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Abstract. We prove the existence of resonances in the semi-classical regime of
d2

small h for Stark ladder Hamiltonians H(h, F) = — h2 —- + v + Fx in one-
dx2

dimension. The potential v is a real periodic function with period τ which is the
restriction to R of a function analytic in a strip about R. The electric field strength
F satisfies the bounds || vf \\ ̂  > F > 0. In general, the imaginary part of the
resonances are bounded above by ce~κpτh'\ for some 0 < K ̂  1, where pτh~l is
the single barrier tunneling distance in the Agmon metric for v + Fx. In the regime
where the distance between resonant wells is (9(F~l\ we prove that there is at
least one resonance whose width is bounded above by ce~a/F, for some α,c>0
independent of h and F for h sufficiently small. This is an extension of the
Oppenheimer formula for the Stark effect to the case of periodic potentials.

1. Introduction

The Hamiltonian for an electron moving under the influence of a periodic potential
and a constant electric field of strength F ̂  0 in one-dimension i§

H(h,F)=-h2^ + v + Fx. (1.1)
dx

The real periodic potential v is assumed to be the restriction to R of a function
analytic in a strip about the real axis. We consider the small electric field regime
|| v' || oo > F > 0 in the semi-classical limit. We prove under these conditions that

* Also PHYMAT, Department de Mathematiques, Universite de Toulon et du Var, F-83130
La Garde, France
** Permanent address: Mathematics Department, University of Kentucky, Lexington, KY
40506-0027, USA
*** Partially supported by NSF Grant DMS-8911242



292 J.-M. Combes and P. D. Hislop

there exists h 0>0 such that for 0</ι<fc0,H(/ι,F) has infinitely-many spectral
resonances, the so-called Stark ladder resonances. *

We also prove an upper bound on the width of these resonances. The following
bound is an immediate consequence of our work and standard semiclassical
analysis of tunneling (see [CDKS, HiSi or Sil]). Let zΛtk be any resonance and let
entk = Re zΛtk. Let h ~ VT be the exit barrier tunneling distance in the Agmon metric
for v(x) 4- Fx at energy en k, where

S'τ(en,k)

(1.2)

Sτ(en fc) = min (x|t?(x) + Fx = eΛtk} and S'τ(enk) is the next such point to the right.
Then there exist cnk > 0 and 0 < β ̂  1 such that

llmz^c^e-^'*. (1.3)

We prove here a more interesting result which explicitly indicates the dependence
of Im zn t. on the electric field strength F. Under the condition that resonant wells
at energy eQ are sufficiently far apart, we prove that there exists a resonance with
Re z0 tk — eQ + ίcFτ, τ the period of v and e0 the ground state of a single cell
Hamiltonian, for which there exist constants c, α > 0 such that

|Imz0JgαΓα/F (1.4)

for h sufficiently small. The bound (1.4) can be considered as an extension to
periodic potentials of the Oppenheimer formula for the lifetime of a state of the
hydrogen atom in a constant electric field F (cf. [H]). This dependency of the
width on F was conjectured by Avron [Al].

The results of this paper were announced in [CHI] and in the 1989 Brasov
Conference Proceedings [CH2].

Our analysis of Stark ladder resonances follows the general lines of study for
shape and Stark resonances. It is based on spectral deformation methods, multi-well
tunneling effects, and non-trapping properties of the potential in the semi-classical
(small h) regime. Shape resonances in the semi-classical regime were studied by
Combes, Duclos, Klein, Seiler [CDKS], Hislop and Sigal [HiSi], Helffer and
Sjostrand [HSjl], Sigal [Sil], and Briet, Combes, Duclos [BCD4]. Semi-classical
multi-well tunneling phenomena has been extensively explored in recent years and
we mention the work of Combes, Duclos, Seiler [CDS] in one-dimension and the
work of Briet, Combes, Duclos [BCD3], Simon [S1,S2] and the exhaustive
analysis of Helffer and Sjostrand [HSJ2-4] all for the multidimensional case.
Non-trapping estimates on resolvents play a key role in the proof of the existence
of spectral resonances in Stark and shape resonance problems. Originally developed
for complex exterior scaling ([K] and [BCD1]), general quantum non-trapping
conditions and related theorems concerning bounds on resolvents appear in
[Sil, DeBH, N, BCD4].

We mention two features of the Stark ladder problem which distinguish it from
the shape resonance and atomic Stark problems. First, the electron always
experiences the periodic potential t;. So, despite the force of the constant electric
field, it is a priori unclear that the electron moves off to minus infinity. That the
electron does eventually escape to minus infinity is the content of the non- trapping
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condition proved in Sect. 3. Second, it has been discussed (cf. [Al] and references
therein) that for small electric field strength F, the lifetime of Stark ladder
resonances is a sensitive function of F. Using the ideas of multi-well tunneling,
our analysis verifies this result (see Sect. 7). These fluctuations in the lifetime are
due to the fact that various potential wells become resonant or non-resonant as
F varies and this changes the tunneling probability and hence the lifetime.

There is a large physics literature concerning Stark ladder resonances and we
refer to [Al] for additional references. We mention in particular the work of Avron
[Al] on the width of these resonances. He discusses the sensitivity of the lifetime
to small changes in F and presents physical arguments for some of the results of
this paper. In an earlier paper, Avron and Zak [AZ] discuss the spectral
concentration for the Hamiltonian (1.1). They show in a solvable, single band
model that the spectral density

P(E) = -π~ * Im(H(F) - F - ΐO)-i

is a continuous function of F concentrated in the band. This indicates a type
of "stability of bands" for F > 0. Indeed, if the interband matrix elements of H(h,F)
are neglected, the spectrum of H(h, F) in each band subspace is pure point [A2]
(these eigenvalues correspond to the real parts of resonances). We also mention
the numerical work of Bentosela, Grecchi, and Zironi [BGZ] who compute the
lifetime of resonances for a semi-infinite lattice with a Kronig-Penny potential.
Their results are in agreement with the conjectures of Avron [Al] and results of
this work.

There are fewer rigorous results on Stark ladder resonances. Agler and Froese
[AF] gave the first proof of the existence of Stark ladder resonances for large F
(and not in the semi-classical region). Their proof is based on a Birman-Schwinger
principle and is quite different from our work. We mention that when F > || t/1| ̂
the potential wells disappear and our analysis no longer holds whereas [AF]
establishes the existence of resonances in this case. These must be located far in
the lower-half complex plane. Bentosela [B] obtained estimates on the long-time
evolution of e

itH^F^φ which suggest that the resonance width is at most linear in
F for small F. Nenciu and Nenciu [NN] pursued the analysis based on the fact
that H(h, F) restricted to the (F = 0) band subspace has pure point spectrum and
studied the perturbation given by the interband matrix elements.

During the course of our work, two other groups obtained results on (1.1) in
different regimes and using different methods. Buslaev and Dimitrieva [BD 1-2]
studied the asymptotics of (1.1) with h = 1 as F-»0. They obtain the existence of
ladders of resonances and an asymptotic expansion in F for the resonance width
whose leading coefficient is e~alF for some α > 0, which is explicit. Bentosela and
Grecchi [BG] have studied another slight variant of (1.1) in which they set h — ε/ι0,
F = εF0, and consider ε->0 with h0>0 fixed and F 0>0 fixed but sufficiently
small. In this limit, they obtain results on the existence and width of the resonance
similar to ours. Their approach gives rigorous justification of the tilted band
picture of Zener.

This paper is organized as follows. In Sect. 2, we describe the model and an
approximate Hamiltonian HQ(h, F). The Hamiltonian H (h, F) is considered to be a
perturbation of this operator. The non-trapping property of the potential
V = Fx + v is proved in Sect. 3. This requires the construction of a particular
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vector field /with support in the region where a classical particle with energy e0

behaves like a free particle. Analytic families of operators H^h.F) and HQί(h,F)
are constructed in Sect. 4 using this vector field / and standard spectral deformation
methods (see [Hz]). In Sect. 5 we prove a crucial resolvent estimate for ff0>ί(/ι,F),
Im t > 0, using the non-trapping result of Sect. 3. The existence of the Stark ladder
resonance is proved in Sect. 6 and the crude upper bound (1.2) on the resonance
width is given. Section 7 is devoted to proving the refined estimate (1.3) in the
case when the resonant wells are separated by a Euclidean distance (9(F~*). Finally,
we conclude with the two appendices. In the first, we sketch the proof of a decay
result on a localized resolvent based on [BCD3]. In the second, we discuss a
factorization trick (see also [BCD3]), which simplifies tunneling analysis.

