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Abstract. The quantum groups g/, and 4, are construted. The representation
theory of these algebras is developed and the universal R-matrix is presented.

0.1. The Lie algebra g/, and its extension A4, play an important role in the
theory of nonlinear equations [DJKM]. They are of interest as an example
of Kac-Moody-Lie algebras of infinite type [K, FF]. Therefore it is natural to
ask: what are the quantum analogues of these algebras in the sense of the
quantum groups theory of Drinfeld [D1]? The answer is trivial for gl, =
lim g/,, but this is not the case for 4,,. Some non-triviality is due tot the fact

that there is no Lie algebra g/, in the quantum group case [we have the quan-
tized universal enveloping algebra U,(g/,,) only]. Hence one must analyse the
completion of g/, and the central extension of the corresponding algebra g/,
in terms of U,(gl,) only. Moreover we need the Hopf Algebra structure in
U,(4,). This is essential in the case # = 0 already, because, for example, the
well-known KP hierarchy is related to the equations for the orbit of highest
vector in L(Aq) ® L(A,) where L(A,) is the basic representation of A, [K,
Chap. 14]. For the same reason we want to obtain U,(4,) as the quasitri-
angular topological Hopf algebra [D1].

The purpose of the paper is to construct U,(g!l,) and U,(4,) as quasi-
triangular topological Hopf algebras and investigate the representation theory
of these algebras. Some results along this lines have been obtained by Hayashi
in [H]. Note that there are no constructions of U,(g/,) and U,(4,,) as quantum
groups in his paper.

0.2. Let us describe the contents. In Sect.1 we construct the Hopf algebra
U,(g!,). This is the quantum analogue of g/, . The representations of U,(g/,)
in the spaces of sequences and (quantum) semi-infinite forms are given in
Sect. 2. The Hopf algebra U,(4,) (and some related algebras) is constructed
in Sect. 3. This construction is more complicated than in the non-quantum
case [K]. The representation theory of U,(4,,) is presented in Sect. 4. Our class
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of representations is the same as in [FF, Chap. 3]. For example, we construct
the representations in the space of quantum semifinite forms and in the space
of the usual semifinite forms. The vertex operators for U,(4,) is constructed
also. In the last section, Sect. 5 we construct the universal quantum R-matrix
for U,(A,,) and the related quantum analogue of Casimir operator [D2].

0.3. Concluding remarks. We deal with algebras and modules over formal
power series C[[#]]. It is easy to see that all the results of Sect. 1 -4 remain true
for fixed 4 ¢ ni@.

We can’t construct the embedding of Hopf algebras U,(4Y) —» U,(4,). This
differs strikingly from the case 4 = 0. Still, this embedding exists in certain
representation space (cf. [H, Sect. 6]).

0.4. We wish to express our thanks to V. Drinfeld for useful discussions.

1. The P.BW. Basic for Uj(gl.)

1.1. Definition. Let C[[/]] be the ring of formal power series in 4. U,(g/,) de-
notes the Hopf algebra, which is a topologically free module over C[[A]] (com-
plete in h-adic topology), with generators {X; ;+i, Xi+1,i» Eii}icz and funda-
mental relations

[Eiiy EJ]] =O5 (1'1)
[Eii, Xj,j+1] = (5ij - 5i,j+1) Xj,j+1a
[Eiis Xji1, )l = (= 6+ 0i,j+1) Xjer, ) (1.2)

G+l _ q“Hi,i+l

qH
[)G,i+1’Afj+1,j]=5ij 1 B (1-3)

9—q9
where Hij = Eii - Ejj, q= eXp(h/z)

[Xi,i+1,Xj,j+1]=O, [i—jl>1,
X1 Xjjo1— (@ + 14+ ¢ ) X1 X jo1 Xiior + X jor X201 =0,

li—jl=1, (1.4)
the formulae (1.4) with pairs of indices (7 + 1, 1), (j + 1,/)
substituted for pairs (i,i + 1), (j,j + 1). (1.5)

The coproduct map is defined on generators by
AE;=E;®1+1®E;,
AXi i1 =X @ q i 2 4 g7 i 2Q X, 44y,
AXip1i=Xip1,; @ q et 2 g7 2@ X,y 4, (1.6)
and the counit ¢ and the antipode S are defined by
e(Ei) =e(Xyi+1) = (Xis1,) =0,
S(Ei))=—Ey, SXiiv)=—qXi+1, SXiv1,)=— q_1Xi+1.b 1.7)
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1.2. The adjoint representation ad: U,(g!/,) — End U,(g/,) is given by ad,(x)
= A(a) ° (x), where (a ® b) o x = ax S(b). Starting with the opposite coprod-
uct 4’ and the related antipode ', we obtain another adjoint action ad’. We in-
troduce the new generators E; ;.y = X ;41-q H02 F oy = Xiqq ;- g2
and define the quantum analogues of root vectors by induction: for i < j — 1,

