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Abstract. We develop a scheme based on pseudo-differential operators to analyze
the propagation of excitations in inhomogeneous extended systems. This method is
used in a very specific situation, however we think that it has some generality and
should apply to various other problems of current interest. We study the well
known two-dimensional symmetric model of solidification introduced by Langer
and Turski. Assuming the existence of Ivantsov-like steady-state solutions, we
calculate their excitation spectrum. We show that there are no unstable propagating
modes if the Gibbs-Thomson effect is taken into account. This proves that the
growth of needle-crystals is stable with respect to side-branching.

1. Introduction

During the last decade tremendous efforts have been made by both experimentalists
and theoreticians to understand the dynamics of pattern forming systems in such
various fields as hydrodynamics, reactions kinetics or aggregation processes.
Despite the apparent variety of mechanisms involved in these phenomena some
unifying features are now emerging from these works. There remain a lot of open
questions and unsolved problems, in particular regarding the mathematical status
of the theory, nevertheless a systematic approach to this kind of problem seems
nowadays to be more than just a dream. We refer the reader to [LI-2] and [KKL]
for comprehensive reviews of these subjects, and to [CE] for an nice introduction
to the physics and mathematics of extended systems (i.e., systems that are not
confined in some finite volume). In this paper we will be concerned with a specific
problem that typically occurs in the study of extended systems: the determination
of the continuous part of the excitation spectrum of a stationary (or periodic) state.
This is an essential step in the study of such states since it allows to analyze its
stability with respect to propagating excitations as opposed to localized modes
which correspond to the discrete spectrum. The latter may be much more difficult
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to understand, and will not be discussed here, but in any case it is quite clear that
a good control on the continuous spectrum will be a necessary prerequisite to any
serious theoretical or numerical analysis. We will concentrate on a particular
model, but our technique should also apply to various other situations of interest.

To be specific, we will consider the solidification of a pure substance from its
undercooled melt. Neglecting non-equilibrium processes, we may assume that the
state of this system is entirely described by the temperature field T and the position
of the phase boundary Γ. The dynamics of this solidification front is controlled
by the heat flux which is conventionally given by Pick's law J= — XVT, where
K is the thermal conductivity tensor and depends on the phase. As the crystal
develops, driven by the undercooling of the melt, the latent heat is released at the
interface. The solid phase can only keep growing if the heat flux manages to
transport this perturbing energy far away from the front, thus avoiding an excessive
increase of the temperature in the neighborhood of the interface. In terms of the
specific heat C the local variation of the temperature is given by CdtT= — V J;
introducing the thermal diffusion tensor D = K/C we get the equation

dtT = V-DVT outsider, (1.1)

for the evolution of T. If TM is the equilibrium melting temperature of the substance
we have to impose the boundary condition

T|Γ=TM. (1.2)

Latent heat generation at the phase boundary is easily seen to require the following
jump condition on Γ:

Cn DVΓ|sol - Cή DVT| l iq = Ln v, (1.3)

where L is the latent heat, v the velocity of the front and n its unit normal. Finally
we should require the asymptotic undercooling condition,

lim T=T0<TM. (1.4)
ί-» — co

For simplicity we will restrict ourself to the two-dimensional situation, although
the transposition to three dimensions should not be problematic. The thermal
diffusion tensor being a constant scalar in the liquid phase one easily checks that
stationary plane interfaces exist provided the undercooling satisfies the very
restrictive condition

T ~ T ; =1, (1.5)

while the front velocity is left arbitrary. A more general class of stationary solutions
was obtained by Ivantsov [I] by separation of variables in parabolic coordinates.
These so-called needle-crystal solutions are characterized by a parabolic front with
tip curvature radius p, and a constant propagation velocity v. These quantities
are linked to the undercooling by the relation

Δ = ̂ πpeperϊc(^pl (1.6)

where p = pv/2D is called Peclet number. The plane interfaces are clearly obtained
in the p -> OQ limit. It is interesting to remark that all these solutions have T=TM
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in the solid phase, so they do not depend on the detailed properties of the crystalline
phase, in particular they remain solutions of the symmetric model introduced by
Langer and Turski in [LT]. There it was assumed that the thermal diffusion tensor
and specific heat of both phases are identical; this greatly simplifies the analytical
work with the model without changing too much its physics. We shall therefore
also consider this model. In this setting it is not hard to show that there is no
other smooth stationary fronts.

