Erratum

A Unified Approach to String Scattering Amplitudes

A. A. Voronov

1015 Department of Mathematics, University of California, Davis, CA 95616-8633, USA
Received April 30, 1991
Commun. Math. Phys. 131, 179-218 (1990)

In my paper cited above, I constructed a certain holomorphic line bundle

$$
\begin{equation*}
\lambda_{2} \otimes \lambda_{1}^{-13} \otimes\left(\bigotimes_{v=1}^{13}\left\langle\mathcal{O}\left(D^{v}\right), \mathcal{O}\left(D^{v}\right)\right\rangle\right)^{-1} \tag{1}
\end{equation*}
$$

on a generalized moduli space $\mathscr{M}_{g, n, B}$ of complex compact algebraic curves X of genus g with n punctures Q_{1}, \ldots, Q_{n} being contained in a disc B on the curve. (The curves were considered up to an isomorphism identical on the punctures, and homotopically equivalent disks on the punctured curve were also identified.) That bundle was provided with a canonical hermitian metric, and I claimed that this metric was flat (Proposition 2.2), that is not true: actually, one can prove that this metric is relatively admissible with respect to the natural projection $\mathscr{M}_{g, n, B} \rightarrow \mathscr{M}_{g}$, i.e., its curvature is proportional to a canonical $(1,1)$-form on the fibers of this projection (see 4.4). This error makes it necessary to define a generalized Mumford form $\mu_{g, n, B}$ as an arbitrary local holomorphic section of bundle (1) and to include its norm $\left\|\mu_{g, n, B}\right\|$ in the formulation of the generalized Belavin-Knizhnik theorem in the amplitudic case (Theorem 2 from the introduction) as follows:
Theorem. The Polyakov measure $d \pi_{g, n}$ is equal to $\mu_{g, n, B} \wedge \bar{\mu}_{g, n, B} /\left\|\mu_{g, n, B}\right\|^{2}$, where $\mu_{g, n, B}$ is a local holomorphic section of the hermitian line bundle

$$
\lambda_{2} \otimes \lambda_{1}^{-13} \otimes\left(\bigotimes_{v=1}^{13}\left\langle\mathcal{O}\left(D^{v}\right), \mathcal{O}\left(D^{v}\right)\right\rangle\right)^{-1}
$$

over the moduli space $\mathscr{M}_{g, n, B}$ of the data $\left(X, Q_{1}, \ldots, Q_{n}, B\right)$. Here $D^{v}=\sum_{i=1}^{n} p_{i}^{v} \cdot Q_{i}$ is the complex divisor with the momentum components as coefficients. The section $\mu_{g, n, B}$ is defined locally up to a holomorphic factor.

Similar changes need to be made in Sect. 5 of the introduction and in Sect. 4.6 with the bundle

$$
\lambda_{2} \otimes \lambda_{1}^{-13} \otimes \mathscr{C}^{\otimes 13}
$$

on J^{13}, which becomes canonically isometric to (1) under the Jacoby map $\varphi: \mathscr{M}_{g, n, B} \rightarrow J^{13}$. Correspondingly, a universal Mumford form μ_{U} must be defined as an arbitrary local holomorphic section of this bundle. Then it will be connected with $d \pi_{g, n}$ by the formula $d \pi_{g, n}=\varphi^{*}\left(\mu_{U}\right) \wedge \overline{\varphi^{*}\left(\mu_{U}\right)} / \varphi^{*}\left(\left\|\mu_{U}\right\|^{2}\right)$.

To complete these corrections I also have to make the following changes.

1. In 2.2 the bundles $\mathcal{O}\left(D^{v}\right), v=1, \ldots, 13$, over a family $X \rightarrow S$ of complex curves must be provided with relatively flat hermitian metrics, instead of flat.
2. In 3.1 the unique hermitian metrics on the bundles \mathscr{P} and \mathscr{B} over $J \times J^{t}$ and $J \times J$, correspondingly, must be defined by the conditions:
(a) their curvatures vanish on $J \times j$ for any $j \in J^{t}$ for \mathscr{P} and $j \in J$ for \mathscr{B},
(b) they are compatible with the corresponding trivializations $-\mathscr{P}$ at $e \times J^{t}$ and \mathscr{B} at $e \times J$.
Such metrics exist, because the restrictions of \mathscr{P} and \mathscr{B} on the first multiplier are topologically trivial.
3. The same changes in the relative case for the bundles \mathscr{P} and \mathscr{B} in 4.2 and 4.6.
4. Omit the assertions on flatness in Proposition 4.2 and Lemma 4.2.
5. Lemma 4.3 must be formulated as follows:

Lemma. Let $\pi: X \rightarrow S$ be a smooth proper map of complex manifolds of relative dimension 1 with connected fibers. Let \mathscr{L} and \mathscr{M} be two relatively flat hermitian holomorphic line bundles. Then the canonical metric on $\langle\mathscr{L}, \mathscr{M}\rangle$ does not depend on the choice of such metrics on \mathscr{L} and \mathscr{M}.

Proof. Let $\left\|\|_{1}\right.$ and $\| \|_{2}$ be two relatively flat metrics on \mathscr{L}. Then the metric $\left\|\left\|_{3}:=\right\|\right\|_{1} \cdot\| \|_{2}^{-1}$ on the trivial line bundle $\mathcal{O}=\mathscr{L} \otimes \mathscr{L}^{-1}$ is constant fiberwise due to properness. But for the corresponding canonical metrics on $\langle\mathscr{L}, \mathscr{M}\rangle$ and $\langle\mathscr{L}, \mathscr{M}\rangle \otimes\langle\mathcal{O}, \mathscr{M}\rangle$ there holds the equality

$$
\|\langle l, m\rangle\|_{1}=\|\langle l, m\rangle\|_{2} \cdot\|\langle 1, m\rangle\|_{3},
$$

where l and m are (local by S) holomorphic sections of \mathscr{L} and \mathscr{M} with nonintersecting divisors. According to the definition (see [1]),

$$
\|\langle 1, m\rangle\|_{3}=\exp \left(\int_{x / S} \mathbf{c}_{1}(\mathcal{O}) \cdot \log \|m\|+\log \left(\|1\|_{3}(\operatorname{div} m)\right)\right) .
$$

The Chern form $\mathbf{c}_{1}(\mathcal{O})$ of \mathcal{O} with respect to metric $\left\|\|_{3}\right.$ vanishes fiberwise, yielding the integral to vanish. Next, $\|1\|_{3}$ is constant fiberwise and deg $\mathscr{M}=0$, whence $\log \left(\|1\|_{3}(\operatorname{div} m)\right)=0$. Thus, $\|\langle 1, m\rangle\|_{3}=1$.
6. In Point 3 of the definition of a multivalued holomorphic function (Sect. 1.2)
 univalence in $\overline{X \backslash \mathbf{m}^{\prime}}$ ".
7. Replace " $0<\operatorname{Re} A<1$ " by " $0<\operatorname{Re} A \leqq 1$ " in Lemma 1.2.

Acknowledgement. I am much obliged to P. Deligne, who noticed these errors.

References

1. Deligne, P.: Le determinant de la cohomologie. Contemp. Math. 67, 93-178 (1987)

Communicated by A. Jaffe