Eij=adE.,i+1(Ei+1,i)s E‘j=ad}?‘;,.~+1(}:;‘+1,j)- (1.8)
From (1.8), (1.7), (1.2) it follows that
Eij=[Ei,i+1,Ei+1,j]q9 Ej=[E,i+l’E+1,j]qa (1~9)

where [4,B], = AB — qBA, and
[Ekk: Eij] = (5ki - 5kj) Eij> [Ekka E]] = (— 5ki + 5kj) Ej- (1'10)

In the next subsections we state and prove the communication relations for
root vectors.

1.3. Theorem. Let i < j < k < m. Then

(E:js Ecidg = Eir 1.11)
[Eix, Ejk]q—1 =0, [Eija Eik]q“ =0, (1.12)
[Eix, Ejm] = ¢ '=9 Eim Eji, (1.13)
[Eij, Exml = 0, [Eim , Ej] =0, (1.14)
Sformulae (1.11)—(1.14) with the letter F substituted
for the letter E. (1.15)

Proof. Formulae (1.11)—(1.14) were proved in [R] and (1.15) is their conse-
quence since linear Cartan involution w, defined on generators by

wo(h) =h, wo(E;)=—E;, 0o(Xiiv1) =— X1, 0o(Xiv1,) =— Xiis1
extends to Hopf algebra isomorphism, wq: (U,(gly), ) = (Us(gls), 4") and
wo(Eiy) = (= 1) F;, wo(F) = (= 1)/ E;.
Set K;; = g™ii/%.

1.4. Theorem. a) For i < j < k <m,

[Etp Ecm]=09 [Ekma Ej] =0 (116)
b) Fori<j
2\j—i
(B F) = T (- K. 1.7
c) Fori<j<k<m,
[Eix, F}k] =— (- qz)k—j Eij j_kza (1.18)
[Ezma U] "‘( qZ)J l E]m’ (119)
[ jm> im]=(-' q2)m JF szma (120)
[Eij’Em] =— (- qz); 'K ij F}ma (1.21)

[Eim> Fit] = [Eji; Eim] = 0. (1.22)



402 S. Levendorskii and Y. Soibelman

Proof. a) (1.16) is an easy consequence of (1.3), (1.9).
b) Forj—i=1, (1.17) is just (1.3) and the general case can be proven by in-
duction, use being made of the formulae (1.11), (1.15), (1.10).
¢) Formulae (1.18)—(1.22) follows from Theorem 1 and the formulae (1.17),
1.11).

Below now consider the action of the coproduct on root vectors.

1.5. Theorem. For i < j,
A(Etj)“Eu®1 + (1 '—qz) Z Elmej ®EmJ+K112®EU’ (1 23)

i<m<j

AF)=1®F;+(1~¢*) ¥ F,®@F,K.;+F;®K. (1.24)

i<m<j

Proof. Formula (1.23) was proved in [R], and (1.24) follows from (1.23) since
wo: (Uy(gly), A)—>(U,,(gloo) A) is Hopf algebra isomorphism and w,(K;;?)
-

= U’ ( )—'(_

1.6. Set

B 1, izj P 1, izj
YTl =) Ey i< YT A -g)Fy i<y

and rewrite (1.23), (1.24) in the more convenient fashion:
A (Eu) = <2< E:m ijz ® Em)’ A (F;_)) = <Z< Fm}® Em Krznj (129)

Define the homomorphisms
4V Uy(gly) > Un(gle) @Y+
by induction:
AW = 4, AUHD = (4 @id®%) 4D = (d®I® 4) 4D, j=1.
Due to (1.29)

A(l)(Eij)=S . ; < jEm K2®E, , K2® ®E,,; (130
SErisrs--=ns
Au)(Ej)=i<r sn;~<r<1F QF . K® --QF, K~ (1.31)

and due to (1.6)
AVE)=E;@1®+1QE;@1%" V4 ... + 1®QE;, - (1.32)
AYKP) = K ® -+ ® K. (1.33)
1.7. Set for i < j E;; = F;; and introduce in Z?2, the ordering as follows:
1) ifi<jl<k,r<s,then
U ) <@L < (k,k) <(r,s),
2) let ¥ < s, r <s; then

/

,s)Y<(@rs) iMf r>r or F=r and § >3
and

!