Unfortunately two problems arise with Ivantsov's solutions: first they are
completely unstable in the sense that if we linearize the evolution equation (1.1-4)
around them we find exponential solutions with arbitrary large growth rates (see
[LM1]). Thus these stationary states should be dynamically irrelevant for the system.
The second point is that at fixed undercooling, (1-6) allows for a continuum of
solutions parametrized by say the velocity, in patent disagreement with the
experiments which clearly show a reproducible selection of the front velocity. The
first step toward the solution of these two problems is to realize that the boundary
condition (1.2) is only valid for plane fronts. As soon as the interface becomes
curved the equilibrium temperature changes because the attraction of the crystal
on the molecules of the liquid is modified, this is the so-called Gibbs-Thomson
effect (see [L2] for a more extensive discussion). In the two-dimensional case this
effects in changing (1.2) to

T\Γ=TM-yκ, (1.7)

where y, a surface tension parameter, is a material coefficient which may depend
on the orientation of the interface with respect to the crystalline axis, and K is the
curvature of the front. This new term does clearly not affect the plane solutions,
but it makes the separation of variables in parabolic coordinates impossible and
thus breaks the Ivantsov solutions. We don't know any explicit stationary solution
of this new problem, in fact we don't even know if such a solution exists. However
some intuition was gained by the study of simpler local models of interface
dynamics: the boundary-layer and the geometric models. There it was found (see
[BGLS1-2] and [BKKL1-2] for the seminal papers) that the anisotropy of the
surface tension y was a necessary condition for the existence of solutions,
furthermore the Ivantsov-like continuum of steady-states that occurred at y = 0
breaks down into a discrete set. All these modes are linearly unstable except for
one which becomes stable at some critical yc thus providing the desired velocity
selection. Extensive numerical calculations [M,KKL1,KL], and convincing (but
non-rigorous) mathematical studies [BHL, BL, CCRL, CCMR, BP] have then
shown that an analogous scenario is likely to occur in the full non-local model,
although some controversies remain on this subject (see in particular [VSW]). We
shall not be concerned with these problems here but merely assume the existence
of some needle-crystal solution (in Sect. 3 we will show that this must be almost
parabolic) and discuss its linear stability.

As mentioned above we must distinguish between two kinds of potential
instabilities: modes remaining localized in the frame moving with the non-perturbed
stationary front and which arise from the discrete spectrum. They are usually
called tip-splitting modes since they would destroy the identity of a single needle.
Such modes, which may be important in some other systems, have been argued
to be inefficient in the considered operating regime of the crystal. This was done
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mainly on the basis of the analogy with the previously discussed velocity selection
mechanism in local models. There is however no definitive evidence for this to be
true, and we hope that the results of this work will make possible a precise
(numerical) analysis of this eigenvalue problem. The second type of instabilities
are related to the continuous spectrum and are thus moving with respect to the
stantionary front. In fact the crystals observed thus far in laboratories
[GSA,HGl-2] or numerical simultations [SGM1-2] show the emergence of
side-branches organized in characteristic dentritic patterns along the sides of the
needle crystal. Moreover this structure remains fixed in the laboratory frame,
indicating that the side-branching modes should in fact propagate down the needle
at a speed approximately opposite to the front velocity. Some numerical
computations [LM2-3, EM], albeit not very convincing, support the existence of
an unstable component in the continuous spectrum. This would provide, via some
(yet unknown) bifurcation mechanism, a good explanation of the dentritic growth
of needle crystals. On the other hand it has been advocated by J. S. Langer (see
[LP, L3,BBL]) that side-branching could be a purely noise-driven phenomenon
and that the needle crystal should thus be a stable attractor. It is the lack of
clear-cut argument for or against side-branching instability that ultimately
motivated our interest in this work.

In the degenerate case of plane fronts, the stability analysis was first achieved
by Mullins and Sekerka [MS1-2], they found a purely continuous spectrum with
an unstable band at small wave numbers. For genuine needle-crystals the lack of
translation invariance makes the discussion much more complicated and allows,
at least in principle, for the existence of discrete spectrum.

In the remainder of this section we explain the heuristic basis of our method,
postponing the technical implementation to the subsequent sections. In order to
simplify the exposition we will suppose here that the stationary needle-crystal has
an exact parabolic shape, an assumption that is not necessary and will later be
relaxed. Introducing Cartesian coordinates x and y in the plane with the y-axis
in the growth direction, the front Γt at time t is described by

(1.8)

where / is the normal deviation from the stationary solution. Using the free heat
kernel Pt = eDV2\ the second Green's Identity allows to rewrite (1.1), (1.3) and (1.4)
as a single integral equation

Γ(ί)=T0 + £ J dτ f P'-Vφώ,
C -oo Γτ

wher ds is the arclength on the interface. Restricting this relation to the front itself
and using Eq. (1.7) we finally get

--σκ = - } dτ J P<-*v±(τ)ds\Γt, (1.9)
P P -oo Γ,

where we have used the previously defined undercooling and Peclet parameters,
and introduced the so-called capillary length σ = Cy/pL. Equation (1.9) which is
the non-linear evolution equation for the front, can now be linearized around the
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stationary solution i.e., at / = 0. This is an elementary but tedious calculation
which, after rescaling length and time to the natural units of p and p/v and Fourier
transforming in time, leads to

σ ^ σx σ

+ Λ(ω)/(ω) Ξ A(ω)f(ω) = 0, (1.10)

where A is an integral operator which can be expressed as
00 dτ °° ί x2 -

Λ(ω)/(ω,x)= - --
o 2πτ -oo I 2τ

with an exponent W given by

x2 - 2 2
~]
J.