2 The Model and Approximate Hamiltonian

We consider the Hamiltonian H(h,F) in (1.1) with /ι>0 and F^O satisfying
\\υ'\\ao>F^O. We write V = v + Fx for the full potential. We will occasionally
omit writing h and F for convenience. Also, we let c denote a generic constant
(independent of h) whose value may change from line to line. We assume the
following condition on v:

(vl) v, a real-valued non-constant periodic function with period τ, is the
restriction to 1R of a function v(z) analytic in a strip Sη = {ze(C||Imz| <η} for
some η > 0.

For F>0 and any e, let Sτ(e) = mm{x\Fx 4- v(x) = e}, the classical turning
point for energy e. Note that V'(ST(e)) ^ 0. We distinguish two cases: the threshold
case (TH) when V'(ST(e)) = 0, and the non-threshold case (NTH) when V'(ST(e)) > 0.
We will only consider the NTH case in this paper. (Of course, by varying F slightly,
this can always be achieved.) Let v0 = max v(x). For any e, let G(e) = { x | V(x) - e > 0},

X

the classically forbidden region for energy e.
It follows by an application of the theorem of Lavine and Faris [RSI] that

H(h,F) is essentially self-adjoint on CJ(R) for F^O. The following lemma
summarizes the spectral properties of H(h, F) for F ̂  0.

Lemma 2.1.
00

(i) F = 0, σ(H(Λ,0)) = σβc= U Bn> ™here Bn = {^βn} is the nth band and
n**l

a1<β1^oc2<β2^'" and <*! ^ max v(x).
JC

(ii) F>0,σ(H(h,F)) = σαc = R.

Proof. Results (i) is standard; cf. [RS2]. For F ̂  0, this is a result of [BCDSSW]:
d

σsc(H) = 0 is proved using Mourre theory [CFKS] with conjugate operator A = —

and a clever compactness argument; σpp(H(h9F)) = 0 follows from a theorem
in ODE's; eess(#(h,F)) = R is demonstrated by constructing a Weyl sequence by
the WKB method for each ΛeR. Π

We now introduce our approximate Hamiltonian #0(/ι,F). We will always
consider F>0 fixed and F<\\v'\\ao. Let V0 = K|[s,s + τ), where 5 is any value
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such that v(s) = v0. By a unit cell of K, we mean any interval of the form [5,5 + τ].
We extend K0 in a continuous, monotonically increasing manner to a potential
V0 on R such that lim K0(x) = + oo and K0(x) = 0(|x|). Let Λ0 = h2p2 + V0 on

|x|->oo

L2(R), /? = — i—, so σ(h0) is discrete and all multiplicities are one. The operator
dχ

h0 is a single-cell Hamiltonian. Let e0 be the lowest eigenvalue of h0. In the
semi-classical regime of small h,e0 is insensitive to the extension of V0.

We define Sτ(e0)9 the classical turning point for particles with ene.rgy eθ9 by

Sτ(e0) = min {x\Fx + v(x) = e0} (2.1)

for the NTH case. We fix the energy scale and the x-coordinate by choosing (via
a linear change of coordinates) x = 0 to be s + τ, where s is any point satisfying
v(s) = v0 as above; then F(0) = v(0) = vQ. The number of unit cells between x = 0
and x = Sτ(e0) < 0 is given by

N = l(vo-e0)(Fτn (2.2)

where [α] is the largest integer less than a.
By the continuity of V, for any εl>0 sufficiently small, we can choose

0 < f/ i < η2 sufficiently small such that (V — e0)\[5T + fh,SΓ + f/2] > £i(more
conditions on ηt will be given below). Let W1 =(— oo,5Γ(β0)4 ^2]» ^2 =
[SΓ(£0) + f y l 9 oo) and Ω=WinW2. (See Fig. 2.1.) We define a symmetric operator
/f!(A,F) on L2(WJ with domain C^ίW^) by

(H,(h,F)g)(x) = (h2p2 + Fx + »(x)te(x).

It is easy to check that /f j is limit point at — oo and limit circle at ST + η2 and
hence has defect indices equal to one. We define H^h.F) to be the self-adjoint
extension of H1 with Dirichlet boundary conditions at x = Sτ 4- τ/2

 on ^-2(^ι)
We extend K|W 2 in a continuous manner to potential V2 on 1R such that

V2 = @(\x\) and F2->oo as x-^-oo and for some ε2>0, ε 1 ^ε 2 >0,
(f2 — ^o)l(—°°>SΓ + ι/ι)] >ε2 >0. Let H2(h,F) be the self-adjoint operator on
L2(R) with symbol A2p2 4- F2 and core C*(R); σ(H2) is purely descrete and each
eigenvalue has multiplicity one.

Ω

Fig. 2.1. The Stark ladder potential V and regions J^, W2 and Ω
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The approximate Hamiltonian HQ(h,F) is defined to be the direct sum
Hl(h,F)®H2(h,F) on the Hubert space Jt?Q = L2(Wι)®L2φί). It follows as in
Lemma 2.1 that σ(H0) = R for F > 0 and that //0 has infinitely many embedded
simple eigenvalues. We need an estimate on the spacing of the eigenvalues of H2

below the energy K(0) = ϋ(0) = t;0.

Lemma 2.2. Let e0eσ(h0) as described above. Then there exists an interval
/ = [/~,/+] such that e0el and ifF>0, we have dist(/±,σ(//2))> cFh2+εfor any
ε>0, and a(

Proof. Let N be the number of unit cells between x = 0 and x - Sτ(e0) as given
in (2.2). For each cell located in Ik = [ - fcτ, - (fc - l)τ], fc = 1, . . . , N - 1 we define
a single^cell Hamiltonian hk as follows.

Let Vk =/y\Ik

 an<i extend Vk in a^continuous monotonically increasing way to
a potential Vk on R such that lim Vk(x) = oo and Vk(x) = 0(\x\). We can arrange

things such that

F f c=F 0-fcFτ, /c = 0,...,N-2, (2.3)

where V0 is defined above. For the Nih unit cell, let ί^-i be a potential on JR.
such that ΪV j |( - QO, SΓ(e0) + ιj2] = K2, 7N_ 1 1 [ST(?0) + ̂ 2, -(ΛΓ - l)τ] = V9 and
KN_ j is monotonically increasing on [-(AT — l)τ, oo). Let ϋfc = h2p2 + Ffe on L2(R).

It follows from (2.3) that σ(hk) = σ(fc0) ~ fc^τ, fc = 0, . . . , N - 2. Let Nk(v0) be the
number of eigenvalues of hk below v0. By the Bargman bound [RS2], we obtain:

Nk(vQ) £ ch ~ 2τ2(v0 + kFτ), k = 0, . . . , TV - 1

N-l J V - 1

for some c> 0. Letting H = 0 ^ on 0 L2(R) we obtain the number of eigen-

values of H below vθ9 N(v0):l~° ί = 0

ΛΓ(f?0) ̂  c/ϊ"2τ2(Nu0 + ±N(N - l)Fτ)

^Φ2^)-1, (2.4)

where we used (2.2) and the fact that τ is independent of h and F. Now suppose
there are no points /* as in the lemma but for H rather than H2. This implies that
for energies less than v0 the spacing of eigenvalues for H must be less than \cFh2+ε

for any ε > 0. This implies a lower bound on N(v 0) given by:

cF-^h-(2+E}^N(v0) (2.5)

which, for all h sufficiently small, contradicts (2.5). Finally, we note that by [BCD3],
the existence of an interval / = [/~,/+] about eQ satisfying the properties of the
lemma for H implies the existence of an eigenvalue e0 in / for H2. Moreover, the
width of the gaps, distJσ(H2) π /, σ(H2)\/), shifts at most by a small 0(exp ( - ch~ x)),
c> 0, from that for H. This proves the lemma. Π

Note that the total multiplicity of σ(H2)nI is the same as σ ( f ί ) n l [BCD3],
which is finite. Let Yd be the smallest closed interval suchjhat σ(H2)n/c Y.
For later use, we call a unit cell Ik resonant at energy e0 if σ(hk)r\ Y Φ 0.
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3. Non-Trapping Property of the Potential

We assume that v satisfies conditions (vl) and we consider a non- threshold energy
e, i.e. one for which V'(ST(e))>Q. By continuity, there exists a small interval
/o = [/o » Jo ] 3e such that v'(sτ(E)) ^ η > 0 for all £e/0 and some η > 0. We prove
that the potential V = v + Fx with F>0 is non-trapping for all energies in a
possibly smaller interval I0 about e on ( — oo, Sτ(e) 4- c>0], where <50 > 0 is determined
below. We use the formulation of quantum non-trapping due to [BCD4] (see also
[DeBH, N and Sil]).

