
+ DAA’hClpCB + (n _ 1 DA’ C(Bl//AC

=(Lx +gtrm)Dy ., +1a41CD
+ (GD AT — 2D tr )y
+(n—1)[3Dy (BAjCB +%Dé’trn3,4(3]¢./‘.ﬁ

=(gx + ‘trﬂ:)DAA l//AB
— 2D (trmy 5 )+ tenDMY

lAAA cc AA°CC
+3n DCC’lpAB...+4D(,Cn V...

CC’IIIAB...

1 n—1 .
+—1—6—D’“ (troy ., )+ 16~tr7:D’M Yap. .

n—1

1
cc’ P
+ 4 DC(BnAA "3 yac T 4‘Dg fBAC ...)AC

=Ji (X,¥)— 163DAA(trn¢AB ]

4. Decay Estimates for the Spin-n/2 Equations
in Minkowski Space

In this section, we will prove the following theorem,

Theorem 1. If  ,, satisfies the spin-n/2 Eq. (10) in Minkowski space, let

n/2—1
[¥1(T)= sup {T'L“’le//,./zl*' > ”/2+k“f‘f—1”2"‘ll//kl}, (44)

0<t<T =-n/2

then

W1:=[¥1(0) = CllYO, %)l y,,_,- (45)

The above decay estimate is called the “peeling off” property of the spin-n/2
field Y ,5 ; namely, along the null directions, say along t = r, then the n different
components y, decay as follows:

Wl SCrm2= =t k= —np2, . n2—1, |Y,, | SCrmt2 (46)

Remark that y, decays one order (i.e. r ) better than y, _, for k <n/2, but ¢, ,
decays only a half order (i.e. r~'/%) better than y,, ,, while by using the Penrose
conformal transformation, one can prove that it is also one order better, i.e.
|Y,/2| £ Cr="~1. Of course the initial data then have to decay faster. In terms of
decay at future null infinity, the worst term is ¥ _ ,; it decays like r ~! This is
what reflects the radiation property of the spin-n/2 field equations.

We will use the following notations to denote the different regions in Minkowski
space: for 0< T Lo, u=t—r,v=t+r,let

Vp={0<t<T},
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denote the interior and exterior regions by
. 1+t 1+41¢
vi— { <%}nVT, Ve — { >—I—}0VT

Let X, C,(T) and C/(T) be the level surfaces of ¢, u and v inside V., we will put
the superscnpts “” and “¢” on them to denote their intersections with V% and
,e.8. CiAT)= C nVs. We will omit the index T if T = oo, for example, V =V,
= C¢(0) etc.
For any spin-n/2 field ¥ ,, , define the following energy norms:

00(t) = Qo(W)(®) 25 0, WTKL--K},
Qo) = 0o (u) = Cy 0. WIKY - K,
Oow) = 0o = | Q,, W)I'K4--Ks.

C,

The integrals on the null hypersurfaces C, and C, are defined as follows:
For any given null hypersurface 4" in a space time, let [ be a generator of A";
it is determined up to the rescaling

[—>al, 47)

where a is a nonzero real function on A" If f is a scalar function on .4, which
depends on the choice of the generator / and which under the rescaling (47), f —af.
Then define the integral to be

b
| fdv=[dr]| fas,,
N a Sy

where r is the affine parameter of 4, that is I(r) = 1; S, is the level surface on A~
of constant r; S, and S, are the boundary of 4. Clearly the integrands in the
definition of Qo(u) and Qo(v) have the right scaling, thus the integrals are well
defined.

Similarly we also define the norms on other regions such as on X, C¥(T) and
C(T). Since T, L1, K, are all future directed, from Lemma 1, these energy norms
are all positive. Later in Theorem 2 we will prove they actually bound from below
by some weighted Sobolev norms.

Fors=0,1,..., let

QXT)= sup Q)+ sup Q,wT)+ sup Qv T), (48)
0<t<T - <u<ow O0<v<w

where Q,(t) are defined inductivity as follows,

Qe (W0 = Qs(lﬂ)(t +QUZ )1 + QUL W) ) + QUL Y1),

where Qs(.z’(,l,b)(t)—— Z Qs(,f xp)(t) Similarly define Qs(u T) and Q (v, T) by

i,j=1

using the null hypersurfaces C,(T) and C/(T) respectively.
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Let

R¥(T) = Z { sup Ri(t)+ sup Riu,T)+ sup ﬁ;f(v,T)}, (49)

k=0 (0<t<T —w<u<ow 0<v<oo

where each term is defined as follows:
Ri(t)= | (14 2"+~ Dy |2,
SN
n/2

ﬁﬁ(u, T)= j‘ Z Z _Cr;_+2(k+s—I),CrL-Zk!DlewkIZ’