These are nice calculations, however the resulting expressions are so involved
that one does not really gain any intuitive understanding of the perturbation
equation. The main problem clearly lies in the operator Λ. In fact this is a common
difficulty with integral operators. The knowledge of the integral kernel, which is
in principle all we need, does not generally tell us what the operator is really doing.
In such situations it is often better to switch to another representation namely
pseudo-differential operators (Ψ-DO). Roughly speaking these are integral
operators which are given in terms of a symbol 0(x, ξ, y) by the formula

Op(α)/(x) = J j α(x, ξ,y)eiξ(χ-y)f(y). (1.11)
2π

A differential operator P(x, — ίdx) is of course a special case of such a Ψ-ΌO with
symbol P(x, £), but this class is much larger, including also inverses and even more
complicated functions of differential operators. A look at our formula for Λ leads
us to guess that it can be written like (1.11) with a symbol λ of the form
λ(ω; x, ξ, y) = b(ω; (x + y)/2, ξ)^/l + y2. The function b can be obtained by Fourier
transformation with respect to r = x — y as

,
2π

First evaluating the Gaussian integral in r, it is then easy to transform the remaining
τ integration into another Gaussian integral. This allows us to write down a symbol
for the operator ^(ω) of (1.10) as
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with X = (x + y)/2. Let us forget for a while that this is a symbol, and look at it
as a simple function on phase space {(x, ξ)eR2} (think of a Schrόdinger operator
and its classical Hamiltonian), in particular identify y and x. The first natural thing
to do is to find a canonical transformation to simplify this function. A good
candidate seems to be

ζ = —J==>5 = h(x) = arclength on Γ. (1.12)

If we denote by g(s) the inverse of h(x) and set η = g/^/1 + g2 we easily get the
estimate

uniformly in ζ as s->oo. In particular, since η behaves like a smooth signum
function, our Hamiltonian a has definite (although distinct) limits α±(ω;ζ) as
s-> ± oo. Quantizing these functions we get two operators A±(ώ) = op(a±) which
are so simple that we can explicitly calculate their spectra (strictly speaking we
can not yet talk about spectrum since we did not introduce any Banach space,
however the intuitive meaning should be clear):

Since a+(ω, ζ) = 0_(ω, — ζ) the two operators A+ and A_ are similar, thus we only
need to consider A + . The problem is now to relate this to the spectrum of A(ω).
There are basically two steps: first find a unitary operator implementing the above
canonical transformation, then decouple the left and right sides of the front to
allow the limits s -> ± oo to be taken simultaneously. The first step is a little bit
tricky since non-linear symplectic maps are not implementable by unitary
transformations, it is however possible to do this job modulo a small error. In our
case one can even make this error compact. The second step can be done using
any decoupling technique used in Schrόdinger operator theory since the dominant
contribution to A is the σζ2 term. The well known result is that decoupling can
be achieved at the cost of a relatively trace-class perturbation. To deal with all
the errors generated in this process we apply WeyΓs theorem on the invariance
of the essential spectrum with respect to relatively compact perturbations. We
refer to the subsequent sections for more details. Once the continuous spectrum
of A(ω) is known, it is easy to get the dispersion relation by imposing the instability
condition Oespec(^(ω)) i.e.,

This can be solved for ω, the result is

which should be thought of as a relation between the (complex) frequency ω and
the asymptotic wave number ζ at s = -I- oo. The asymptotic group velocity is then
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given by

consistent with the requirement of stationarity in the laboratory frame. A look at
Eq. (1.13) soon reveals that Im(ω) is non-negative, and zero only at ζ = 0 (see Fig.
2 in Sect. 6). Thus we arrive at our main result: needle crystals are marginally
stable against wide-branching if the Gibbs-Thomson effect is taken into account.

The remainder of this paper is organized as follows: in Sect. 2 the linearized
perturbation equation is derived. In order to simplify the exposition we directly
implement the coordinate change (1.12) at this level. The needed a priori properties
of stationary needle-crystals are obtained in Sect. 3 by analyzing the asymptotic
behavior of the non-linear equation (1.9) far away from the tip. In the next section
the main analytic estimates on the integral operator A are done and its (principal)
symbol is computed, this is step one in the above discussion. The spectral analysis
of the perturbation equation (1.10) is then carried out in Sect. 5, including step
two. The equation is solved in Sect. 6, and the stability of needle-crystals is derived.

