

Erratum

A Unified Approach to String Scattering Amplitudes

A. A. Voronov

1015 Department of Mathematics, University of California, Davis, CA 95616-8633, USA

Received April 30, 1991

Commun. Math. Phys. 131, 179-218 (1990)

In my paper cited above, I constructed a certain holomorphic line bundle

$$\lambda_2 \otimes \lambda_1^{-13} \otimes \left(\bigotimes_{\nu=1}^{13} \langle \mathcal{O}(D^{\nu}), \mathcal{O}(D^{\nu}) \rangle \right)^{-1}$$
(1)

on a generalized moduli space $\mathcal{M}_{g,n,B}$ of complex compact algebraic curves X of genus g with n punctures Q_1, \ldots, Q_n being contained in a disc B on the curve. (The curves were considered up to an isomorphism identical on the punctures, and homotopically equivalent disks on the punctured curve were also identified.) That bundle was provided with a canonical hermitian metric, and I claimed that this metric was flat (Proposition 2.2), that is not true: actually, one can prove that this metric is relatively admissible with respect to the natural projection $\mathcal{M}_{g,n,B} \rightarrow \mathcal{M}_{g}$, i.e., its curvature is proportional to a canonical (1, 1)-form on the fibers of this projection (see 4.4). This error makes it necessary to define a generalized Mumford form $\mu_{g,n,B}$ as an arbitrary local holomorphic section of bundle (1) and to include its norm $\|\mu_{g,n,B}\|$ in the formulation of the generalized Belavin-Knizhnik theorem in the amplitudic case (Theorem 2 from the introduction) as follows:

Theorem. The Polyakov measure $d\pi_{g,n}$ is equal to $\mu_{g,n,B} \wedge \bar{\mu}_{g,n,B} / ||\mu_{g,n,B}||^2$, where $\mu_{g,n,B}$ is a local holomorphic section of the hermitian line bundle

$$\lambda_2 \otimes \lambda_1^{-13} \otimes \left(\bigotimes_{\nu=1}^{13} \langle \mathcal{O}(D^{\nu}), \mathcal{O}(D^{\nu}) \rangle \right)^{-1}$$

over the moduli space $\mathcal{M}_{g,n,B}$ of the data $(X, Q_1, ..., Q_n, B)$. Here $D^{\nu} = \sum_{i=1}^{n} p_i^{\nu} \cdot Q_i$ is the complex divisor with the momentum components as coefficients. The section $\mu_{g,n,B}$ is defined locally up to a holomorphic factor.

Similar changes need to be made in Sect. 5 of the introduction and in Sect. 4.6 with the bundle

$$\lambda_2 \otimes \lambda_1^{-13} \otimes \mathscr{C}^{\boxtimes 13}$$

on J^{13} , which becomes canonically isometric to (1) under the Jacoby map $\varphi: \mathcal{M}_{q,n,B} \rightarrow J^{13}$. Correspondingly, a universal Mumford form μ_U must be defined as an arbitrary local holomorphic section of this bundle. Then it will be connected with $d\pi_{g,n}$ by the formula $d\pi_{g,n} = \varphi^*(\mu_U) \wedge \overline{\varphi^*(\mu_U)} / \varphi^*(||\mu_U||^2)$. To complete these corrections I also have to make the following changes.

1. In 2.2 the bundles $\mathcal{O}(D^{\nu})$, $\nu = 1, ..., 13$, over a family $X \rightarrow S$ of complex curves must be provided with relatively flat hermitian metrics, instead of flat.

2. In 3.1 the unique hermitian metrics on the bundles \mathcal{P} and \mathcal{B} over $J \times J^t$ and $J \times J$, correspondingly, must be defined by the conditions:

(a) their curvatures vanish on $J \times j$ for any $j \in J^t$ for \mathscr{P} and $j \in J$ for \mathscr{B} ,

(b) they are compatible with the corresponding trivializations – \mathcal{P} at $e \times J^t$ and \mathcal{B} at $e \times J$.

Such metrics exist, because the restrictions of \mathcal{P} and \mathcal{B} on the first multiplier are topologically trivial.

3. The same changes in the relative case for the bundles \mathcal{P} and \mathcal{B} in 4.2 and 4.6.

4. Omit the assertions on flatness in Proposition 4.2 and Lemma 4.2.

5. Lemma 4.3 must be formulated as follows:

Lemma. Let $\pi: X \to S$ be a smooth proper map of complex manifolds of relative dimension 1 with connected fibers. Let \mathcal{L} and \mathcal{M} be two relatively flat hermitian holomorphic line bundles. Then the canonical metric on $\langle \mathcal{L}, \mathcal{M} \rangle$ does not depend on the choice of such metrics on \mathcal{L} and \mathcal{M} .

Proof. Let $\| \|_1$ and $\| \|_2$ be two relatively flat metrics on \mathscr{L} . Then the metric $\| \|_3 := \| \|_1 \cdot \| \|_2^{-1}$ on the trivial line bundle $\mathcal{O} = \mathscr{L} \otimes \mathscr{L}^{-1}$ is constant fiberwise due to properness. But for the corresponding canonical metrics on $\langle \mathscr{L}, \mathscr{M} \rangle$ and $\langle \mathcal{L}, \mathcal{M} \rangle \otimes \langle \mathcal{O}, \mathcal{M} \rangle$ there holds the equality

$$\|\langle l,m\rangle\|_1 = \|\langle l,m\rangle\|_2 \cdot \|\langle 1,m\rangle\|_3,$$

where l and m are (local by S) holomorphic sections of \mathcal{L} and \mathcal{M} with nonintersecting divisors. According to the definition (see [1]),

$$\|\langle 1,m\rangle\|_3 = \exp\left(\int_{X/S} \mathbf{c}_1(\mathcal{O}) \cdot \log \|m\| + \log(\|1\|_3(\operatorname{div} m))\right).$$

The Chern form $\mathbf{c}_1(\mathcal{O})$ of \mathcal{O} with respect to metric $\| \|_3$ vanishes fiberwise, yielding the integral to vanish. Next, $||1||_3$ is constant fiberwise and deg $\mathcal{M} = 0$, whence $\log(||1||_3(\operatorname{div} m)) = 0$. Thus, $||\langle 1, m \rangle||_3 = 1$.

6. In Point 3 of the definition of a multivalued holomorphic function (Sect. 1.2) replace "any sequence $\{a_m\}$ in $\overline{X \setminus m}$ " by "any sequence $\{a_m\}$ in a domain of univalence in $\overline{X \setminus m}$ ".

7. Replace "0 < Re A < 1" by " $0 < \text{Re } A \leq 1$ " in Lemma 1.2.

Acknowledgement. I am much obliged to P. Deligne, who noticed these errors.

References

1. Deligne, P.: Le determinant de la cohomologie. Contemp. Math. 67, 93-178 (1987)

Communicated by A. Jaffe