Definition 3.1 A potential KeC1^) is non-trapping at the energy E and on the
region Ω c 1R if there exists ε0 > 0 and a vectorfieldfeC1^) such that for all xe/2,

SE(f, x) = 2f'(x)(E - V(x)) -f(x)V'(x) ^ ε0 > 0. (3.1)

Theorem 3.2. Assume that v satisfies (vl) and that F>Q. Let e be such that
V'(ST(e)) > 0. Then there exists an interval I0^e such that for any £e/0, there exists
a bounded vector field /eC°°(R), depending on E, withf bounded, /:R->R~, and
constants <50,ε0 > 0 such that for any £e/0 and xe(— oo,ST(e) + (50]:

)^ε0>0. (3.2)

Moreover, supp / c (— oo, Sτ(e) + δ1'], S1<η1 (defined in Sect. 2).

Proof. We define two vectors fields /\ and /2. Let 70 = [/^ ,/Q ]a^ be as above.
Let x0 < SΓ(/Q ), x0 will be ίϊχed below, and for £e/0 define for x < x0:

f1(x)lE-V(x)r112 J φJCfi-Kίs)]-1^ (3.3)
^ ST(/Q)

for any real bounded function α(s) > 0. We also define

/2(x) = x (3.4)

(recall that x = 0 is fixed in Sect. 2). Note that fί and /2 are non-positive for x < 0.

The vector field / has the form / = £ g ifi for a suitable pair of functions 0^0/^1,
i = l

i= 1,2, satisfying gι+g2 = l on (— oo,ST(/o )-h<50], where 50 is defined below.
Upon computing the virials (3.1) for /,., we obtain (dropping the subscript E which
is fixed):

x) = α(x), (3.5)

S(f2,x) = ~2(F(x) - E) - xF(x), (3.6)

and

2

S(f, x) = Σ gfcWfi, x) + Ax), (3-7)
i = l

where <ί(x), the error term, is given by

£(x) = 2(E - V(x))g'2(x)(f2(x) -/,(x)). (3.8)

By the assumption on /0, we can find a possibly smaller interval J0 = [/ ~ , l£
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• o
• e

x0 Sτ(l + ) ST(I0

+)
σι Sτ(e) Sτ(e) + σ2

Fig. 3.1. Geometry for construction of the vector field /

taking |/0| sufficiently small) and σ l 5 σ2 > 0 such that for some ε^ > 0 and £e/
0,

e) - σi, ST(e) + σ2] ̂  fil/2,

e) - σl9 Sτ(e) + σ2] ̂  ιy/2

and σ2<ηl (defined in Sect. 2). We choose x0 such that Sτ(e) - σ^ < XQ < ST(I~)
and g2eC*(JR),0^g2^l such that suppg'2cιlSτ(e)
where σ2 < δv < ηΐ9 and g2\\_xQ,ST(e) + σ2] = 1. Then ^x is fixed by the condition
that 0! + g2 = 1 on (— oo, SΓ(e) + σ2] (see Fig. 3.1). Consequently, for any α(x) ̂  0,
the summation term in (3.7) satisfies the bound:

(3.9)

It remains to show that we can choose a(x) such that (3.9) is strictly positive
and such that ^(x)>0 on (- oo,Sτ(e) + σ2]. By construction of 02,supp0'2n
(- co,ST(e) + σ2] = lST(e) - σ l5x0]. In this region E - V(x) > 0, EeI0,g'2(x) ^ 0,
so it suffices to choose a(x) such that f2(x) - f^x) ^ 0 on this region where

£(Sr(*)-*ι) + l/ιMIi W I (3.10)

(3.11)

(3.12)

(3.13)

on [Sτ(e) — σ l 9x 0] where κ>0. Hence we choose cί = κ~'1\Sτ(e) — σl\ so by (3.8),

We choose a(x) such that

a(x) = α V'(x) ^0, α > 0

for xe[ST(e) — σ1?5Γ(/Q )] and such that

a(x)-*a0>0

as x-> - oo. It then follows from (3.3) and (3.11) that

E-I- Y/ 2
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(3.10), and(3.13), (f (x)>0. Moreover, on [Sτ(e)-σl9Xo],min(a(x)gί(x) + (ε/2)g2(x))
is strictly positive, thus, the lower bound on S(f, x) follows from (3.9), (3.11)-(3.12).
Finally, we take δ0 = σ2. Π

4. Spectral Deformation

We construct analytic type A families of operators associated with H(h, F) and
Hι(h,F) (and, consequently, H0(h,F)) using the vector field constructed in Sect. 3.
The method of spectral decomposition using the flows generated by smooth vector
fields was developed in [HiSi and Si2]. Here, we use an infinitesimal version of
the theory due to Hunziker [Hz].

Let /:R-*R~ be the vector field constructed in Theorem 3.2. We recall that
/ depends on E. For ίeR, consider the map α^R-^R defined by

<%,(*) = * + */(*). (4.1)

Because supp/c(— oo,SΓ(e0) + £ι]» αt leaves W\ and W2 separately invariant.
Note that OLt\W2 is the identity map. The map αf is a C^diffeomorphism of R for

/ \-ι
|f 1 < M15 where M! = max|/'(x)l . We define an operator I/,, ίeR and |ί| <M1?V χ*R )
on L2(R) or L2(W1) as follows (we use the same symbol to denote either operator).
Let Jt(x) be the Jacobian of α,:

Jt(x)=l + tf'(x). (4.2)

For 0eC£(R) or C£(HΊ), let

Jt(x)ll2g(*t(x)). (4.3)

Since Jt(x)^0 for | ί |<M l 9 it is easy to show that Ut extends to a unitary
transformation on L2(R) or L2(W1) for |i|<M!. Similarly, we define Ut on
^0 = ̂ 2(^ι)®L2(R)by

Ut(u@v)= Utu®v.

Then Ut9\t\< M1 extends to a unitary operator on J-f0; again, we write Ut for Ut

for simplicity.
Since /eCfc°°(R), Vt,\t\< M1? preserves the core CJJ>(R) of H(h, F) and the core

of H i(/ι, F) in L2(Wl). By a simple calculation, if pt = UtpU~ l = J~ 1/2pJ~ 1/2, we
obtain:

= pJ-2p + Gt, (4.4)

where G,eC*(R) for |ί| < M t is given by:

G( = i(JΓ3^)' + έW2)2- (4-5)

We define distorted Hamiltonians for ίelR, |ί| < Mj on domains CJ(IR) and C1;
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respectively, by

Ht(h,F)=UtH(h,F)U~i

= h2p2 + Fat(x) + v°(xt (4.6)

and

= h2p2 + Fαt(x) + ϋ°α t. (4.7)

We note that Jt and Gt extend to analytic functions on \t\ < M t (using the principal
branch of the square root).

Proposition 4.1. Let v satisfy (vl) and let Ht(h,F) and Hlt(h,F\ feR, |ί| < Ml9 be
as defined in (4.6) and (4.7) with domains C*(R) and C l 9 respectively. Then Ht(h,F)
(respectively, H^ t(h, F)) extends to an analytic type A family of operators with domain
D(H(h,F)) (respectively, Dtf^F))) on the disc Dκ = {zeC| |z | < K}, where
K < min (η, M1 , 1) (independent ofh and F) and sufficiently small (η is defined in (vl)).

Proof. We give the proof for H(h,F); the proof for H^(h,F) follows along the same
lines working on the appropriate domain. By (vl), it suffices to prove that
At = p2 + Fαt(x) is an analytic family on D(A\ where A = p2 + Fx. We take
|ί| <min(?y,M1, 1). From the construction of/ in the proof of Theorem 3.2, one
easily verifies that

(4.8)

as x-> — oo. For any ueD(A), it follows from (4.4) that

I I Atu || ^ || Au || 4- 1| p(J~ 2 - l)pu \\+c \\u\\, (4.9)

where c is uniformly bounded in |ί|. The second term on the right in (4.9) can be
written as:

p(J~ 2-l)pu = (J- 2-l)Au- Fx(J~ 2-l)u

\Γiχu. (4.10)

Using (4.10) and (4.8) in (4.9), we conclude that D(At) =3 D(A). Conversely, let
weD(At). Mimicking (4.9), we have

\\Aw\\ g H Λ w l l + \\p(l - J~2)pw\\ +c | |w | | . (4.11)

The second term on the right in (4.11) can be written as:

p(\ - J~2)pw = (1 - J~2)Aw + F(l - J~2)xw

- 2itJ-3f"p(p2 + IΓ^Aw -(Fx - l)w],

so by (4.8) and simple bounds on J~ 1 one has
c ι l ί l M w | | + c 2 | | W | | . (4.12)

Upon taking |ί| sufficiently small, (4.11H4.12) imply that D(A)^D(At). Since for
any ueD(A), t^Atu is analytic for |ί| sufficiently small, At is an analytic family of
type A. Π
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The family ί/f, \t\ ̂  M l 5 does not form a group. However, Hunziker [Hz] has
shown how one can recover the standard results of the Aguilar- Balslev-Combes
theory ([AC, BC]) in this setting. In particular, there exists a dense set si of
analytic vectors for Ut,\t\ sufficiently small, and for ψ,φes/, the matrix elements

analytic for Im z > 0, have a meromorphic continuation into the lower-half complex
plane. The poles of this continuation, which are independent of φ and ψ, are
defined to be the spectral resonances of H(h, F). These are equal to the complex
eigenvalues of Ht(h, F), Im t > 0, which are located in the lower-half complex plane
if they exist.