CE(T) k=-n/2+1 l+m=s
n/2-1

ﬁ;e(v’T): j‘ Z Z n+2(k+m),[n+2(l k— UID/IV"'%‘IZ

C.8(T) k=-n/2 I+m=s
where

Y™it= 3 1907

i+tj=m

3
IVS'//|2=|VS‘/’AB...|2= Z Z IV?WABA..IZ’

i=1oai1taztaz=s

W ap. |2 =05" ags Vg Vap
Actually we can also bound from below the following norm on the exterior region
of each time slice, (but we are not going to use this fact),
n/2
R?(t)z j‘ z Z Tn++2(k+s~l)rrl_AZlelel//klZ
e k= -n/2+1 l+m=s
nj2—1
+ Z Z ,[n++ 2(k+m)1.nA+ 2(l—k— l)|D/lelpk|2. (50)
k=—-n/2 l+m=s
Theorem 2. If s satisfies the spin-n/2 Eq. (10) in V., then
R¥(T) = CQ3(T) = CQ,(0), (51)
where C is a constant independent of T and the initial data.

Proof. Q¥(T)=< CQ,(0) is direct result of Lemma 1 and Lemma 5. To prove
R*(T) < CQ*(T), we do induction with respect to s=0,1,2,... . Since the norms

ﬁj(u, T) and I'i;e(v, T) are symmetric, we only need to estimate one of them, for
instance, take R:(u, T).
When s =0, use

— 1
Ko= ‘_‘(Tﬁ— I+12 I,
2
to compute

n—1
_ _ -1
LKo,...,Ko)=20""27% <n ) Zkg2n=k=1) , ULl
Q( 0 0) o k Q( )

k+1times n—k—1 times
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n—1
n—1
_ 1—-n)/2 2k, 2(n—k—1 2
=207 20< k )”T_n Wit 1 -
k=

n/2
ZC Z ‘L"fz(k_”‘["—ZkWIk‘z.
- k=-n/2+1

Therefore we have
R(u, T) = CO5(u, T).

. . 1
For R{(t), since in V',1_ = C(1 +1t),and use T=——(+1),
2

_ _ 1
Q(TaKos---’KO) =—

2
n/2

ZC(L+0*70 3 f?

k=—n/2

[0, K,,....,Ko)+ 0, K,,...,Ko)]

2 C(1+ 02" Dy 12

Thus .
Ry (1) = CQ,(1).
Suppose that the theorem is true for some s =0, we want to prove that it is

also true for s+1.
Let ¢, =LLLLL W 5, where i+ j+1=s, then since

C -
Yul? §;§(|$@¢k|2 +1il?),

by induction, we know
n/2

[ X X e plymriy P < 0Qr (7).

CE(T) k=—-n/2+1 l+m=s

Use (33) to obtain the following estimate,
n/2—-1

f Z Z ITZ“‘"L”“T"__Z“‘H)IDHlyml//klz§CQ:+1(T)'

C&(T) k=—-n/2+1 l+m=s
The estimate for D'*'y™y, , is still missing, but (33)" gives us

j‘ t.‘i(n+s—- 1)12_ IDIV"'D'ill,,/ZIZ § CQ;, 1(T);

CiT)

by induction we also have the estimate for

~ 1
$T¢n/2 = ”ﬁ(D(ﬁ"/z + D’¢,,/z),

~ 1 , n+2
LsPor = \-/5(UD¢"/2 +uD'9,,)+ 5 B2
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Therefore we have

j. Z 12(,,+s)lDl+1vmw"212<CQS+1(T).

C&(T) l+m=s
Thus - _
R, w,T)=CQ;, ,(u, T).

Because £, is degenerate on the spatial central line, to estimate the norm in
the interior, we will use the following lemma:

Lemma 6. Let ., be a spin field on a time slice X = X, assume it has compact
support, let 9 be the Dirac operator on X, that is, D = ¢"**' Dy ., , then

[IVP<2 ] |29
P z

Proof.
5 |2y|* = .f a4’ D; ‘/’CB .CA'Djl/JCB...GOAA’JgBI

. _ BB’
=~ [0 oy, Vep. DDy 05"

z
EI ¢4C g AlIICE (DD +DD+[D1,D])¢ICB a
b
1 ,
5;’; "//CB Dy, (lAC +UJAC GAA )0 044 GOB
1 2
2 [Vl m
23

~ r
Now we continue the proof of Theorem 2. Let ¢,, = ;7(1 >¢AB”_, where
n(s) is a cut-off function such that tt

1 if s<1/3
n(s) = i
0 if s>1/2,

then
Dbas.=| o4V ——) |#
AB... i 1+t AB...
r
1 1+t n+2
_O'SA —14-—t—<$1~ .fé’s—x’Vj— 8 >¢AB...'
Thus

- C . ~
|24 él—H(I«YﬂbI +1Z5d] +191) + 31Vl

The desired estimate in the interior is then an easy consequence of Lemma 6. W
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Finally, we want to prove the Sobolev inequalities, which will also be used in the
next section, which will give us the proof of Theorem 1 from Theorem 2.

Isoperimetric Inequality.
2
jlf—f|2§C<f|Y’fl), (52)
S S
where S is any two dimensional sphere; C is independent of the radius of S; fis

the average of f over S.