&, ry>(@,r) ff ¥>r or ¥=r and s >s.
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1.8. Theorem. The set of ordered monomials
E'= ] EW¥

(i, e z2 H
with finitely many non-zero exponents n;;€ Z, form a basis in C[[h]]-module
Un(912)-

Proof is essentially the same as that for U,(s/(n)) in [R, Theorems 1.3-1.5]
being used.

2. The Representations of U,(g!,) in (C>), and in AB).n

2.1. Definition. Let A be an algebra and C[[#]]-module. Let ¥ be topologically
free C[[#]]-module. Then a C[[4]]-module homomorphism ¢: 4 - End V' is
called a representation of 4 in ¥ provided ¢ is continuous in the A-adic topol-

ogy.

2.2. Definition. € denotes the vector space of sequences (u;);.z With finitely
many non-zero u; for i > 0. We consider € as a topological vector space, the
fundamental system of neighbourhoods of zero being {V"|r € Z}, where

Vi={ulu;=0 for i > —r}.

C* denotes the subspace consisting of {u;} with finitely many non-zero u;.
It’s evident that €* is dense in C*.

2.3. Let I;; denote the matrix which is 1 in (i, /) entry and zero everywhere
else. Such matrices act in € and we can define the representation of U,(g/,)
in €2 @ C[[A]] = (C2), by

T(Xiivd) =liivrs T(Xivy) =livy m(Ey) =1
By (1.9) for i < j,
TE(EU) = q(j—i)/z [ij, ﬁ(Eji) =(— 1)j—i—1 q3(j—i)/2—1 . [ji’
and by (1.30)—(1.32) the representation in (C*)®¢* Y ® C[[A]] is given by
aE) =101 +10 ;1% D+ ... + 1%, 2.1
ntO(E) =gV @ -0 ], ®4,,0 - ® Ly (22

nE;) = (= D) PR Y (g =g O @ Ly @ ® L,
(2.3)

where [,, = I for p = s, [,, = I, otherwise, and u(r) is the number of [, # I in
summand of (2.2), (2.3), /;; are the matrix units.

2.4. Let {f;} be the standard basis in €. Denote by A, the C[[A]]-module
generated by all expressions of the form ug A u_; A u_, A ---, where u;€ C*
and u_; = f_;,, for sufficiently large i, the following identification being as-
sumed: if / < j then

CALiNfiA =g AN fin e (2.9
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If we start with expressions u = ug A u_y A --+ A u_;, where u;e C®, then we
get the definition of the C[[4]]-module A" (C*).

2.5. Define the action #: U,(g/,) — End A% ,(C®) on generators E;;, E;
Ej (i <j) by

Ro(Ei) (o AUy A =) =lug Ay A g Aljju_ g Ao 4

Jj*

2.5)
fE) g Ay A ) =gU RS S (g7 g
20 iski< - <kis)

'likluo/\ lklkzu_l A A lk”-u_,/\ U_j g N -, (26)

g (Eip) (o Aty A --0) = (= 1)77 71 g30m02=1 5

. . . 120iskis sk
(g =g Hrw! liggtho A Dypy =y A= A D gy Al A v
2.7
2.6. Theorem. Formulae (2.5)—(2.7) define the representation of U,(gl,,).

Proof. For a fixed u, in (2.5)—(2.7) there are finitely many non-zero sum-
mands. Hence, it suffices to prove that the formulae (2.1)—(2.3) define the
representation of U,(gl,) in AL*1(C™®). Since the latter formulae define the
representation in C[[4]] ® (C*)®¢*Y), it suffices to show that the subspace in
C[[M] ® (C*)®¢* Y generated by the expressions

CR®fi® +qH®i®fi® -, i<,
is stable under all of the Ey;, E; ., E;+,;. But this is easily verified by
straightforward calculations.

2.7. In this subsection we’ll simplify the formulae (2.6), (2.7) for u = f;, A fi,
Ao Afi Ao with i) >0y > ---. Denote by %(i,j) = %(i, j,u) the number
of indices i € (i, j) and note that if j + i, for all  or i = i, for some ¢, then all
the terms in (2.6) vanish, otherwise all but one of them are zero. Hence, we
obtain

Ti(s)(El])u = q(J_l)/Z(_ q—l)"(i’j). A . A f;r+1 A A ]’; A ey, (2.8)
the indices on the right-hand side being ordered.