2. The Linear Perturbation Equation

In appropriate units the symmetric model can be written as a free boundary value
problem [L2]. The dimensionless reduced temperature

pL/C

satisfies the heat equation

*ί = l4.« (IDΛ Λ X V /

dt 2p

in the two phases. In order to agree with standard notation we use Δ to denote
the undercooling parameter and Δx for the Laplacian. We recall that the diffusion
constant in (2.1) does not depend on the phase. More realistic models can be
defined by relaxing this hypothesis, but our result should not be seriously affected
by that point. Local thermodynamic equilibrium at the interface imposes a first
boundary condition on the solidification front Γt

Δ
u\Γt = --σκ, (2.2)

P

where Δ is the dimensionless undercooling parameter (1.5) measuring the departure
of the melt temperature from the melting point. The ratio Δ/p is the reduced
equilibrium temperature of a flat interface. The Gibbs-Thomson effect [L2]
modifes this temperature when the front is curved, K is the curvature of the interface
and σ the capillary length. The last ingradient of the model is the local energy
conservation at the interface where the latent heat is released. This leads to another
boundary condition

1 (du

2 ( d v

du

liq sol

= 0 (2.3)
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relating the normal velocity of the front to the discontinuity of the normal heat
flux across the phase boundary. Let us now perturb this problem by adding a
small external heat source εQ in the right-hand side of (2.1). Using the second
Green's Identity we can put the perturbed evolution equation together with its
boundary condition (2.3) into a single, physically more transparent distributional
equation

= -4Λ + ̂  +ββ> (2.4)
ot 2p P *

where δr is the Dirac distribution concentrated on the curve Γ, i.e., if 5 is the
arclength on Γ then for any test function φ

<(5Γ,φ> = j φds.
r

Quite naturally we restrict ourself to perturbations Q(t) which were not active
forever, without loss of generality we may assume that Q(t) vanishes for t < 0.
Then the usual variation of constant procedure yields for any ί0 < 0 the integral
equation

ιιβ(ί) = e-G«-<o)

Wo(ίo) + 1 ί e-G(ί-*vϊ(τ)δ dτ + εq(t), (2.5)
P to

t
with a perturbing term q(t) = J e~G(ί~τ)β(τ)rfτ, and a propagator generated by

o

G=-^ϊ. (2.6)
2p

If we now assume that in the remote past the system was entirely liquid (i.e., that
lim u0(ί) = 0), we get from (2.5) and (2.2) a single integral equation for the front

--σκ.(t) = J6g(t) + - ί
P ( P - o

(2.7)

In the absence of surface tension (σ = 0) Ivantsov [I] found a continuous family
of needle-crystal solutions of the non-perturbed problem parametrized by p > 0
(see [L2] for a short proof). They describe parabolic fronts of varying curvature
and speed in the laboratory frame. In our coordinate system all these have unit tip
curvature and propagate at unit velocity. The undercooling is then fixed by the
relation

^-7πpe^erfc(vp). (2.8)

Experimentally a unique solution is selected from this continuum. This selection
is currently believed to be an effect of the Gibbs-Thomson term. Unfortunately,
no needle-crystal solution is known at σ Φ 0, there is however strong evidence for
the existence of a discrete set of solutions when the surface tension is anisotropic
i.e., when σ depends non-trivially on the orientation of the interface with respect
to the crystalline axes (references were given in Sect. 1). This anisotropy seems to
be of fundamental importance for the existence of solutions. Our aim here is to
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study the excitation spectrum of such solutions, merely assuming their existence.
It is quite easy to see that any mild anisotropy (i.e., such that σ remains bounded
from below and above on the interface) can in fact be absorbed in a regular change
of coordinate which preserves the structure of our problem. In fact the only effect
is a trivial renormalization of the function g(s) near the tip, it is thus safe to ignore
anisotropy in the following.

Introducing a Cartesian coordinate system (x,y) in the plane with the y-axis
in the propagation direction of the crystal we describe the non-perturbed interface
Γ° in the co-moving frame by

y=-Φ(χ) (2-9)
We assume φeC2 to be even and convex, normalized by </>(0) = 0 and </>"(0) = 1.
The algebraic arclength on Γ° is given by

s = h(x) = j V1 + φ'2(u)du. (2.10)
0

We denote by g the inverse function of h, the arclength parametrization of the
front is then

*o(s) =

while unit tangent and normal vectors are

to = I ° . I, n0 =

The perturbed front 7^ is given by the normal deformation fε as

xε(s, t) = x0(s) + v0ί + ε/ε(s, f)n0(s). (2.1

We now insert (2.11) in the integral equation (2.7) and linearize in ε. We first
consider the left-hand side of Eq. (2.7), the curvature is given by