Lemma 7.

1/6 1/4
sup [( | r61f16> + sup (f r“lfl“> }
-0 <u<o C&(T) SurcCiM \§,,

1/2 2
gc(j |f|2+(1+r2)lVflz)/ +C sup (j lf12+r2_wf12>”
o

0<t<T b

1/2
+C  sup (f if|2+r2lDfl2+r2|Y’f|2>/- (53)

— oo <u<wo Cﬁ(T)

We also have a similar inequality on another family of light cones C., its degenerate

version is
1/6 1/4
sup [( f r“rz_|f|6> + sup (f r2f2_|f14> ]
o<v<w L \ciem) SurcCE(T) \S,,,

1/2
S C( fifiz+a +r2)|Vf|2>
Zo

1/2
+C< J lf12+r2Wf|2+r2_|D'flz> : (54
CA(T)

Proof. Let §W be the radius r sphere on the null hypersurface C(T); let r,,(u) and
r (1) be respectively the minimum and maximal radii of all such two spheres. Then
§u,rm(u) is either in the interior region V. or on the initial hypersurface 20;5“‘,‘"(")
always lies on Xy. Apply the Isoperimetric Inequality (52) to r*|f|> on each
S,.,» use the Holder inequality, then integrate with respect to r from r,,(u) to ry(u),
we obtain,

[ reliflesCc sup (j r“lfl“)( § lfl“rrleflz) (53)

C&(T) rm(u) <r <rpg(u) Sur C&(T)

On the other hand,
TS [ RIS C [ A PIDS R

Su,r Su,rmtu)« Cxe‘(T)

1/2 1/2
< ] rﬂfr*-+c( i r6[f|6> ( i |fl2+r2|Dle> |

Sty rm(u) Ci(T) Cu(T)
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Therefore we have

1/6 1/4
(5re) s s ()
CE(T) rm() <r<ram(@) \§, ,

1/4 172
é(_f 4lfl“> +<f lf|2+rleflz+r2|Df|2> .

St rm(T) Co(T)
Therefore we have

1/6 1/4
( i r"tfr”) r osup (5 r“\fl“)
ce(T) rm(u) <r<rp(u) \s,

1/4 12
é( J r4lfl4> +< ] |f|2+r2|Y’f|2+rlDflz> :
Surm(t) Cum
But the same proof as above easily gives us the following inequality,

1/4 1/2
(f "4ffl4> <f|f| +(+ )P+ sup [P+ (1 +1%) IVf|2> «

0<t<T PN

u,rm(u)

Therefore we have proved (53). Equation (54) is proved in exactly the same way,
one just replaces C¢(T) by C'(T), and replaces r*| f|*> by r?z_|f]? in (55) before
using the Isoperimetric inequality. W

Lemma 8. There is a constant C < oo which is independent of T and f such that,

1/2
sup 2| fl< C( LA+ A4V + (1 + 72)2!V2f|2>
Vr Zo

+C sup (J If1* + 1+t2)lVflz+(1+t2)2|V2f12>1/2

0<t<T

+ sup (j If1>+ 2| YfI?+r?|Df|?

— o <u<xn Ci(T)

1)2
+r Y21 + "4ID7f|2> ) (56)

1/2
supt,t?|f|SC sup <f ISP+ +r?) VS + (1+r2)2|V2fl2>

Vr 0<t<T \ Xo

+ sup ( § P+ Y 1P+ 2 IDf

0<v<o \cy(n
1/2
+rH Y2 S +r2r2_|D’Y7f|2> - (57)

This lemma is evident from the following Sobolev inequality:
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Sobolev Inequality.
1/4
SUPIfIéCV‘”2<§If|4+r4lVfl4> ; (38)
s 5

where C is independent of the radius of S.

Proof of Theorem 1. From Lemma 8, we have the following estimate:
[¥1*(T) < CRY(T). (59)

Therefore Theorem 1 follows from Theorem 2.

5. Yang-Mills Equations

It is easier to state the initial data for the Cauchy problem in the language of
tensors because the spinor structure are naturally adapted to the null structure of
the space time. It will be more convenient to use spinors if we want to solve the
Goursat problem.

Let (¢;(x), E/(x)) be the initial data, xeR?, ¢;(x) is the gauge potential of a gauge
field on R3, E;is a gauge covariant one form. It has to satisfy the following constraint
equation:

VE;=V'E +[¢ E]=0, (60)

where V means the gauge covariant derivative on R? with respect to ¢;(x).
The curvature tensor F,,, and thus its equivalent spinor form ¥, on the
initial surface X, can easily be expressed by the initial data as follows:

Fio(0,%) = Ei(x),  Fi)(0,x) = 0;9(x) — 0;0:(x) + [0, 0] (61)

Except for the initial data, everything else in this section will always be gauge
covariant, i.e. we will never refer to any quantity which is gauge dependent. For
gauge covariant quantities, we will adopt as before the same notations and concepts
such as Lie derivative, energy norms, etc., just simply replacing the usual derivative
by the gauge covariant derivative.