Further, 7 (E;;)u = 0 unless i = i, for some r and j * i, for all ¢; of these
two conditions hold, then in (2.7) the number of non-zero summands with
fixed p = pu(k) is CzY3?, and each non-zero term is of the form

(= D)7 gPUTIRTH g — g Ay Sy A Ly S A
A fir—l A l\’u—lviﬁ /\firﬂ A
where j>v; > - >v,; >i(and v, =iif pu=1).
By using (2.4) we get

g (Epu = (= 13771 g3070271 (= g~
Ispsx@i,)+1

.C:(_‘s{)(‘l _qZ)u—l‘“ /\f.\}./\ e /\-fir—l /\ﬁr+1 INEEE =(_ 1)j_i_1
.q3(j_i)/2_1((2_qz)(_q_l))”(irj)... /\fj/\ SN /\ﬁr~l Aﬁr+1 A oo (29)

the indices on the right-hand side being ordered.
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2.8. Define AH(C*®) as the C-span of all expressions of the form ug A
U_y A u_, A -+ with the identification

CASinfin == AfiAfiA

for i< j. Next, define the C[[k]]-module isomorphism j: A ,(C*)—
AGEC®)@C[[A]] by fiy Afiu A Ao > fiy Afiy, A+ A -+, and denote
by o the usual representation of g/, in A% (C™):

Q(s)(lij)uzl,-juo/\ U_{ N +u0/\ l,-ju_1 ANU_3 N -

Now, if we define

K(i.j) = exp (’2’ ) ) € U(gl.) ® T,

it1=sr<j—-1

then the formulae

Tcs(Eij) = Q(s)(lii)’ (2.10)
n(Eij) = R C Q(s)(K(i:j)_l) UDE (2.11)
n(s)(Eji) = (- 1)j_i_1 ‘13“—”/2_1 (ZQ(s)(K(iaj)_l) - Q(s)(K(iaj))) Q(s)(lji)

(2.12)

define the representation 7, U,(gl,) — End(AE @ C[[A]]) [see (2.5), (2.8),
2.9)].

3. The Algebras U, (¢'(4,)), Up(9(4,))

3.1. Definition. U,(g'(4,,)), is the topologically free C[[#]]-module, complete

in h-adic topology, and the unital algebra with generators {c, E;;, E;;, E;; =
E;}i<j q, jezz and relations
1) [c, everything] =0; [E;, E;;]=0, all i/, 3.1
2) formulae (1.10)—(1.15); (3.2)
3) formulae (1.16)—(1.22) with
Eii={§zz,+c, i;ga ﬁij=Eii_Ejj7 I%ij':qﬁ”a
substituted for E;;, H;;, K. (3.3)

3.2. Uy(g'(A)) s can be equipped with a Hopf algebra structure, the coproduct
being defined on generators by formulae

AC=C®1+1®C, AEii=Eii®1+1®Eii (34)
and by
formulae (1.23), (1.24) with K, j substituted for K;;. (3.9

One easily gets the following analogue of Theorem 1.8.
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3.3. Theorem. The set of ordered monomials
dE"= (Tl EM
iJ
with finitely many non-zero exponents n;;eZ., l€Z, form a basis in the
Cl[al]-module Uy(g'(A)) -

34. Set [ = @ C E;;, define linear functionals ¢;: /' — C by &(E;;) = 6;; and
set o; =& — &+1, Q4 = ®Z, ;. Denote by Uy(n) (respectively Uy(n-)) the

unital subalgebra in U,,(g’l(Aw)) s generated by {E;;},; - ; (respectively {£};};< ;).
Evidently,
Uine)= @ Up(ns)sg,

ae @’

where
Ui(ni)sa = {x e Uy(ny)|[h,x] = £ a(h)x Vheh'}

for @ 0, and U,(ny)o = C. By Theorem 3.3, any element u € U,(g'(4,))
can be represented as follows:
u=y h ) d ¥ h > Fall E} %D k1t (3.6)
keZ+  OSIZI(K)  a,Be@% y(k,D)eZT 1Zt=t(B) i
Here %, i,1€ U(n-)—,, &p1,.€ Uy(ny)y and for fixed k, [ there are finitely
many non-zero summands in (3.6).

To obtain the completed algebra U, (g'(A4,,)) we replace the sums over (a, f, )
for the series but impose certain conditions on pairs («,7) corresponding to
non-zero summands (note that the set of such pairs is uniquely defined by the
series u).

3.5. Set for o0 = ZmicxieQ#, 7 =) eZ?,

S(o) = {ilm;+ 0}, SO ={ilyi+0}, Sy =S@)uS().

By connecting i,; for |[i — j| =1, we can view S(a,7) as a graph. Denote by
J (a,y) the set of its connected components and set for pe Z .,

S, p)=vI(@y),

where the union is taken over non-zero summands with £ < p in (3.6).
ForieZ and peZ, set Int(u,p,i) ={Ie F(u,p)|iel}.
Recall that &, ;, (respectively &, , ;) are expressed via E;; and E; ;. (re-
spectively E;41,;), i€ Z, and, for r € N, define the series u(r) by substituting 0
forall E;; < —rorizr+1)and forall E; .+, E;q, (Ji| 2 7).