ε" i χ ; ι 3 '
where' denotes differentiation with respect to 5. Using the Frenet formulae we get

x^ = (1 + εjc0/ε)t0 + ε/εn0,

with a non-perturbed curvature given by

Φ"°g

Thus we readily obtain the linearized curvature

κ ε~κ 0 + ε(-ds

2-^)/0. (2.12)

Turning to the right-hand side of (2.7) let us introduce the operator
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and denote its adjoint (in the L2-sense) by ΓJ+. In terms of this we can easily
rewrite the integral in the right-hand side of (2.7) as

- f I>-GT<:τ|χ Λ xj(ί - τ)dτ. (2.13)
P o

The ε-derivative of the restriction operator is seen to be

δεΓ*U = /0n0 Γ?V,

whereas the volume factor gives

Bε[\'ε Λ xε]|ε=o = /o -

Thus the derivative of the integrand in (2.13) consists of the three following terms:

Γf°e-°Tf

o:t[/0 - (/Ov0 t0)'](ί -τ) = Γe *T + [/0 - (/Ov0 t0)'](ί - τ),

where H = G-\0-V and Γ = Γ£. Since 3sΓ = t0 ΓV, we are able to rewrite the
integrand as

/0(ί)n0 ΓVe-HT + ̂  + T^a\dt - v0 V)Γ+/o(ί - τ).

The first term in this expression gives rise to a multiplication operator, the
corresponding integral is easily identified to be

P o
OO 1 00

= -P ί r~^ ί ds'n0(s) (x0(s)-x0(s')
o 2πτ -oo

liq dv
(2.14)

that is the non-perturbed heat flux through the interface (we will however not use
this identification). We finally get the linearized equation for the dynamics of the
normal deformation / driven by the external perturbation q as

Af = (- σd2

s - σκl - j£ + Λ)f= q, (2.15)

where the operator Λ is given by

Λf(t) = - J dτΓe-Hτ(dt - v0 V)Γ+/(ί - τ).
P o

Consideration of causality forces us to restrict ourself to solutions / that vanish for
negative times. Since on the other hand it is quite natural to assume that / is
exponentially bounded in the limit ί->oo if q is, the Fourier transform

OO

/(ω)= J f(t)e~tωtdt should be analytic in some half-plane CCΞ {ω|Imω<c}.
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Introducing the operator

Λ(ω) ΞΞ - J Γe-(H+ίω)t(zω - v0 V)Γ + dτ, (2.16)
P o

we can reduce the linearized equation to

A(ω)f(ω) EE (- σdl - σκ2 - j£ + Λ(ω))f(ω) = $(ω). (2.17)

Remark that by our judicious choice of parametrization of the free interface the
differential part in the operator A has been made uniformly elliptic (compare with
1.10), reflecting the dissipative nature of the problem. This is an important
advantage over earlier treatments of the question since we will see that — σd2

s is
the dominant term in Eq. (2.17).

3. A Priori Properties of Stationary Needle-Crystals

In this section we derive some a priori properties of stationary solutions of the
front equation (2.7). We suppose, as in Sect. 2, that φ is an even, smooth (i.e., C2)
and convex function, normalized by the conditions φ(0) = 0 and φ"(ϋ) = 1. We also
assume that τc0-»0 at infinity thus excluding oscillations of the front temperature
there.

Theorem 3.1. Any stationary solution Γt — {y = t — φ(x)} of the front equation
corresponding to an undercooling 0 < Δ < 1 and satisfying the above assumptions is
parabolic at infinity in the sense that for some constants Cl and C2 we have

0 < C\ ^ —— ̂  C2 < oo

for all x. Assuming further that the second derivative φ" is bounded, the heat flux
across the interface vanishes at infinity, i.e.,

lim 70

1(5) = 0.
s-» ± oo

Remark. A more careful analysis shows that in fact 7^"(s) = O(s~1/2) at infinity.
This slow decay at infinity should have important consequences on the structure
of the discrete spectrum.

Let us proceed to the proof. It follows from Eq. (2.7) that

-= lim f
P X-+QO o T -oo

where flτ = dτ/2π. Now by a change of variable we can put the last integral into
the quasi-Gaussian form

* \X) — I I cZowTC , I j.^dl
— oo — oo

where the quadratic form Q is given by the matrix

,
G(x,y) I J χ-y
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From the convexity of φ one easily infers that the function G is monotone increasing
in both arguments. As a consequence the following limits exist and coincide:

±A= lim --= lim φ'(χ)= lim G(x,y)= lim G(x,x + y).
x-* ± oo X x-* ± oo jc-+±oo χ-» ±oo

Correspondingly the asymptotic normal velocity of the front

lim v£(s) = (l+A2)-112

s-» ±00

also exists.
We consider first the case of non- vanishing asymptotic normal velocity. Then

the quadratic form (3.3) has a proper limit as x -» oo which is independent of its
second argument and Lebesgue's dominated convergence theorem shows that the
limit of the integral (3.2) is indeed a Gaussian integral. Its evaluation gives, by
(3.1), the result Δ=l which generalizes the well known fact that a stationary plane
interface can only exist at unit undercooling [L2].