The goal is to prove the following theorem:

Theorem 3. Suppose the initial data are smooth, satisfy the constraint equation and
the following smallness condition:

IO, ) 1y, , = €05 (62)

where ¢, is a small constant, H, , is the gauge covariant weighted Sobolev norm (see
(3) in Sect. 1). Then there exists a unique (up to gauge transformation) global solution
of Yang—Mills equations in Minkowski space; moreover it has the following decay
estimate,

[PI=CIPO,X)y,, (63)

Almost the entire section is devoted to the proof of this theorem; the case when
the initial data has charge will be discussed in the end. The proof of local existence
is rather standard (see [5] or [7]). The following conclusion is also simple to prove

([6J):
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The solution blows up at finite time T, < co if and only if sup | ¥| = co.
l/To
So from now on we are always assumed to be given a guage field in V; for
some T >0. Let ¥, be its curvature spinor, it satisfies the gauge covariant spin-1
equations.

Lemma 9. For any gauge invariant spin-1 field 45 in V;, then
DAA,g;x‘/’AB = "‘?XDAA"pAB +X¢T A, Yl + XG0 pae, ¥ 4]
+ 3D 4+ 3D RANCY )
— 0 D A 4 D), (64)
The right-hand side of (64) will be denoted by J (X, ¥). We will also denote
J(X)=J,(X,¥), and J (X,Y)=J (X, %y )
Proof.
DALy 5= DAAI{X“D‘L‘//AB +h e+ hgl//AC}
= X“DMD"‘A'WAB + X oo [D*, DY
+ %nAAICCIDCC"/IAB + (hACSA’C' + EA’C,gAC)DCC’wAB
+ DAA'{hiwCB + hgll/AC}
=X"D, DAY+ XETPA Y 5]+ XELPC Y 48]
+ DAA,{hil//CB + hg‘l’Ac}‘
The rest of the proof is the same as Lemma 5. W

Lemma 10. For any gauge invariant spin-1 field Y ,p, if D4 .y =Jp,.,J, is some
gauge covariant one form, then

1.
QEWNT) = CQWNO) + C | (L+ )Y 1J]
+C [ AW 1T 1+ 1Yol o))
+C [ 2 11 T+ Wl 15, (65)
Ve
where , and J, were defined in (21),(22).
2.
[To(O, )| < Cr(1 P4 1ol + 1 ol 191 1) + 1 & ol (66)
[T (O < Cr(1 P [l + 1 Fol Vo)) +1F6d ", (67)
oL +1Jo(S, ) = Cou | Pl ]+ Co_ (W[ 1]+ ¥ol 1Wol)
+1 Lol +1LsJols (68)
VAT + 1T S = Con (1 Fol Y]+ 11l 1Yol) + CT- [ -] Yol
LI+ Es T (69)

By taking the prime, we get the corresponding estimates of J;, and J _ . In particular,
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in Vi, for X =9, TS,

XY= CA+[¥| Y]+ C0 +1DJ]. (70)

Proof. This lemma can be proved either by the direct calculation or by using the
weights. In the following we will prove 1 by direct calculation and 2 by using the
weights:

D*Q, W) = (DAAlll’Asa V) + (_lpABa DAY 4p)
=(J§'a ll’A’B’)+('l/AB’Jg’)' (71)

Therefore

Q¥W)(T) = CQW)(0) + C VI ISP LW g J3) + (W a5 T 3)]
< CQW)O) +C [ (1+13)yl1J]

Vi
+C er T EPEN 4l 1E" AT 4 |+ 1E0 M 4l [EP EMT 4.])
+Cer 2 (1PN 4l 17 0T g+ 10yl 177 E4T 1)
§CQO(0)+CV[ (1+ )|y 1]
+cyje ri(wrn 1T 1+ 1ol 176])
+Cvjf (Wol 1T+ 1w 11T, ).

In order to prove 2, remark that from Lemma 9 we know that for the conformal
Killing vector fields X = 0, T or 8,J(X,¥) — ¥xJ, is the linear combination of
[¥,y;] and ['{’,,I/IJ] with coefﬁments X™

Let X =8;=a,m+ a,m, the weights of a, and a, are (—1,1) and (1, — 1)
respectively, and la;| + |ay| = Cr. Because the weight of Jo(€2;, ) — £ g, Jois(1, 1),
the only terms of form [ ¥;,y;] and [ ¥, ¥;], which can possibly appear with the
coefficient a, have to have welght (2,0), s0 they can only be [ ¥,,y,]and [ ¥y, ¥ ];
in the same way, the only term that can appear with the coefficient a, has weight
(0,2), so it must only be [ ¥;,¥]. Therefore

170(0:9) = Lo ol < Cr(1 ¥y | Yol +1 Fol 1W41).