3.6. Definition. The series u of the form (3.6) is said to belong to U,(g'(A4.))
provided the following conditions hold

a) forall peZ.,, ieZ the sets Int(u, p, i) are finite,

b) u(r) e Uy(g'(4,,)) s for all re N.

3.7. Definition. Let .4, ; be finite sets of finite integer intervals containing i
(ieZ,peZ,),and let re N.

We say that wue Uy(g'(4,)) belongs to the neighbourhood of zero
V({jp, i} ieZ, peZ+> r) provided
a) Int(u,p,i)c S, ;,,VpelZ,,Viel,
b) u(r) =0.
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3.8. We introduce in U, (g'(4,,)) the topology by declaring {V ({4,,:} icz, pez. 1)}
to be the fundamental system of neighbourhoods of zero.

3.9. Proposition. U,(9'(4,)) s < Uy(g'(4s,)) densely.

Proof. u(r) > uasr— co.

3.10. Theorem. Let u;€ Uy(g'(Ay,)), i = 1,2, and let {uf} ;50 = U(9'(As)) s be a
sequence having the limit u;. Then the sequence {uf ui} has the limit, denote it u, in
U,(g'(4y)) and u is zndependent of the choice of sequences {ui}, {uj}.

Proof. Write the expression (3.6) for #/ and #/ % u{ uj in the form

= Z Z Z Z Zu!(k,l,cx,ﬁ,y, 1), (37)
uj_z";a%zy:;uj(klaﬁ%t) (3.8)

and fix a tuple (k,/,, f,7,t). From Theorems 1.3, 1.4 and from Definition 3.6
it follows that u’(k,[,a,B,7,t) depends on finitely many summands in (3.7),
i =1,2. Moreover, the number of these summands is bounded uniformly in j.
From Definitions 3.7, 3.8, it follows that u/(k,/,«,f,y,t) is independent of j,
provided j is sufficiently large: u’/(k,l,a,B,7,t) = u(k,l,a,B,y,t) for j= jo,
where j, depends on (k,[,a, 8,7, t). Hence, u(k,l,a,f,y,t) is independent of a
choice of sequences {ui}, {u}}. Now we see that the omission of upper indices
in (3.8) gives the formula u; clearly, it’s independent of a choice of sequences.

The close inspection of the above arguments shows that u obeys the condi-
tions of Definition 3.6.

3.11. Let s € N. Consider a formal series
u:Z )/ Z Cli®...®cls

keZ+  OSLEL(0) 0, BE@4)5 ¥ (kD@D
(1259

k)i
F i TTERSD 65141, ®
15t;5t5(8Y) i
(1=jss)

@ Fs ki H Ezyi(k’l)'$ éaﬁs,k,l,ts . (3.9
Non-zero summands of this series determine the set of tuples of pairs (a,y) =
(@hyh, @9, ..., (@,y%). Setfor 1 S j<s5,pe s,
I, p) = v I (@,y7),

where the union is taken over non-zero summands with £ < p in (3.9).
ForieZ*and peZ. set

Int(u, p,i) = {I*, 1%, ..., ) e F (u,p) x - x Su,p)liyel, ..., ieI}.

For re N define the series u(r) by substituting 0 for all E;; (< —r or
izr+1)andall £ 4y, Ejvyq i (I 2 7).

3.12. Definition. The series u of the form (3.9) is said to belong to U,(g’ (Aw))®s
provided the following conditions hold

a) forevery peZ,, i Z° the set Int(u, p, i) is finite;

b) u(r) € Uy(g'(4,))%* for all re N.
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3.13. Definition. Let ., ;. be finite sets of finite integer intervals, containing i;
peZ,,1<j<s,i; eZS and let r e N.
We say that ue U,(g'(4,))®* belongs to the neighbourhood of zero

V({Fp,i, X -++ X I },r), provided
a) Int(u, p,t)cf,,,il X xS, Viel,Vpel,,
b) u(r) =

3.14. We introduce in U,(g'(4.))®* the topology by declaring {V ({5, ;, x
x %,:.},r} to be the fundamental system of neighbourhoods of zero.

3.15. The analogues of Proposition 3.9 and Theorem 3.10 for U,(g'(4,))®* are
obvious.

3.16. Theorem. Let ue U,(g'(4,)) and let {u'} = Uy(g'(4,)), be a sequence
having the limit u.

Then the sequence {4 (u’)} = U,(g'(4,))$? has the limit, denote it 4 (), in
U,(g'(4,,))®2, and it is independent of a choxce of a sequence.