In cases where the asymptotic normal velocity vanishes (i.e., A = oo) the
situation is more subtle since the quadratic form Q has no limit as x-»oo.
Nevertheless for στφ~\ — 2x,0[ we can use the estimate (we only consider x-> oo,
the opposite case is completely similar)

β(x, x + στ)[σ, τ] ̂  (1 + G(x, x + στ)2)σ2 + τ2,

from which we get by Lebesgue's theorem

lim J ^τe-(p/2)Q(x'*+<ττ)[<Γ'τl = 0.
x~>°° στφ]-2x,0[

Let us denote by ~ the equivalence modulo 0(1) quantities as x -> oo, then making
the previous change of integration variable backward and using a well known
integral representation of modified Bessel function (see [ER]) we obtain the new
expression

00 I X

f — f

o τ -x

- J
π -v

where we have set d(x, y) = ^/(x — y)2 + (φ(x) — Φ(y))2. Let us introduce the
auxiliary function

which is analytic except for a logarithmic singularity at the origin. The relevant
behavior of φ is given by (see [AS])

φ(z) = - - log z + O(l) as z -> 0,
π

φ(z) = — (l+CKz' 1)) as z^ + oo. (3.4)
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In terms of this function and of S(x, y) = d(x, y) — (φ(x) — φ(y)) we can rewrite

I(x) ~ Iφ(x) EEE J dyφ(pd(x,y))*-^\ (3.5)
— x

To handle this integral we first prove the

Lemma 3.2. An integrable singularity off at the origin does not contribute to If(x)
as x -> oo in the sense that for such f we have

//(*)- f dyf(pd(x9y))*->s™ (3.6)
-χ<y<x
ρd(x,y) > p

for any positive p.

Proof. Let 70 be the integral (3.6) but on the set {ye[ — x,x~]\pd(x,y)< p}. We
have to show that /0(x)~0. Since one easily checks that the function y\-^d(x,y)
is monotone decreasing on the interval [0, x], the change of integration variable
t = pd(x, y) allows us to write for large x

with the Jacobian

Φ'(y)G(x9y)J(x>t)=-dyd(x,y} =
^/l + G(x9yr

But the monotony of G implies

G(x9y) ^ G(y,y) = φ'(y] ^ φ'ίx - 9-\
V p)

thus we conclude that for large x,

J(x, t)^ίφ'\ x — I ~> oo uniformly in t as x->oo,
V P/

from which the result follows. Π

Thus by the first estimate in (3.4) we may replace φ(z) by (2πz)~1/2 in any
neighborhood of zero in the integral (3.5) without changing the limiting behavior
of Iφ. To control the contribution of infinity we need the

Lemma 3.3. Assume that for some positive ε the function f satisfies f(z) = 0(z~1~ε)
at infinity, then we have

-χ<y<x
pd(x,y) < p

for any positive p.

We skip the very simple proof. By the second estimate in (3.4) we may also
replace φ(z) by (2πz)~1/2 in any neighborhood of infinity in Integral (3.5), thus finally

• ί dy C_ PS(*'y> . (3.7)
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We now consider two cases, let us first assume that limsup—— = oo. Since
*->«> χ2

for 0 ̂  y ̂  x one easily shows that

J/ \ >^ J/ \ «-̂  / \ T \ /

we can write

ay

<2
dy

<2 I—

which vanishes as —— tends to infinity. Thus in this case we must have Δ = 0.
x2

If we now assume that liminf = 0, it then follows that liminf—τ~ = 0.
x->oo X x-xx> χ2

The function yι—>S(x,y) is readily seen to be monotone decreasing on [ —x,x],
thus for 0 g y ̂  x we have for some positive constant C

x2 x2

ttx. - vϊ > ttx. (» = ====== ;> c—.
' + ώ(xΫ Φ(x)

Splitting the integral (3.7) in two parts I± according to the sign of y, the first piece
is controlled by

/ Y X fi~Cx /Φ(x)

t-WέJ^-J'y-

which vanishes as

Φ(x)o ^/2πp(x - y)

g [λ Γ*ie-C*lΦM

^pπ\Jφ(x)

—-->0. In the second piece we set y = (1 — £2)x, then

S(x,(l-ί2)x) =
/1 + G2 + G

rf(x,(l-ί2)x) = xίVl + G2

and a short calculation gives the expression

, , 1 /2 i

where G = G((l -ί2)x,x),

PX , 2exp -ί2

/1 + G2 l

px

Ί + G2 + G
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Now since G g φ'(x\ the quantity x/G diverges as φ'(x)/x vanishes, but then the
last integral is easily seen to converge to l/p. Thus in this case we conclude that
4=1.