For J'_,(£2;;, ), its weight is (1, — 1), thus the only term with coefficient a, is
[P_,,¥_,];the only terms with coefficient a, are [ ¥y, Y, ]and [ ¥,, ¥, ]. Therefore

(O) = P IS CrUP_ | 1|+ Fl 1)),

For X=T or §,X =a,l+a,l', the weights of coefficients a, and a, are
respectively (—1,1) and (1,1); |a,| £ Ct,, |a,| £ Ct_. The rest of the proof is the
same as before. W

Proof of Theorem 3. From the local existence theorem, we can assume there is a
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solution in V7, for some co = T > 0, such that either T = oo orsup | ¥| = co. Let
Vr

To=sup {t < TIR¥(P)(t) <}, (72)
where ¢, 1s a small constant to be fixed later, then
R¥(To) < 2. (73)

Claim. Under the a priori assumption (73), if €, is sufficiently small (independent
of T, and the initial data), then there is a constant C = C(g,) such that,

R3(Tp) = CQ,(0). (74)

Choose ¢, such that 2Ce < &2. If 0,(0) < &2, then R%(T,) < &2 < 2. Therefore
Ty = T= oo this proves Theorem 3.

It remains to prove this claim. The proof is divided into three steps in the
following: the first step is to prove the equivalence between the energy norms
Q%(T) and the Sobolev norms R%*(T); the second step is to estimate Q¥(T), the
third step is to estimate Q%(T). Step 1 is rather easy to prove, step 3 is very similar
to step 2. All of the estimates are under the a priori assumption of (73).

Step 1. Equivalence of Norms: there is a constant C depending on ¢,, such that
R3(T) < COX(T). (75)

As in the proof of Theorem 2, we divide it into an interior and exterior part. The
interior part relies on the following lemma which is the gauge covariant version
of Lemma 6,

Lemma 11. For a compact supported gauge covariant spin field .5 on a time slice
X, let V denote the gauge covariant derivative on X, 2 the corresponding Dirac
operator, then

£|Y¢|2§2£|@¢|2+C £|‘1’| 12,

where ¥ is the curvature spinor of the gauge field.

For the exterior part, the estimate ﬁj (u, T) and ﬁ/f(u, T) is the same as that of
Theorem 2 because we only used the Yang—Mills equations without taking any
derivative. To estimate ﬁg(u, T) (same for 13/2‘*(11, T)), we use (33), (33) to obtain the
following estimate for X = £,, T, S,

[ A2 IDF PP SCQHT)I+C | 222 |Jo(X),

CuT) Ci(T)
| 22DV PSCOHT)+C | A2 |0 (X))
CiT) CUT)

So one has to estimate the following two integrals for X = £,,

TO, S,

[ 222 1Je(X))? and | 2120 (X))
Ci(T) Ci(T)
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We use Lemma 10,

o Y (WP + (X))

CS(T) X=0,T,S

SC | AP PP PP+ Wl + 1Y)

CiuT)
st (R ANEESNEENE ALL SNEENE A
SCsup (P2 |, P+ P+ D) | PP+ )1

CiT) Ci(T)

< CIYI*QH(T).

Thus 5
R4(u, T) < CQ¥(T) + CeiQ¥(T).

This then completed the proof of Step 1.
Step 2. Estimate of Q¥(T): if €, is sufficiently small, then
Q1(T) = CQ,(0). (76)

Apply 1 in Lemma 10 for y ,, = %4 ¥,5 where X = Q;, T,S, we have to
estimate the following error terms:

E(X)= cs’j(X) + gil(x) = éa‘j,l(X) + é’i‘z(X) + é’il(X)
= [ (1 Py 1T (X)) + | Py ol [ To(X)])

+ [ 2L (X + 1Py ol 1T5(X)))
+ [ L+ 22y PIIX).

Each of the above three integrals are estimated as follows:

1. &(X), X =Q;,T,S: From (70),
(a@' :j (1+1t?) IQX‘PIIJ(X)I
‘;T
SPfa+e2veeP
0 x;
<}[ *(T)]”2['1”](7’)[Q*(T)]1/2
o (1 +1)32

< CIYIT)[RY(T)RH(T)]'.

2. & (0): From (66), (67),
[Jo(O) = Cr| ¥l | ¥l
(O SCr(l P TP L+ 1] | o),
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R ® R 1/2 12
) r3l$@?’1llﬁf’-1ll5"1léc_§ du([ r2|$(§'{11|2) sup (r| ‘1’—1|)<§ rzl'fﬁIZ)

ve. cs c: cs

<c | IRIDIPL¥UDRETS |
e (1+ul)’?