5. Existence of Resonance Free Domains

We combine the results of Sects. 3 and 4 to show that there exists a full complex
neighborhood of the energy interval I0Be0, where e0eσ(H2) is as in Lemma 2.2
and IQ is the corresponding interval of Theorem 3.2, which lies in the resolvent
set of /f l f f(A, F) for Im t > 0 and sufficiently small. We follow the ideas of [BCD4]
(see also [DeBH, Si, N]). Until this section, our results are valid for any value of
h. In this section, we will have to assume that h is small due to the fact that the
analysis presented here is restricted to the semi-classical regime.

Theorem 5.1. Assume that v satisfies (vl) and that e0eσ(H2) is a NTH energy. Let
Hlt(h,F)9 F>09\t\ sufficiently small, be the type A analytic family of operators
constructed in Sect. 4 using the vector field for energy e0. For t = iβ, β>0, let
&β^<Cbe defined by (see Fig. 5.1):

®β = [z\(£oββ ~ ImJ^o - z)) > 0 for all χe(- oo, Sτ(e0) + δ0]}

where IQ,SO, and δ0 are defined in Theorem 3.2. Then for any zE@β, one has for
F > 0 and h small enough,

(l)zep(Hliβ(h,F)) ,
(2) \\(Hliβ-zΓl\\£cl(eQβ/2-c2h
(3) for any

for some ci9c2>0,

Proof. We write t = iβ, β > 0 and small; Hίtiβ(h,F) will be written as H^ijS); and

60-10^00/2

Fig. 5.1. Resonance free domain (9β in
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we recall that Jiβ = 1 + iβf. It follows by the Cauchy-Schwarz inequality that for

|| (H^iβ) - z)Jiβu || ̂  Im < J* w, (H^iβ) - z)JίβUy \\ J* w || - * (5.1)

for any weL?(W1). Let {χJ2

=1 be a partition of unity covering Wί =(— oo,Sτ(£0) + τ/2]
with£x2 = 1 on WΊ andχι |(- cx),5T(/0

+) + £l]= l,%2l[^r(^o) + ̂ o^r(^o) + ̂ 2] = l
so supρχ;c=[5τ(/o ) + ε]L,Sτ(e0) + δ0] for any 0<ε1<^0. We take w= -(χl + iχl)u
and consider the inner product in (5.1). It can be expanded as

- Im <u,χι Jl7,(/f Λi/0 - z)JiβχίUy (5.2)

-ImΛ2<M,χ ι[χ ι,p2]M> (5.3)

+ Re <u, χ2Jiβ(H1(iβ) - z)Jiβχ2uy (5.4)

p2]u>, (5.5)

where, in evaluating the terms (5.3) and (5.5), we use the fact that /|suppχ| = /2.
We first consider the error terms (5.3) and (5.5). By expanding the commutators
in (5.3) and (5.5) and using the basic fact that

Re <M/Z)X + Dxf)u> = 0

for /eC1 and ueD(DJ, Dx = — , we obtain
dx

| W | | 2 (5.6)

and

u||. (5.7)

As for the last term in (5.7), note that suppχ^ is compact and that /Isuppχ^ = x.
Consequently, we have

hχ'ίP = ihχ'{ + hp(h2p2 + IΓHxΊC'V + 1) + W.χ'J} (5.8a)

and

χ;(h2p2 + !) = (! + iβ)2χ\{(H,(ίβ) - z) + (z + r(x9β))}9 (5.8b)

where χ\r is uniformly bounded for small β. Since (hp)n(h2p2 + I)"1 is uniformly
bounded for n = 0, 1,2, it follows from (5.8a,b) that

|Im/ι2<u,χι[χι,p2]u>|^^ (5.9)

We next treat (5.2) by first separating kinetic and potential energy terms. It

follows from (4.4) that JiβpfβJiβ = p2 + Giβ so the kinetic energy contribution to
(5.2) is

h2lmχί JtfpϊnJ,^ = h2\mχ\Gίβ. (5.10)

As for the potential energy, a simple calculation shows that

- Im J2

v(Viβ - z)ύ = ίβSeo(f, x) - Im Jfβ(e0 - z)]χ2 + (9(F2β3)χ2

1, (5.11)

where we used the fact that / and V" are bounded on suppχj. By Theorem 3.2,



Stark Ladder Resonances for Small Electric Fields 303

Sε(fιχ)xl ^ εo#ι f°Γ EeI09 so by the definition of &β,

-lmJ2

β(Viβ - z)χ2 ̂  (ε0β/2)χl - tf(/?3F2)χ2. (5.12)

Combining this with (5.10), we obtain

- Im Xί J^Hm ~ WiβXi έ l>o 0/2 - h2 Im Giβ - &(F2β3)]χl . (5. 1 3)

Finally, we treat (5.4). As above, the kinetic energy contribution is

Re<u,χ2Ji/!(h2p?/,μί/,χ2w> = Λ2<u,χ2p
2χ2u> + h2 Re (u,χ2

2GiβUy

^h2Re<u,χ2Gίβu>. (5.14)

The potential energy term for xe \Vl yields

Re (Viβ - z)J2

βχ
2 = (V- Re z)(l - β2(f)2)χ2

2 - 2βf(f V'β - Im z)χ2 - Θ(β2)χ2

2

^ \(V - Rez)χ2 - β2(c2 + Fc3)χ2, (5.15)

since Im z > — cβεQ for zeφβ. We choose εt as above, i.e. 0<εί< δ0, which implies
that for

(5.16)

for ze@β (we used the NTH condition to estimate (V— I* )χ2 ^ cε1χl). It follows
from (5.15-5.16) that

0 (5.17)

for β sufficiently small. Using (5.13), (5.14) and (5.17), we obtain a lower bound
for (5.2) and (5.4),

(ε00/2-c2F
2j32^ (5.18)

provided β and h are small. The error terms (5.3) and (5.5) are estimated in (5.6)
and (5.9) and contribute

-Clh\\u\\2-c2h\\u\\\\(H,(iβ)-z)Jiβu\\. (5.19)

Also note that || J^w|| < c||ιι||, since /' is bounded. Combining (5.18-5.19) on the
right side of (5.1) and using the facts that Jίβ is an invertible map on L2(Wl) with
|| J^ J u || ^c || M||, we obtain

iβ) - z)u || ̂  Cl(ε0β/2 - c2h) \\u\\. (5.20)

As it is easy to check that a similar estimate holds for H^iβ)* — z, ze&β, it follows
that Φβ a p(Hι(iβ)) for β sufficiently small and that the bound in part (2) holds.
As for part (3), let χ be as stated there. Since /|suρpχ = 0, we have

). For any weL2(^) and

, χh2p2χR(z)uy = || hpχR(z)u \\ 2

^ <χR(φ, (Hάβ) - z)χR(z)uy + c \\ R(z) \\2\\u \\ 2, (5.21)

where c is uniformly bounded in β. The first term on the right of (5.21) becomes

- 2ih(χ'R(z)u, χhpR(z)uy
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which is bounded above by

c,h || χhpR(z)u \\2 + c2\\u\\2 + c3 \\ R(z) \\2 \\u\\2 (5.22)

for h sufficiently small. Combining (5.21) with (5.22) the result follows. Π

By the definition of Θβ, A\st(d(9β9e0) = (9(F) and, consequently, we can choose
/* as in Lemma 2.2, such that / = [/~,/+] c (9β,d^t(YJ±)^ch2+\ where Y is
the smallest closed interval containing σ(H2) near e0.