Proof is similar to that of Theorem 3.10, use being made of Theorem 1.5.

One can easily state the analogues of Theorem 3.16 for the maps id ® 4,
4®id: Up(g'(4))®* = Up(g'(4))®>.

Since U,(g9'(4,)), is a Hopf algebra, from Theorems 3.10, 3.16 and their
analogues the next theorem immediately follows.

3.17. Theorem. U,(g'(Ay)) is a topological Hopf algebra with the product map
Un(9'(A))®? 2 u; @ uy>u € Up(g' (4y)),
and the coproduct map
Un(9'(42)) 3 ur> A(u) € Up(g'(4,)) %

3.18. If we set in all constructions of this section ¢ = 0 then we get another
Hopf algebra which can be naturally denoted by U,(g/,). Note that U,(g'(4,))
can be naturally viewed as the central extension of U,(gl,).

Now we extend U,(g'(4,,)) be derivation d.

3.19. Definition. U,(g(4,,)) is a topologically free C[[4]]-module, complete in

h-adic topology, and an unital algebra with generators {c,d} U {E;;}; jcz and

relations

1. formulae (3.1)—(3.3);

2. [d, Ei,i+1] = 5:'0 Eii+1, ld, Ei+1,i] = - 5i0 Eivii [d,c] =0, [d, E;] =0 all i
U,(g9(A4,)) s can be equipped with a Hopf algebra structure, the coproduct

being defined by (3.4), (3.5) and by 4(d) =d® 1 + 1 ®d.

3.20. Now, in the complete analogy with the definition of Uj,(g’ (Aw)) we can
define the Hopf algebra U,,(g (A4,)), in the definition of polynomials in ¢ being
replaced for polynomials in two variables c, d [see (3.6)].

3.21. Below we shall need the subspaces 7' =" @ Ccc Uy(g'(4,)) =
Ug(4), h=F@Cdc Ui(9(45)) s = Up(g9(A4,)) and the subalgebras

Uh(bi)f < U(g' (Aoo))f» U,(bs) = Uy(g'(A)),
Uh(bi)f < Uh(g(Aoo))f: Un(bs) < Uy(g9(4y))

defined in an obvious way.
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4. Representations of the Algebras U,(¢'(4,)), U,(9(4,))

4.1. Definition. A representation of the algebra U,(g(4,)) in a topologically
free C[[A]]-module ¥ is said to be restricted if for a given vectorv = Y h'v;e V

jz0

there exist r;e N, j=0,1, ..., such that for every j vector v; is killed by the
following subspaces:
1. U,(n4), provided S(a) & [—r,7;] or hto > rj,
2. Uy(n-)_, provided S(a) = (— oo, —rj) or hta > r;or S(a) < (rj4 1, + ),
3. € E;;providedi < — r;ori > r; + 1[for definitions of U,(n )4, and S(x), see
3.3, 3.4].

Restricted representations of the algebras U,(g'(4.))s, Un(9'(4x)),
Uy(g(A,)) are defined by the same conditions.

4.2. Theorem. a) A restricted representation o, of the algebra U,(g'(4,)) s ex-
tends uniquely to a restricted representation o of the algebra U,(g'(A,)) and to
restricted representation & of the algebra U,(g(Ay)), the action of d being de-
fined by

G(d) = —jgo o, (E;j)- 4.1

b) A restricted representation G, of the algebra U,(g(A,)) s extends uniquely to a
restricted representation & of the algebra U,(g(A))-

Proof. Evident.

It is clear that every submodule or quotient of a restricted module is restrict-
ed, and that the direct sum or tensor product of a finite number of restricted
modules is also restricted.

4.3. Example. The formulae

- R BIUDE i>s
o(s)(c) 13 O-(S)(Ell) {Q(s)(lii) _ I, lé S, (42)
i _+1<2< lle(s)(ln)
o(Eij) = qU=i2 gz 2s(ij), 4.3)
j~i~— i—i _ _“_+1<'ZS ,_IQ(S)(ln-) _“$Z< __‘le)([rr)
o(E;;) =(—1)7 LgPumnr-t (2q e —qTEE ) 0 €ji)s
4.4

where i < j, define restricted representations of the algebras U,(¢'(4,))s,
Un(g'(4,)) in AZ(C®) ® C[[A]] [cf. (2.10)-(2.12)].