< CL¥YUDIRHTIRF(T)]?,

N © . 1/2 rzl‘f’l 1/2
[ Pl Wil 1%l | %] £C | du(frzl%YﬁP) sup<—1—°->(§ri|%|2)

ve. cs cs cs

S CLYNDRY(TIRF(T)]'?,

. £y . 1/2 r2|){/01 1/2
j "Sif@'{’ol [¥ol [P =C _I du(j 1:2_|$(9'{’0|2) SUP('-T-—><I ‘f2| 'P1|2>

ve. Cs, (o Cu
S CLYI(T)[R¥(T)RE(T)]?,
Thus
&5 ((O) = CLPI(T)[R¥(T)R¥(T) ]

&% , can be estimated similarly by using another family of light cones C;7(T).
3. &5(S): and &$(T): From (68), (69),

(T + 1 Jo(S, )| = Crp | [ | ]+ Cr_(| Wi [ Wil + [ ol | Pol),
W (T + I (S = Cry [l [+ Cro | Wy ]| ol

We will estimate them term by term as before,

IRMEA AN NI A

Ve
0 R 1/2 1/2
<c | du<§r2|$s¥q|2> sup(rwon(yrzw)
® Cy Cy cy
< C[PUT)[RH(T)R¥(T)]?,
§r2e | Es P 1P| | Wl
Ve
© N 1/2 1/2
<c | du(frm%w) sup(rw_1|><§rz|%|2>
T® C Cs [0

< CLPI(T)[RY(T)RE(T)]Y2,
[RAEA AR AR

Ve

? 21w 12)  aun (LN ¢ 22 )
=C f du jr_l$5W0| sup L j“f [
@ Ak c: - c:
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< CLYNT)[R¥(T)RA(T)]*2,
[ 2o | PsWol 1P| | W)

Vs,
© . 1/2 1/2
<c | du( jril$s‘f’o|2> sup(rw_ln(frsz)
—© Cy C; Cg
< CIYUT[R¥T)RY(T)]3,
[REME AN AL
© 1/2
<C | du<jrz_|$stpo|2) sup<f—’g’£'><jrz_wfo|2>m
o \cg cs - cs

S CLYUT)IR¥(T)RE(T)]'.
Thus
&% () S CLYUT)[R¥(T)R¥(T)]'.

We can similarly estimate &9 ,(S) and &(T). In conclusion, we obtain the following
estimate:

Q*(T) £ CQ(0) + C[¥NT)[RF(T)RF(T)]'.
From the norms of equivalence in Step 1,
OX(T)= CQ(0) + Ce, Q¥(T).
Therefore we proved Step 2 by choosing ¢, small, s.t. ce; <3.
Step 3. Estimate of Q%(T): if &, is sufficiently small, then
Q3(T) = CQ,(0). (7

The proof is very similar to that in Step 2. Apply Lemma 10 for ¥4y ¥ 4,
where X, Y =£,;, S, T, we have to estimate the following error terms:

E(X,Y)= 65X, Y)+ 45X, Y) =65 (X, Y)+ &5 ,(X,Y)+ 65X, Y)
= [ 2Py Py Pl 1T (X, V| + | Py Py Pol 1Jo(X, V)]

v
+ [ ALy (X )+ Py Py ol 1T(X, Y)])
Vg
+ [ A+ )PPy PIIX, YL
Vi

The interior part is obvious,

EX V[ [ A+HHVP|P]IVY]

0};;

< CL¥YI(DIRHTIRF(T)]'.
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The exterior parts are estimated term by term as follows:
1. 65(0,0): Applying Lemma 10'with 45 = Py W g, for X, YeO,
170(0,0)| £ Cr(| ¥y | £ ol + | ol | L0 W1 1)
[T (O, O S Cr(| Wil | Lo Py |+ P || Po Wil + | ol | Zo Wol).

Thus
[ P1LoPo Wil 1| P,

Ve
<C | du(j

< CL¥YUT)[RY(T)RK(T)I',

To estimate

o 1/2 R 1/2
"2|$0$(9lp1|2> SUP(""P—J)(] r2|$0‘l’1|2>

Cu (o

[RAEZE 7L AL AT NN

ve,
we need to be a little more careful because the energy estimate does not give us
any bound on the integral of ,2”@ _y over C,(T),

I AP AN AN 2
o 1/2
= ) du <§ r2|$@$w‘1’1|2>

I

ru(u) 1/2 1/2711/2

[;dr(yrm 114) <j r61‘1’1|‘> }
Su,r

rm(u) Su,r
R 1/4
wp ([ v g )
rm@) <r<rm@) \g, ,

© o 1/2
< du(fr2|$@$@l}"|2> D
— Cﬁ —_

rm(u) 1/2771/2
[ g owas)™]"
rm(u) §u,r

Apply (54) of the Lemma 7 for f =t_|&,¥_,| to obtain
1/2
( J it l$a‘f’-1l“> S R¥(T). (78)
Sur

Applying to f =r®| ¥, | the Isoperimetric inequality (52) and then integrate from
¥ 1O T,

rv(u) 1/2 rm(w)

{ d’(-f re| ‘1’1|“) S [ dr [ (PP 3PP+ 201 V)
rm(u) Su,r rm(u) Su,r

<C [ PP +r*YP)P< CRYT). (79)

Ci(T)
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Therefore we deduce
[P PoP o] 1P| P 0¥ | < CRYT)[RYT)]VA

Ve
Next,
[ PP eF o Wol | ol | P 0¥

e
VT

IIA

0 2 5 N 1/2 rZIlPOI . 1/2
Cc I d“( j T_|$(9$@'Po!2> SUP<——><Ir2|$m ‘[/1|2>
—© C&(T) ce T- ce

< CLYUT)[R3(T)R¥(T)]'7.
[ Lo cWol P11 F ol
Ve
w A 1/2 ~
=C f dU< j "2|$0$(9lpo|2) sup (r| lP1|)( f & lP0|2>
0 CA(T) CA(T) CA(T)
< CLYUDRI(TIRK(T)]'

Thus
&5 1(0,0) < CLYNT)[RE(T)RF(T)] + CRE(T)[RF(T)]">.