6. Existence of Resonances

We prove that Ht(h, F) has an eigenvalue z0 in the lower-half plane for Im ί > 0
with \z0 — e0\ ^ce~κ/h for some 0<κ and h sufficiently small. Because of the
periodicity of υ, this establishes the existence of a ladder of resonances associated
with e0. We begin with a brief discussion of a geometric perturbation method
developed in [BCD3] and then apply it to the resonance problem. We conclude this
section by proving the crude bound on |z0 — e0l mentioned above. This will be
improved in the next section. We recall that e0 is the eigenvalue of H2 defined in
Lemma 2.2. It is associated with the lowest eigenvalue of the single cell Hamiltonian
/ι0. We assume that e0 is NTH and we choose the vector field / to be the one
constructed in Theorem 3.2 for e = e0. Since \e0 - e0\ is exponentially small in h
and e0 is given by the harmonic approximation for F0, (in the simplest ̂ ase), the
NTH condition for e0 is satisfied for small h provided it is satisfied for min V0(x). It is

X

clear that this is NTH for almost all values of F. Let (9β be the resonance free domain
of Theorem 5.1 and recall the choice o f/ made there. By Lemma 2.2 one can find
an interval / = [/~,/ + ]<=^ such that e0el and dist^σ^)) > ch2+\ ε,c> 0.
Furthermore we may choose / c /0 where /0 is as in Theorem 3.2.

Recall from Sect. 2 that ^T0 = L2(^)eL2(R) and that H0(h,F) = Hΐ(
H2(h,F). After spectral deformation, H0t = Hlt®H2 is an analytic family for \t\
sufficiently small. Let {Jjf=1 be an almost everywhere differentiable partition of

unity subordinate to the cover of R given by W1 and W2 such that £ Jt = 1.
i = l

These functions will be specified in more detail below; here we note that
supp j;. d Wl n W2 c G(/+), the classically forbidden region for energy / + . Define
J:JfQ->3ίf = L2(ΊR)by

J(uι®u2) = Jΐul+J2u2. (6.1)

Let { JJ2

= j_ be two almost everywhere differentiable functions such that Jt J, = Jh

i = 1, 2, supp Ji c= W19 and define J: Jj?0 -> 2tf in a manner analogous to (6.1). Then
J* = ̂ f->jr0 satisfies

JJ* = 1^. (6.2)

Let zεp(H0tt)np(Ht), for some ίeC, and let R(z) = (Ht-zΓ\ R0(z) = (H0>ί - z)" x.
Then we have:

R(z)J = JR0(z) + R(z)(JH0tt - HtJ)R0(z)

= JRo(z)+R(z)JMR0(z)9 (6.3)
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where M:^f0->^0, defined as a quadratic form on ̂ (J^J
D(J'2\ is given by:

Mίii! θ u2) = h\DxJ\ - J'.DJu, ® h2(DxJ'2 - J'2Dx)u2. (6.4)

Here we used the fact that onΩ^W^W^ the vector field /= 0. Equation (6.3)
is the geometric resolvent equation.

Because of the form of J f 0 we can write R0(z) = ̂ ι(z)®R2(
z)' It ιs clear fr°m

(6.3) and (6.4) that we need to estimate terms of the form J(pRι(z) and J'tRfa),
i = 1,2, (provided J^eC2) for z on a simple closed contour Γ lying in Θβ about e0.
From Theorem 5.1, we have good bounds on RI(Z) for zeOβ in the sense that
h2 1| J'jpjR^z)!! -»0 as Λ-»0. However, using Lemma 2.2 alone, similar bounds for
R2(z) grow as /ι->0. (Unless, of course, we know more about σ(H2\ for example,
dist(/Q,σ(//2)) > c/i.) Consequently, we will write (6.3) in a form which allows us
to easily use the fact that supp J( a G(I+) to obtain better estimates on the localized
resolvent J'2R2(z).

Let dE

A(x, y) be the distance between x and y in the Agmon pseudo-metric at
energy E given by

ds2

A = h~2(V(x)-E)+dx\ (6.5)
i.e.,

(6.6)

For any open set U a R, we define

(x,y). (6.7)

In particular, for any ί2 c G(/+) (we consider, as above, the connected component

of G(e0) such that 'SΓ(e0)eG(βo) and then G(/+) c G(e0)) we will write:

<Ux) = dΛx,Λ). (6.8)

Note that dA(x, U) is diίferentiable almost everywhere and

\d'A(x,U)\2^h-2(V(x)-I+)+ a.e. (6.9)

(see, for example [HiSi] or [BCD3]).
We define two "wells" as follows: ̂  -(-oo,SΓ(/+)] and ̂ 2 = LST(I+)9ao)9

where ST(I+) = inf (x > SΓ(/+)| V(x) = /+}? i.e. τT2 starts at the first interior well

from ST(I+) and ̂  uG(/+)uiΓ2 =R. Let d12 = ̂ (^1?^2) = inf ̂ (^^2); bY
jceΊ^i

construction rf12 ^ ̂ 0 > 0» some δ0. For the functions Jf introduced above, we take
the following. For δ<^d12 sufficiently sm^ll, let

(6.10)

and take Jt(x) = j(dA(x, 1^^)) and we set J2(x) = I - J^x). Note that supp JJ c= G(/+)
and that for i= 1,2:

/+)+ a.e. (6.11)
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We now take Wί and W2 (i.e. we fix the points η^ and η2 as defined in Sect. 2)
such that Ω = W^W2cι{χeG(I+)\^dl2-δ<dA(i^^x)<^dl2}cιG(Γ\ for <5
sufficiently small; δ will be adjusted below. Also note that d1^ = inf dA(x, ί2) > 0

xeG(I + )c

for δ sufficiently small. We let χΩ be the characteristic function on Ω.
Returning to (6.3) and (6.4), we factorize M using two operators Mx and M2

defined as follows. These are operators Mi:D(Mi)a 3^0-^ J^0® Jf0, where the
domain is

DίM^^ίL^^^nHM^πD^JjeίL^RίnH^^nD^)), (6.12)

and for ul®u2eD(Mi):

) = h(J\ui®χΩu'i)®h(J'2u2®χΩu'2), (6.13)

= h(χΩu'1®J'1u1)®h(χΩu'2®Jf

2u2). (6.14)

It is then an easy calculation to show that

M=-M*M!, (6.15)

as a quadratic form on D(Mi).

Lemma 6.1. Ran R0(z) c D(M1\zeρ(H0t) and Ran JR(z) c D(M2\ zeρ(Ht).

Proof. The first inclusion follows from the facts that H1 1 and H2 are bounded
relative to p2 + Fx and that D(p2 + Fx)aH l (where we work on Wΐ and R,
respectively) and since Jf is a Lipschitz continuous function, J\ has compact
support and is measurable. As for the second inclusion, it follows by similar
considerations. Π

Lemma 6.1 allows us to use the factorization (6.15) in (6.3) which yields

R(z) = JJR0(z) - R(z)JM*MιRQ(z\ (6.16)

To solve this equation formally, we write

R(z)JM* = JK0(z)M* - R(z)JM*M1K0(z)M* (6.17)

or

R(z)JM* = JRQ(z)M*2(\ - K(z)Γ\ (6.18)

where K(z): J^Q®J^O-^J^Q®J^Q is defined by:

K(z)=-MlR0(z)Ml (6.19)

Note that a sufficient condition for (6.18) is that ||K(z)|| < Hor zeΓ. Using (6.18)
in the right side of (6.16) and multiplying on the right by 7*, we obtain, by (6.2),
the desired equation on tf\

R(z) = JR0(z)J* - JRv(z)M*(\ - K(z)Γ lMιRQ(z)J*. (6.20)

In light of Lemma 6.1, this equation is valid as a quadratic form on Jf for

f

We next obtain estimates on K(z) for zeΓ, where Γc=C is a simple closed
path lying in (9β for Imz < 0 and passing through the endpoints 71 of the interval

e0 described above; see Fig. 6.1. Note that we can choose Γ such that 1 7".| = ch2 +ε.
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Fig. 6.1. Integration contour in

These estimates will prove that || K(z) \\ < 1 uniformly on Γ for h sufficiently small.
They will also be sufficient to prove that lim || R(z) — JR0(z)J* \\ = 0 uniformly on Γ.

Λ->0

Recall that Ω=WlnW2 c:G(/+). We define a positive self-adjoint operator
CΩ as follows. Let a*Ω [v] be the quadratic form on Hl(Ω) = {ue^f\ur exists a.e.
and w'eL2(β)} given by

a'nW^h^lv'l^+UV-n^v^ (6.21)
where || u \\ 2Ω= J | u(x)\2dx. By the second representation theorem [Ka], there exists

Ω
a positive self-adjoint operator CΩ such that D(CΩ) = H1(Ω) and || CΩv ||2 = a*Ω [v]

^β). It follows as in [BCD3] that D(H) c H1^).