4.4. Example. The formulae (4.2)—(4.4) together with formula
o(d) = — _20 o(Ej;)
Jj>

define restricted representations of the algebras U,(9(4.)) s, Up(g9(4y))-

4.5. In what follows the linear functional A on /' = &’ @ Cc is supposed to sat-
isfy the conditions A(H;) € Z, and A(H;) > 0 for finitely many ;.
The functional A, is defined by conditions

As(Hj) = (Ssj, AS(C) =1.
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4.6. Definition. A U,(g'(A4,))-module V is called a highest weight module with
highest weight A if there exists a non-zero vector v € V such that

U(n)v=0, h(v)=A(h)v for hek.

and Uy(¢'(4) @) = V.
The vector V is called a highest weight vector.
A highest weight module over U,(g(4,,)) is defined in the similar fashion.

4.7. Example. The representation o, of Example 4.3 is a highest weight re-
presentation with the highest weight A,, the highest weight vector being

SsASsma N fsaneee .
Denote by L(Ay), the corresponding U,(g'(4,,))-module and recall that the
representation g, U(g'(4)) = End A (C*) defined by g, (c) = 1,

yoJewlhi) =1 i=j<0
0w (i) {Q(s)(lij) otherwise,

is the classical highest weight representation L(A,) with the highest weight A,
the highest weight vector being f; A fi_ 1 A fs_2 A ++-
Recall also the following classical result [K].

4.7. Theorem. The space of the basic representation L(Ay) can be identified with
the space of polynomials C(x,,x,, ... ] so that c+1 and

Y uiv I E s —— (I (u,0) — 1),

ij u—v
where I (u,v) is the following vertex operator :

S 1. . _.. 0
I'(u,v) =exp| Y W —v))x;)exp|l = > -/ —vi)—).
iz1 jZ1J 0x;

Hence, from formulae (4.2)—(4.4) and the definition of the representation
00y We obtain the following.

4.8. Theorem. The space of the representation L(A,), over Uy(g'(4,)) can be
identified with the space C[[h]] ® C[x,, x,, ...] so that c+—1 and

Z”iv_jEii'_’u_i-U(r(”’ v) — 1),
LJ

where for i < j

>

ii=Eiia
. o >k,
Ei,-=q" 1)/2(_ girEE )Eij’
. - _ 2 3 EN-1 - % E,
Eij= (_ 1)1—1—1 q1—3(1—1)/2(2 —q i+1€rgj-1 ) q i+1<rgj-1 'Eij‘

Here E,, = E,, if r > 0, and E,,: E.,+cifr£0.
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In particular, for ke N,

T K 0
—k/2 it1SrSitk—1 E A
q iezz ( q ) i,i+k )axk

1 1- 2 .z EN-1 - % E
(_ 1)k 1 ql 3k/2 ZZ (2 _ q i+1SrSitk—1 ) q i+1grgitk-1 . Ei+k,ink'
1€

5. Quantum R-Matrices and Quantum Casimir Operators
for the Algebras U,(g'(4,)), U,(9(4,))

5.1. Set for finite set {L;;}1<i<s of restricted U,(g'(4,))-modules and for

1=j=p

el ;1Zi<s, 1)< p),

V({Lij,vij}) = {ue Ul(g () u,;® - ®@uv,;) =0, 1 < j < p},

and introduce in U,(g'(4.,))$® the topology by declaring {V ({L;;, v;;})} to
be the fundamental system of neighbourhoods of zero. The completion of
Un(g'(4,,))%* with respect to this topology will be denoted by Un(g'(4,,))8>.
Clearly, U,(¢'(4,))®* & Uy,(g'(4,))®* continuously and the product in
Uu(g'(4,))%* has the unique continuous extension to the product in
Uh(g'(Aw))éS. Also, the maps

4, d®4, 4®id
have unique continuous extensions to the maps
4, d®4d, 4d®id
In complete analogy with this definition we define U,(g(4,))®".

5.2. Theorem. a) U,(g'(4,,)) is a quasitriangular Hopf algebra, i.e. there exists
invertible R € U,(g'(A.,))®? such that

(j®id) (R) = Ry3 Ry3, (id®j) (R) = Ry3Ry3, (5.1
Aw)y=RAWR™, ueUl(g(4y))- (5.2)
b) The statement a) holds for U,(g(Ay)).
5.3. Remark. Writing R =Y R’ ® R{?, the notation used is R;;=X>1® ---
QRYP® ---®RPR®1® X with the non-unit factors at i and j entri’é:s.

5.4. Proof of Theorem 5.2. We’ll construct an R-matrix for U,(g(4,)); the
R-matrix for U,(g'(A4,)) can be obtained from the R-matrix for U,(g(4,)) by
substituting — > Ej;; for d (see Theorem 4.2).