Similarly we can estimate &% ,(0, 0).
2. &S, 0), &(T,0), 65(0,8) and &5(0, T): The proofs are all very similar. For
example, we will estimate &5(S, O) as follows,

1Jo(S, 0)| £ Cr, | W] | £ 0 ¥,
+CT_(|P_ | Lo Pil + 1P Lo P i+ ol 1 F 0 Wol)
+ Cr(| s Vil | Wol + 1 L5 Wol | 1)),
[T (S, 0)| £ Cto (|l | Lo Wil + 1 Wi [ L6 Pol)
+CT_ (1P 1 Lol + 1P, 1 F o P_1))
+Cr(|Zs P 1P |+ LsP_ 1P+ F5 Wl | o).

Thus
[ Pl LoZs Vil ¥l | £ 6P|
Ve
@© P R 1/2 . 1/2
=C j d“(f" |$(9$sq/1|2> Sup("l"’ol)( j "2|$(9'P1|2>
—w c Cum caUT)

< C[¥UT[RY(T)RX(T)]V2
[P LoPsP 1P 1P P oWl

Ve

© PN 1/2 2 .
sc [ af (r12epanr) s (PN 12 izowe)”

c: cun\ T cyn

< CLYI(DIRI(TRY(T)].
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[ Pl ZoPsP |1 PsP 1P|

VT
© P 1/2 R 1/2
=C j du(jr '$(o$s'}'1|2> Sup(’”zllp—ﬁ)( | r2|$5‘1’1|2>
- Cu C&(T) co(T)
S CLYI(T)[R3(T)R¥(T)]'.
(RPN AT NI
|43
<C | du( [ 2| Zods P72

ce
u

re(T) N 1/2 1/2)1/2
) j d"<~j r |$SW—1|4> (j r6|qjl|4) }
re(u) Su,r Su,r

. 1/4
® A 12 SUpP <~§ r276—|$s‘P—1l4>
< du<Jr2|$co$s‘P1|2> Pm() <r <rae@ \Sur
- 0

32
ce T

ra(u) 1/2)1/2
< dr( | r6|lP1|“> }
rm(u) Su,r

< CRY(D[RKT)]?,

where in the last inequality, we use the similar reason as that in (78) and (79).

[ P10 Fs¥i ) 1 EsPol | Pl

VT

w 2B & ) 1/2 rZIgPO' N 1/2
gc_j dul |r |$@$S‘I’0[> sup< >< { r2_|$sq/0[2>

Cy CuD CUT)

< CL¥NMRYTRH(TII,
[ e (Lol 1¥ 1126l

B SR 1/2 R 1/2
gc_j du(frzlf(g.fs‘f’olz) Sup(rlqj—ﬂ)( § 1:2_],?@‘[’0\2>

Cs Ci(T) CiT)
< CIYIT)[RE(T)RH(T)]'?,
[ r1 | 2o s | Pol | L 0P|

Ve

© A 1/2
§C_j du(fr2|$@$s‘l’o|z>

ci

ra(u) . 1/2 1/2)1/2
[Tl groor ) (grems)}
rm(y, u,r Su,r

< CRI(T)[RY(T)]'72,
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where in the last step, we use the same trick as that in (78) and (79).

[ PP oPs¥ol 111 |F 0¥,

Ve
© PO 5 1/2 r2|c{/1| . 1/2
<C | d“(jf_l$(9$sq’o| ) Sup(-—-)( | r2|$0'1’1|2)
— oo cs cam N\ T- ciT)
< CLYUT)[RY(T)R¥(T)]'7?,
§ 2 | PoEsPol 1P| L0
Ve
o] . N 1/2 N 1/2
<cC | du(f'¢£|$(9$s""o|2> sup (r| ‘1”-1|)< f r2[$0‘P1}2>
- ® ci CUT) Ci(T)
< CLYI(DRY(T)R¥(T)]Y?,
[ re | PoPsWol P Le ¥
Ve
N N 1/2 . 1/2
<Cc | ( § r2|$@$s‘1’0]2> Sup(rl‘f’ll)< ] 13|$@W—1|2>
O<v<o \Cy/(T) CE(T) CA(T)