Summing up we have seen that, for values of Δ corresponding to non-degenerate
Ivantsov solutions (i.e., for p > 0 in (2.8)), the stationary fronts are almost parabolic
in the sense that

0 < liminf ffl g liming 5Ξ limsup ̂  < oo, (3.8)
2

X2

which clearly implies the first assertion of the theorem. It is then very natural to
make the further assumption that φ" is bounded. Under this hypothesis let us
now discuss the behavior of the heat flux across the front at infinity. We begin
with a simple

Lemma 3.4. The function χ(X, r) = G[X + -,X — ) satisfies the estimate

0< w^ι<
1- {χl -2

uniformly in r.

Proof. Remark that χ is odd in its first and even in its second argument, thus we

may take X,r > 0. Assume first \X\ > -. Since by (3.8) there exists a constant C1

such that φ'(x) ^ C±x for all positive x, we have in fact the lower bound

The upper bound follows from the boundedness of φ" in exactly the same way.

On the other hand if | X \ < - the parity of φ gives to the identity

χ(X9r) = —
r

which leads us back to the first case. Π
From (2.14) we get, after some elementary manipulations

(x ~ yW(x) ~ (φ(x) ~dy c-,*{x-,}*+<«x}-«y}-M (39)

o τ2 -oo Jl+φ'(x)2

Taylor's formula applied to the function φ gives the uniform bound

|(x - yWW ~ (Φ(x) ~ Φ(y))\ ^ C(x - y)2,

from which we obtain, in the same way as before, the following quasi-Gaussian
bound on the absolute value J(x) of the integral in (3.9),

J(x)w- f f dσ<jiτσ2e-(p/2)Q(x>x+στ}[σ>τ\
X — QO — αo
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Here the notation /(x) « g(x) means that /(x) = O(g(x)) as x tends to infinity. As
before, we may restrict integration to the domain where — 2x < στ < 0 and, after
some calculations, get the asymptotic formula (see [Er])

J(x)^— J dyK,((d(x,
nx-x d(x,y)

x -

where we have introduced the new function

ψ(z) = -KM
πz

This function behaves like (see [AS] for BesseΓs functions)

MZ) = — + 00og(z)) as z->0,
πz2

as z^+oo. (3.10)

Using the Lemma 3.2 with the above estimates we can discard the singularity at
x = y and rewrite

H y - ι r / 2 (3 Π)
-x xd(x,y)312

But by Lemma 3.4

-(x + y)2(x — y). (3.12)

Insertion of the estimates (3.12) in (3.11) finally gives J(x) ~ 0.

4. A Principal Symbol for the Integral Operator Λ(ω)

In this section we focus on the integral operator given by (2.16) and which can be
written more explicitly as

oo Jτ oo
Λ(ω)f(s)= f i_e~(p+2ίω)τ/2 f dS'G-Pd2^(s^(sΊ)/2τ + p(φog(s)-φog(s'))

o

Applying the Cauchy theorem to deform the integration contour we get the more
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symmetric expression
00 Aτ °°

Λ(ω)f(s) = p f ι_e~/;(1+'5)t/2 f ds'e~p(l+δ)d2(9(s)'d(sΊ)/2τ+p(φo9(s)~φ°9(s'})

0 T -oo

ίv _ o0(5) _ </>o0(s')) /(s'), (4.1)

where we introduced the notation

Our goal is to compute a principal symbol for this operator. Let us briefly explain
what we mean by that, intentionally avoiding all kinds of technicalities. A function
p(x, ξ, y) is a symbol for the operator P acting on some decent subspace of L2(R)
(typically the Schwartz space £f) if

Pf(x) = Op (p)f(x) = f el(*-»<p(x, ξ, y)f(y)4ξdy.

Clearly the symbol of an operator is not uniquely determined. To remove this
indeterminacy we must, loosely speaking, fix the order in which the operators x
and dx act. For example symbols independent of y will be called left symbols, those
independent of x right symbols. In the middle lie the symmetric Weyl symbols, of

the form pi ,ξ I, especially interesting because they give rise to self-adjoint

operators when they are real. Fourier transform connects this different kind of
symbols together, for example one easily checks that the left symbol is given in
term of the right one by the formula

Pl(x, ξ) = Je-i(*-*«-">prfo, x - y)4ηdy.