(6.22)

Lemma 6.2. Let zep(Hίt)np(H2). Then for δ < 1:

max
i = l , 2

Proof. Let u x ® u2eD(Mί), i = 1 or 2. From (6.13) and (6.14) we have for i = 1 or 2:

7 = 1

Σ
7=1

where we used (6.11). Consequently, Lemma 6.1 and (6.23) give

Σ \\CΩRfr)uj\\2.
7=1

Next, let CΩ denote CΩ@CΩ on its natural domain in Jf0

\\CMz)M*\\2=\\MiRt(z)*CΩ\\2

9 so that if we let y = yi®y2

3, it follows from (6.24) that
2

IQ(Z)M*(WI0 w2)||2 ̂  δ~2 Σ I I CoRj(z)yj||2

7=1

(6.23)

(6.24)

n^te that
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^2δ- 2 max| |C Λ R ί (z)C β | | 2 ) | |w 1 Θw

where we used (6.24) to evaluate the norm on the second to last line. This proves
the lemma. Π

We use a result of [BCD3] to estimate || CΩRi(z)CΩ\\ which is based on the
fact that Ωc:G(Γ). Let d1* = inf dA(x,Ω); by construction of Ω^d1* ^dl2/2-δ.

xeG(I + )c

Lemma 6.3. For zeρ(Hit\ i = 1,2, and Rez ̂  Γ,

II QΛ(z)Cβ|| ^ 1 + ce~2dl* I I RiW I (6-25)

where the constant c, 0 < c < oo, is independent of z,h and F.

Proof. For i = 2, this result is proved in [BCD3]. For i — 1, one easily repeats the
proof of [BCD3] using the fact that Hί J C%(Ω) = Hl \ C%(Ω). D

Lemma 6.4. Let Γ c C be a simple closed contour passing through /± (see Fig. 6.1)
and lying in (9β of Theorem 5.1. Let β and h be sufficiently small. Then ||X(z)|| < 1
uniformly on Γ.

Proof. By Lemma 6.3, it suffices to estimate ||fl/(z)|| along Γ. For i = 1, it follows
from part (2) of Theorem 5.1 that:

| |/M*)ll^ι(εo/V2-c2ΛΓ^ (6.26)

By Lemma 2.2 and the spectral theorem

\\R2(z)\\^c(Fh2+εΓ^ (6.27)

Combining (6.26) and (6.27) with (6.25) and (6.22) we obtain

|| ^2δ~1(l+(Fh2+εΓ1e'^)9 (6.28)

so we must prove that there exists 0 < η < 1 such that the right side of (6.28) is
less than η. Now by (6.6) we can write d1^ =h~^d, where d is bounded below by
a positive constant as h -> 0 so the second term on the right m (6.28) vanishes as
/z->0. Moreover, we can choose δ = d12/4 = d12/4h, where J12 is also bounded
below as h -> 0, so it is clear that the right side of (6.28) can be made arbitrarily
small by taking h small. Π

Corollary 6.5. Let Γ be as above. For all h sufficiently small, Γ c p(Ht\ Im t = β > 0
and small, and Eq. (6.20) holds on Γ.

We next estimate ||P — JP0J*||, where P is the Riesz projection for Ht

corresponding to Γ, which exists by Corollary 6.5,

Rt(z)dz9
2πi

where Rt(z) = (z — //,)"*, and P0 is the corresponding projection for H0 r onto the
spectral subspace associated with σ(/f0 ί)n[/~,/ + ]. Note that P0 = 00P2, where
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P2 is the projector for H2 for the interval [/~,/+]. Recall that Mi9 i= 1,2, are
supported in G(/ + ), and hence we will use semiclassical estimates on the resolvent
localized to G(/+). We express P — JP0J* as given on the right in (6.20) as the
sum of four terms:

MZ) = JR0(z)P0M*(l -

I2(z) = JK0(z)P0M*(l - K(z)Γ lMάl - Po)R0(z)J*,

73(z) = JR0(z)(l -P0)M*(1 -K(z)ΓlM,PQR.(z)J\

I4(z) = JR0(z)(l - P0)M*(1 - K(z)Γ 'M^l - P0)R0(z)J*.

By Lemma 6.4, (1 - K(z))~ 1 is uniformly bounded on Γ for all h sufficiently small.

Proposition 6.6. Let 0 < F < \\ v' \\ „ be fixed. Then for all h sufficiently small and
β>0 sufficiently small, there exists k> 0 such that:

\\P-JP0J*\\£ctt9

Proof. We first consider Ij(z)9 j = 1,2,3, and express these terms using CΩ. From
(6.24) and the fact that || J|| g 1, we have

As in [BCD3], it is easily shown that D(H2) <= D(CΩ) so we have for some c> 0,
independent of h and F:

HCΛPtt | |gc| |χβP 2u| |, (6.29)

where χΩ is the characteristic function on Ω. In [HN], it is proved that for any
N > 0, there exists CN > 0 such that

\\χaP2\\£cNhN. (6.30)

In what follows, we will take N large, so tha^ N > f (2 + ε). (We remark that || χΩP2 \\
actually satisfies the bound ||χβP2|| ^ce(dΩ~εh l\ see [BCD3].) To estimate I^z)
we write

~2. (6.31)

Since | Γ| = Φ(h2+ε) and δ = Θ(h\ it follows that lim f I^dz = 0. Next, we consider
- Γ

I2 and /3 which are similar. Here we need an estimate of [BCD3] which is similar
to Lemma 6.3:

IICjAίz)!! ^ \\Ri(z)\\1/2{i + ce-2d« ll^ίz)!!}1/2. (6.32)
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Because of Lemma 2.2 and Theorem 5.1, we obtain the bounds

HCβΛΛzJH^c, (6.33)

where we used the estimate on d1^ ^ ch'1. Considering /2(z) we write:

II /^ D II II D
l |Cβ^2l l I I K2

Γ

so by taking N sufficiently large, this term also vanishes as h -> 0. The last integral,
/4(z), requires special treatment. The operator K(z) is decomposed into singular
and non-singular parts according to the decomposition RQ(z) = P0R0(z) +
(1 -P0)R0(z). From (6.19), we write

K(z) = M,PQR0(z)M*2 + AMI - P0)

= Xs(z) + KΓ(4 (6.35)

By the second resolvent identity, we obtain from (6.35):

(1 - K(z)Γ * = (1 - Kr(z)Γl + (1 - K(z)Γ %(*)(! - K,(z)Γ 1 (6.36)

which is valid for zeΓ since (1 — Kr(z))~l is also uniformly bounded. In fact, it is
holomorphic on and inside Γ. Consequently, its contribution to the contour
integral of I4 vanishes by Cauchy's theorem. Next, we estimate Ks(z) using Cβvia
Lemma 6.2.:

||K,(z)||£||CΛP2|| ||CβR2(z)||
gcfc"fc-u/2)<2+ e ) > (6<37)

where we used (6.30) and (6.34). Hence, the contour integral of I4(z) is bounded by:

iI4(z)dz
Γ

\\CΩP2\\ \\CΩR2(z)\\(\\CΩR1(z)

which also vanishes as h -> 0. This completes the proof. Π

Theorem 6.7. Let H(h, F) = h2p2 + v + Fx9 where \\v'\\ao>F>0, and fixed. Then
for h sufficiently small, H(h, F) has an infinite ladder of spectral resonances.

Proof. It follows easily from Proposition 6.6 using the decay properties of states
in Ran P0 in the region Ω and to the left of Ω, expressed by (6.30), that

dim Ran P0 = dim Ran P,

(see [BCD3] for a more detailed argument). Hence the total multiplicity of σ(Ht)
inside Γ is at least one since H2 has at least one eigenvalue e0el so
dimRanP 0^l. Π

Corollary 6.8. Let z0eσ(Ht) lying inside Γ as in Theorem 6.7. Let S'T(I + ) be the
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first turning point to the right of ST(I+) and set
S'T(I + )

p τ Ξ Ξ J (V(s)-I + )^2ds.
Sτ(/ + )

Then for any ε > 0 there exists h0 > 0 such that h<h0 implies

for some c> 0.

We remark that this estimate, which is an immediate result of the semiclassical
theory of shape resonances, is basically insensitive to the field strength F as F -> 0.
We note, however, that it does give the Oppenheimer formula for the atomic Stark
effect [H]. To obtain an analogous result for the Stark ladder resonances, we must
consider resonant and non-resonant wells which we do in the next section.