=

Since U,,(g(lAw)) s is dense in U,(g(4,)), it suffices to construct the R-
matrix for U,(g(4,)) -

5.5. We'll use the quantum double construction [D1]. Recall that the R-matrix
is the image of the canonical element from 2 (U, (b.)) ; ® 2 (Uy(b+))* under
projection to U,(g(4,))$*. Here the subalgebra U,(b.), = Uy(g(4y,)), is a
subalgebra generated by ¢, d, {E;;};<; and the double Z(4) of the Hopf
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algebra A is defined in [D1]. We omit the details. The realization of Drinfeld’s
approach to construction of the R-matrix in a finite-dimensional situation can
be found in [R] or [Le S], [KR].

5.6. The basis in the C[[A]]-module U, (b, ), consists of ordered monomials

{TTE c*d'}
i Jj

with finitely many non-zero exponents. Define linear functionals on U,(b.) ; by
the following conditions:

{nij, Eijy =1, and =0 on other monomials;
(.,c>=1, and =0 on other monomials;
(4,dy=1, and =0 on other monomials;

and set #; = #; ;1+,, & = 1;;. The same arguments as those in [R] give the follow-
ing formula for the canonical element of 2 (U,(b+),;) ® Z(U,(b+),)*

R = [T exp,-2(E;; ® ;) exp(}: Ei®@&G+c®E+d® ). (5.3)

i<j

5.7. Now, to derive from (5.3) the formula for the R-matrix, we have to estab-
lish the isomorphism ¢: U,(b,)% — U,(b-) ;. For this purpose we derive com-
mutation relations between n;, &;, &, &; and compute d#n;, A&;, AE,, A&,.

5.8. Lemma. a) &, &;, &, &; commute for all i, j;

h
b) [51',71,'] = - 5(5” - 5i,j+ 1)’7,',

h
o) [Cesmil=~— zéjohj,

d) ] =0ifli—jl>1andn?nis:— (@ + ¢ MMz ni + Mz n? =0,
e) [’7:',’1:+1,j]q =1~ ‘]2)’1i,w

The proof is essentially the same as those of Lemma 2 and the corollary
following it in [R].

5.9. Lemma. a) 4, =61+ 1® ¢,
Aéc=€c®1 +1®€c5 A€d=€d®1 +1®£d-
b) An;=n;®1 +exp({;— vt + 0j0&a) 1.

Proof. a) is immediate.
b) d#; takes a non-zero value on E; ;. ® 1: {44;, E; ;+; ® 1) = 1 and, possi-
bly, on [T Efi ¢' d*® Ej j+1:

{4n;, l'IE{‘; c! dk®Ej,j+1> = {n;, [T ER ctd*® E;ii1)

=My Ejjer [T (Eii + 65— 04 j4 )™ (Eii + dio)ch
= 510 ]__[ (6ij - 5ij+1)ni 5?0
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Hence,

&—&r)m &
An;=n;® 1 +sz-£—~]'+;) Sy,
and b) is proved.

5.10. Lemma 5.8, d) shows that we can set ¢ (y;) = 4; Fj ;+, where 4;e C[[A]]

are invertible. By Lemma 5.8, ¢) we must set ¢ (£,) = = d, and since &, commutes

2
with everything, we must have ¢ (£;) = A, with A € C[[A]] invertible. Further, we
see that the conditions in Lemma 5.8, b) are satisfied with ¢ (&;) = g E;;; hence,

the equality in Lemma 5.9, b) is satisfied with ¢ (£;) = 5C

So, it remains to calculate 4;, but this can be done as in [R]. The result is
Aj=(1—q~?),and, from Lemma 5.8, ¢) we derive easily ¢ (,;) = (1 — ¢~ ) F;.
Now we derive from (5.3) the formula for R-matrix for U,(g(4s))s (and
hence, for U,(g(4,))):
ZE ®E,; +c®d+d®c

R=Tlexp,-2((1 —q ) E;®Eji) q (54)
l<_]
Finally, note that (5.4) with d = — Z ;; gives the formula for the R-matrix

for Uy (¢'(4))-
5.11. Set ¢ = Y jE;;. Then the square of the antipode equals to Ad(e"?) and

the general forlmula (valid in any quasitriangular Hopf algebra) give quantum
Casimir element [D2]:

e~he=e-hiy, y=73 S(RP)RY",
%

and the formula for action of the coproduct on it:
A (e—hc/Z) — (e-hc/Z ® e—hc/Z) (R21 R)_i.

Using this result one can try to obtain the quantum analogue of the KP
hierarchy (see [K, Chap. 14]).
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