< C[YNT)[RHTIR¥(T)]'?,
[ PP Ps¥ol | L5 | Pl

Vr

<c | du(ﬁ ri|$@$5%12>m sup('””')( i r2|$s%|2)”2
J S

u Ci(T) T- CY(T)
< C[PUT)[RHTIRHT)]?,
[ PP eFs ol | Zs Pl | W]

e
Vo

o 172 R 1/2
<C | ( | "2|$cﬂ$slpo|2> SUP(V|'1U1|)< I ”2|$cn'1”0|2)

0<v<w \coT) C(T) CA(T)
< CLYUT)RF(DRY(T)].
Therefore we have the following estimate
5.1(5,0)< CLYUN[RI(TIRF(T)]? + CRF(T)[RF(T)]'2.
&%.,(8,0) can be estimated in the same way.
3. &5(S,8):
EANHIESL N A AL AL A)
+C (191 |5 il + ¥ | L5 o]+ ol |25 Wol)
+Ct_ (1P [P+ ¥l [ Fol),
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1T (S, S)] < Ct o (| Pol | Zs P11+ WL | PsFol + 1 Fol | P4
+CT (1P | PsWol + | ol |Zs Py |+ ¥ 11| o)

The estimates for these terms are essentially the same as before, so we will omit
them.

Summing up, we have proved the claim. This completes the proof of
Theorem 3. W

Now let’s investigate how the presence of charge on the initial data will affect
the asymptotic behavior of the solution. I conjecture that this long range effect of
the initial data will only change the asymptotic behavior at the space like infinity,
it will not change the asymptotic behavior of the solution along the time-like and
null infinity. I can only verify this statement under the assumption that the initial
data is Abelian outside a compact set, say {r < 1}, that is if

¢i0,x) = @ix)o, E{0,x)= fix)o, r=|x|21, (80)

where oe¥ is fixed, ¢;(x) and f,(x) are two real functions. For this type of initial
data the charges are defined as follows:

1 x!

E@0.x)=-tim [*E, 81
4ns‘{ )= 4nr-w sf, r 61
Aj X H(0,) =~ Tim [ H, (82)
4ns. r 4nrow g 1

e and g are respectively called the electric and magnetic charge. For the general
case, the first question to ask is how to give a gauge independent definition of the
charges. I am not aware of any answer to this question.

Lemma 12. For any spin-s weighted scalar ),

[ PIVUP+ WP <C [ 1 @ul? s#0, (83)
Se,r

St.r

§ VYR +1y —Ave )PP < C [ | FoUl? =0, (84)

Se,r Se,r
where Ave () is the average of Y over S,,.

For spin-0 weighted scalar s the Lie derivative P o0 is just the usual derivative,
therefore (84) is just the usual Poincaré inequality; (83) is a result of direct
calculation (for the tensor version see [3]).

Theorem 4. Suppose the initial data is smooth, Abelian outside a compact set, say
{r <1}, and satisfies the constraint equation (60). Assume

12 0¥ 0,%),, +1eO) +190)| = &, (85)

where &, is a small constant. Then there exists a unique global solution of Yang—Mills
equations; moreover the curvature spinor has the following decay estimate:

| ¥y (t, )| < Cepr*? (86)
|¥_,(t,x)| < Cegry 1132, (87)
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Ceot 2t Y2, if r<l+t

Y (tx) < .
¥l )—{Ceorzz, if r>1+t¢t

(88)
Proof. Because the initial data is Abelian when r = 1, from Hygence principle, we
know whenr 2 1 +1t, ¥ 5(t, x) = Y 45(t, x)o, where .5 is a usual spin-1 field which
satisfies the usual spin-1 equation. Therefore the same proof as Theorem 1 in Sect. 4
yields the following estimates,

0x(ZLol) W) < Ce2, u<—1, (89)
QP (L W) S Ce2, QL o) (v) < Ce2, (90)

where Q%(T) and Q;"“‘(v, t) are the similar energy norms as Q,(t) and Q;(v, T)
except now we only integrate over the corresponding regions intersecting with
r=>1+t

We integrate (33), (33) over §,, (r 2t + 1) to deduce

(0,+6,+§>Ave(xp)=0, (o1)

<a,— a,—§>Ave(l//) =0; (92)
therefore

Ave(y) = (e +ig)o. 93)

\/Erz
Thus from Lemma 12 and the assumption (85), we obtain

0.()= sup 0,(1,T)<Cef. (94)
0<T<w
The rest of the proof is the same as that of Theorem 3 except we always restrict
ourself to the region {r<1+t}. W

Finally I make the following remark:

Remark. The same proof works as well to prove the global existence for the
solutions of the initial value problem of the Yang—Mills equations in Schwartzchild
space—time outside the black hole. The only problem is that we no longer have
the conformal Killing vector fields S and K, but we can use the following two
asymptotically conformal Killing vector fields,

S=td,+r,0, Ko=(+t*+ r2)o, +2tr, 0, 95)

where r, =r 4 2mlIn(r — 2m). The details were given in [13]. I also remark that
by combining with the work of Christodoulou and Klainerman in [4], one should
also get the global existence of the solutions of the Einstein—Yang—Mills equations.
Of course, the proof of such a result will also be very long.
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