7. Estimates on the Resonance Width

In this section, we prove a generalization of an Oppenheimer-type estimate for
the resonance width under certain conditions described below. More precisely, we
show that for F > 0 fixed and h sufficiently small, there exists a constant α > 0
(independent of h) such that for some resonance eigenvalue z0eσ(Ht\

\Imz0\^ce-*/F. (7.1)

For the Stark effect, the Oppenheimer formula for one electron atoms was proven
by Herbst [H] and for N-electron atoms by Sigal [Si3].

The condition under which (7.1) is valid is expressed using the notion of resonant
and non-resonant wells. This concept was used by Helffer and Sjόstrand [HSJ3-4]
and by Briet, Combes, and Duclos [BCD3] in their analysis of multiple-well
tunneling.

Definition 7.1. Let hk be the single-cell Hamiltonian introduced in the proof of
Lemma 2.2 and let I c 1R be a closed interval. A cell is said to be resonant for I if
σ(hk)nl φ 0 and non-resonant otherwise.

We take / to be the interval around e0 of Sect. 6 so that

1.2+edist((Jσ(hk)J+ )^
\ k /

for some ε > 0. To prove estimate (7.1), we need two assumptions:
(Al) RanP, where P is the projection for Ht and the interval / defined in Sect.

6, is spanned by eigenvectors of Ht written as {t/^ }?°0.
(A2) Let l/o be the farthest right unit cell with £0eσ(/ι0) and let R be the set

of all resonant cells for /. Then d^(Ui9 l/0) = Θ(F~^) for any ieR, i φ 0, or if there
is only one resonant cell l/0 for /, then d^(Ω9 I70) = Θ((hF)~x), where Ω=Wί<^W2

is defined in Sect. 6.
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Remark 7.2.
1. We assume that {ι/^}?°0 is normalized as follows. Since H* = Hv we can take

<<A*,<K> = <V (7.2)

where ι^*, the complex conjugate of φj9 satisfies Hfψ* = z^* if Htψj = Zjψj.
2. (Al) excludes the accidental situation where Rt = (Ht — z)~l has higher-order

poles at the resonance eigenvalues.
3. The average spacing between the lowest eigenvalues of an individual cell

Hamiltonian is &(h) by the harmonic approximation, if each cell contains a single,
non-degenerate minimum. If diam (/) = Φ(hN\ for some large N, as allowed by
Lemma 2.2, then the fact that the one of the options in (A2) will hold depends
critically on how small h is with respect to F. If F varies with h and F ^ c/ια,
0 < α < 1, then the second option is generically satisfied, whereas for F < Jια, α > 1,
there are many resonant wells and the first options is generically obtained.

We now begin the proof of (7.1) assuming (Al) and (A2). Recall that P2 is the
projection for H2 on the interval /. We label the unit cells right to left
U0, Uί9...9UN_l9 so UN_i is adjacent and to the right of Sτ(e0). Let URί be the
first resonant cell for / to the left of U0. We introduce some cut-off functions,
see Fig. 7.1. Let f^eC1, 0^// Λ ^1, with ηR\(— oo, — R^τ — ε] = 1 for some
ε>0 to be fixed below, and supp^ c G(/ + ). Let J^eC1, O^J Λ ^1, with
JR\[— RI? + ε,ao)=l and ηRJR = 0. In the case that U0 is the only resonant well,
we take ηR\(Wί\Ω)=\9 JR\(W2\Ω)=\9m such a way that ηRJR = 0. Finally, let
ί/o^C1, O ^ f f o ^ l , with ηQ\[- τ + ε, oo)= 1 and JRηQ = η^

We define approximate resonant wave functions as follows. Let φk,k = Q,
JR l 5 . . . ,Rjy 0 be real eigenfunctions of hRk(R0 = 0) with eigenvalues ekel and
|| φk || = 1. Define

Φ0^Pη0φ0. (7.3)

Lemma 7.3. For h small enough, {Φk9k = Q,Rl9...,RNo} forms a basis for Ran P.

Proof. We first construct a basis for RanP2. Let Φ0 = P2

ίloΦo and Φk = P2nκΦk
for /c>0. It then follows from general stability results for tunneling (see, for
example [BCD3]) that for h small enough the set {Φfc,/e = 0, Rί9...9RNo} is a
basis for Ran P2 and there exists a > 0 that

U5 U4 U3 U2

-τ 0

Fig. 7.1. Cut-off functions ηR and JR and the wells Ut
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Defining */,- = ηR if /> 0, we express Φ3 as

Φj = (P-P2)ηjφj+Φj.

By Proposition 6.6 and the fact that states in Ran P2 are exponentially small in
G(/+) (see (6.33) and the discussion there), we obtain

for some k > 0. The proof now follows easily from this. Π

Proposition 7.4 Let S0 = min {d^(UQ9 URk\ d*A

+ (C70, Ω) }. Then for any δ > 0
k= I,...,NO

and ?c,0 < K < 1, we have for h small enough,

(i) \(Φ*,HΐΦky\^e-(κ*o-δR>\ (7.4)

for α = 0, 1,

(ii) \Im(Φ*9HtΦ0y\e-(**°->R*\ (7.5)

Proof. Let ίϊ = h2p2 + V, where V\suppJR= V and lim K= oo with K = 0(|x|)
x-* — oo

and monotone. The geometric resolvent equation for Rt and R is

where W(JR) = h2[p2, JΛ]. Let Γ7 be the contour through /+ as in Lemma 6.4. Then,

since JΛf/R = 0 and JRη0 = η0 by construction, and

Im<Φ*,/f tΦ 0> =-ί I ^z<f/0(/)0,^(z)^(JR)^(z^000>. (7.7)
2πι r

Here we used the fact that JRη0 = η0 and that

ImEβπ/Γ1 f dzz<ι/0φθ 5Λ(ΦoΨo>] = Im<^0φ0,HP(/)^0(/>o> = 0,
r

where P(/) is the spectral projector for H and 7. It remains to estimate
|| R(z) W(JR)Rt(z)η0 \\ uniformly on Γ which we do in a series of lemmas below. Π

It will be convenient to estimate the adjoint quantity on Γ, i.e.
R-t(z)W(JR)R(z)η0, which follows since we can take .Γ symmetric under complex
conjugation.

Lemma 7.5. Let ΩR = supp J'R. Then for any δ>0 and κ,Q<κ<l,we have for h
sufficiently small,

\\CΩRR(z)η0\\^e-(«ϊ°-δR>\ (7.8)

uniformly on Γ, where CΩR is defined in (6.21).

Proof. Let 0 - supp ( V - 1 + ) _ , 0k = Uk n 0, and dk = inf d'A
+ (Ok, Θj) (see Fig. 7.2).

**k

For any ^>0, one has δ<^dk, k= 1,...,R1 ? for h sufficiently small. We define
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03 Ω3

Fig. 7.2. Localization regions for resonant wells

for k = 1, . . . ,R ί 9 JfcθC1, 0 ̂  Jk ^ 1, such that Ωk = supp J^ satisfies

(i) d'A (Ωk, Φk) = d*A (Ωk, 0fc _ i).

(ii) Ωk has diameter δ.

Then Jk is chosen to be equal to 1 (respectively, 0) to the right (respectively,
left) of Ωk. Furthermore, we can choose Jk such that an inequality like (6.11) holds.
Recalling the definitions of JR and η0 above, we choose ε there so that JR = JRl

and J\ = Ϊ\Q.
Now let Hk be the local Hamiltonian Hk = h2p2 + Vk9 where ϊ^|suppJk= V

and Vk grows monotonically as x^> — oo like (9(\x\) outside the supp Jk. We take
HRί = H as in Proposition 7.3. We then have the following identity:

(7.9)

where Wk= — h2[p2,Jk]. This is obtained by iterating the geometric resolvent
equation. For k = R1 — 1,

Since we have constructed the cut-off functions such that J Λ l _ 1 = 0 on
ΩR = supp J^ and JRl-ι = 1 on supp^y0, we obtain

Equation (7.9) now follows by repeated application of this procedure.
Finally, to obtain (7.8), we use the factorization trick (see Appendix 2) to obtain

from (7.9),

\\CΩRR(z)η0\\^δ-R^( Π IIC^^^C^ΛlC^^zKII. (7.10)
\ k=l /

We use Theorem A 1.3 of Appendix 1 to estimate the product

Π IICf l^ΛWCfl j I^ fh \\Rk(Z)\\}e-<s°-SR»
=l \ k = l /

< e-(κS0-δRι)

for some 0 < K < 1 and h small enough. Here we used the non-resonant condition
as expressed through bounds of the type (6.27) and we used the fact that SQ = Θ(h ~ *).
By (6.32), the last factor on the right in (7.10) only changes the factors K in this
estimate. Π

Lemma 7.6. For any δ>Q and K, 0 < K < 1, we have

\\R-t(z)W(JR)R(z)η()\\^e-^-δRι\

for h small enough, uniformly on Γ.
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Proof. We again the factorization trick with respect to ΩR to obtain

|| Rj(z)W(JR)R(z)ηQ || ^ || CΩRR-t(z) \\ \\ CΩRR(z)ηQ \\ .

By (6.32) and the fact that ||Kf(z)|| and, consequently, \\Rfc) \\, is at most
polynomially large in h~l on Γ by Lemma 6.4 and (6.20), the conclusion follows
from (7.8) Π

We are now ready to prove our main result.

Theorem 7.7. Under condition (Al), there exists a constant K, 0 < K < 1 such that
for h small enough, H(h, F) has at least one ladder of spectral resonances with

where S0 = (9(h~l). In particular, z/(A2) is also satisfied, then there exists a constant
α > 0 such that for all h sufficiently small

Proof. We use the Gram-Schmidt procedure to construct an orthonormal set of
approximate resonance wave functions from (Φfc, fc = 0,...,RNo} defined in (7.3).
We arrange it so that the new functions denoted by the same symbol Φfc, satisfy
(i) Φ0 is constructed from the old Φ0, and (ii)

<Φ*> #fc> = δjk (where Φ* = Φk\

It follows easily from (7.4) that this new system still satisfies Proposition 7.4. In
the verification of this we use the fact that <Φf , Φj> is bounded by 1. Recall that
[ψ jY^Q are the true eigenfunctions of Ht which span RanP by (Al) and satisfy
(7.2). Since Φ0eRanP, we have

<Φ$,<PO>= Σ κ^φo>ι2 = i
fc = 0

Since ΛΓ0 ̂  N = Θ(F~1) and independent of h by (2.2), there exists at least one ψk9

say ψ0, such that

K^*,Φ0>|2^cF, (7.11)

for some constant c> 0. Let Ht\l/Q = z0φ0. Then we obtain

Im|Imz0 | =

Upon expanding ψ0 in the basis [Φk}^1 as
No

(7.12)

and inserting this into the numerator on the right side of (7.12), we obtain

| Imz 0 | ^ | Im<Φ*,// f Φ 0 >|-fcF- 3 / 2 ( max KΦJ^Φ*)! \
\ f c = l , . . . , N o /

where we used (2.2), (7.11) and the fact that |<Φ*,^0>| ̂  1, for all k. The proof
then follows immediately from Proposition 7.3 Π



316 J.-M. Combes and P. D. Hislop

Appendix 1. Localized Resolvent Estimates

We sketch the proofs, for the convenience of the reader, of the resolvent estimates
in the classically forbidden region G(/+) used in this paper. Some of these estimates
appear already in [HeSj] and [BCD3]. They are based on the inequality (6.9) for
the Agmon distance and the identity

\\V(ξv)\\2 = Re(ξ2v,-Δvy + \\\Vξ\v\\2 (A.I)

valid for all ye//2(Rn) and may a.e. differentiable function ξ.
Consider first the Hamiltonian H(0) = h2p2 + V(0\ where K(0) = sup(F,/+), i.e.

F(0) is obtained from V by filling-up all the wells to energy /+. We assume that
σ(#(0)) and σ(H), H = h2p2 -f F, are discrete near I+ and dist(σ(#(0)),/+) = Θ(hk\
some k > 0, and similarly for H.

Lemma Al.l. For all z with

Proof. By the definition of CΩ in (6.21) and the positivity of (K(0) — /+), we have
for any

We take v= = R(0\z)CΩu, \\u\\ = 1 and ueH\Ω), and obtain

|| CΩR«\z)CΩu ||2 ̂  || CΩR«>\z)CΩu \\ . Q

Lemma A1.2. Suppose Ωl9Ω2cG(I+) and that dI

A

+(Ωΐ,Ω2)>Q. Then for any z

Proof. Let p1(x) = inf(d^(x,ί21), dI

A

+(Ωί9Ω2)) so that

I e - p l o n
= 0 on

Then for all veH\Ω\ it follows from (A.I), (6.21) and the above fact that

^ Re

^ Re <e~2ί>lf?,(H(0) - z)v>. (A.2)

Here, <w,u>β denotes J w*u. As above, we choose v = R(0)(z)CΩ2u, for | |w|| = 1
Ω

and weH1(β2), and obtain, from (A.2),

|| CΩίR
(0\z)CΩ2u || 2 ̂
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Since pl = dI^(Ωl9Ω2) on β2,

by Lemma Al.l. Π

Theorem A1.3. Let U = supp(F- / + )_, the union of wells, and let Ωt <=.G(I+) be
such thatdI^(Ωi, U) >δ,i = 1,2, for some δ> 0. Thenforanyz, Rez <; /+, Imz ̂  0:

II CΩlR(z)CΩ2 1| ^ * - ι «2) + C 0 - [ ι . ι / ) a . ι / ) ] | | κ(z) || f (A<3)

where c>0 is a constant depending only on δ.

Proof. We define two cut-off functions as follows. Let y'eC1, 0 ̂  7 ̂  1, with y'(0) = 0,

j(p) = 1 if p > δ/2. Define J(x) = j(d%(x9 U)). Next, letJeC1, 0 ̂  J^ 1, with J(p) = 0
if p<δ/2 and J(p)=l if p>^. Define J(x) = j(d%(x,U)). Then, with

FΓ(J) = Λ2[p2, J], we have P^(J)J — 0. The geometric resolvent equation for R and
K(0) gives

#(z) J = JR(Ό)(z) - R(z) W(J)R(0\z). (A.4)

Similarly, using J, we obtain

JR(z) = R(Q\z)J + R(0\z)W(J)R(z). (A.5)

Upon multiplying (A.4) on the left by J and substituting (A.5) into the second term
on the right of (A.4), we obtain

JR(z) J = JR(0\z) - R(0\z) W(J)R(z) W(J)R(0\z). (A.6)

Recalling that J, J\Ωt = 1, i = 1,2, it follows from (A.6) that

CΩlR(z)CΩ2 = CΩlR«>\z)CΩ2 - CnR^WWRtfWWR^Cto. (A.7)

To estimate (A.7), we use Lemma A 1.2 and Theorem A2.1 below. This gives the
result using the fact that d1^ (Ω± , supp J') = d1^ (Ωl , U) — δ/2. A similar estimate is
obtained for d'A

+ (Ω2 , supp J') in terms of d'A
+ (Ω2 , (/). Π

We also note the following result proved in [BCD3].

Proposition A1.4. Let Ω=Ω1aG(I+) and U be as in Theorem A1.3. Then if

Corollary A1.4. Let Ω=Ω1aG(I+) and U be as in Theorem A1.3. Then if

\\ R(z) \\ .

In Sect. 7, we apply Theorem A 1.3 to the local Hamiltonians Rk(z) whose
spectrum is discrete and dist(σ(Hk)J+)^ch2+\ some ε>0. Moreover, we apply
Proposition A1.4 in Lemma 6.3 to R^z), i= 1,2. For R2(z\ the hypotheses are
satisfied in view of Lemma 2.2. For RI(Z\ we note that (A.6) and (A.7) hold
with Ω, = Ω2 = Ωand R(0\z) = (h2p2 + K(0) - z), where K(0)| W2 = K(0) and F-> oo
as x-> — oo. This is because supp J and supp J lie in the region where the vector
field / vanishes and consequently f/Jsupp J = (h2p2 + V}.
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Appendix 2. The Factorization Trick

Geometric perturbation theory as used, for example, in Sect. 6, involves first order
differential operators of the form

VΓ(J) = /ι2 -—r

with ί2=suppJ'cι G(/+). Some typical functions J which we consider have the
following form. Given (9 c R, let J(x) = j(d^(x9 Ω)) where i) j is piecewise linear,
ii) j(0)= 1, iii) j(p) = 0, if p>δ for some <J>0. In particular, if Ω = {x\Q<dI

A

+(x, β)<δ}9

then a) suppJ'czβ, and, b) \Jr(x)\^(hδ)~1(V(x) — I+)1l2 a.e. on Ω and zero
elsewhere.

The factorization trick [BCD3] consists in introducing the following operators
from ^(R) to L2(R)®L2(R)

Mι(J)u = hδ1/2J'u®hδ-1/2

χΩu',

M2(J)v = hδ-1/2χΩv' ® hδ1/2J'v,

where χΩ is the characteristic function on Ω. The following statement is easily
proved.

Theorem Ail.

= M*(J)M1(J).
2. | |Af£(J)fi | | gδ-^HCf l i i l l , i= 1,2, /or β// iiefl1^), where CΩ is defined in

(6.21).
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