We will say that a symbol p is a principal symbol for P if the operator P — Op (p)
has an extension to L2(R) which is compact relative to P. Thus even in a fixed
class of symbols, say Weyl symbols, the principal symbol is only determined up
to the Weyl symbol of a (relatively) compact operator. The main reason to deal
with symbols rather than with kernels is that the former have much nicer properties.
Whereas the kernel of an operator product C = AB, for example, is given by a
quite uninspiring integral, its symbol is almost the product of the symbols of A
and B. However to really get such a trivial algebra we must restrict ourselves to
principal symbols at the cost, of course, of some fine information on the operators.
The point is that in many applications one is not interested in such details, then
the coarse description given by a principal symbol is largely sufficient. Such a
situation arises for example in the determination of dispersion relations for the
propagation of waves (or more general excitations) through inhomogeneous
extended systems. Then only the essential spectrum is relevant since discrete
eigenvalues generally describe localized, non-propagating modes. The main tool
in such situations is the stability of the essential spectrum under relatively compact
perturbations (i.e., WeyPs principle) which gives great power to the simple calculus
of principal symbols. This is exactly the situation we are interested in.
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With this in mind let us now turn to the operator (4.1). We first show that its
kernel is essentially supported on the diagonal in the sense of the following:

Lemma 4.1. Let D be an almost conical neighborhood of the diagonal given by

,*)\g(s)-g(!t)\<Jl

and define the complex region

Then under the assumptions of Theorem 3.1 (inclusive the boundedness of φ"), the
integral operator obtained by restricting the kernel of Λ(ω) to the complement ofD
is an analytic function from Ω to the Hilbert-Schmidt operators on L2(R). Moreover
its Hilbert-Schmidt norm satisfies

as Re(<5) tends to infinity.

Remarks.

(i) We shall not distinguish between an integral operator and its integral kernel,
whereas the above notation for the Hilbert-Schmidt norm as an L2 norm.

(ii) The parameter Re δ really measures the distance to the boundary of the
analyticity domain Ω. In fact one easily proves the inequality

dist (ω, dΩ) ^ - Re <5(Re δ + 2)

which is saturated for imaginary ω.

Proof. The kernel of Λ can be exactly computed and, up to a constant factor, it
is given by L(0(s), g(s')) with

L(x,y) = <(l + iv)K(

where d = d(x, y) and S = S(x, y) are as in the previous section. The K are modified
Bessel functions. Let us introduce the new variables X = (x + y)/2 and r = (x — y\
then to D corresponds the set

5EE{(x,y)| |r |<Vl+* 2}.

Since on the complement of D the distance d is bounded below, the estimates (3.4)
and (3.10) allow us to write

d

As long as Re (δ) > 0 some elementary inequalities further lead to

(4.2)
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On the other hand the Hubert-Schmidt norm (squared) of the kernel of A on the
complement of D is easily seen to be bounded by

ΛΓ2EE r2dXdr. (4.3)

Note the last factor in the integrand which comes from the change of variables.
By Lemma 3.4 we have

d(x,y) = \ ^ C\r\Jί+X2. (4.4)

Once (4.4) is inserted into (4.2) it becomes easy to get the integral N2 under control.
A similar argument for <5vL(x, y) completes the proof. Q

To understand the operator Λ(ω) near the diagonal (i.e., on D) we need
good approximations of the functions φ°g(s)- φ°g(sf) and d2(g(s)9g(s')). This is
achieved in the two following lemmas under the assumptions of Theorem 3.1.

Lemma 4.2. Let η =
A'2

-. There is a constant C such that

\φ°g(s) - φog(s') - (s - s')ηog(S)\ ̂
1+0(5)

,2 =̂  C

for any (s,s')e/λ

Proof. We must show that on D

<c
2'

Applying Taylor's formula we first obtain

φ"(X

ί + φ'2 (X + t-
r \ \ 3 / 2

dt,

))
and since on D for large values of | X\ we clearly have X + -

(4.5)

>C|j£ r |,wethenget

<C
\r\
\x\-

(4.6)
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On the other hand an integration by part shows that

but since on D we have the bound

f r
l-η(X)ηlx + -

we get in fact that

-1/2 C

τ 2'

(4.7)

The two inequalities (4.7) and (4.8) together with the simple bound

imply the desired estimate (4.5). Π

Lemma 4.3. There is a constant C > 0 such that

0 ̂  (s - s')2 - d2((g(s\ g(s')) ^ C(g(s) - g(s'))*

for any (s,s')eD.

Proof. The first inequality is clear from the geometric interpretation of the variable
s (recall the definitions of the functions g and h in (2.10)). With the new variables

X = and r = (g(s) - g(s')\ the second assertion of the lemma reads

^ Cr2. (4.8)

To verify this let us write ε = A + 2B with

A =

and

B = h'(X)

-φ'(X)

- Φ'W
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Then the integral formula

— - /'(*) = -. } f i x + t~](sign(ί) - t)dt
r 4 -i \ 2/

produces the estimate

\A\^Cr2, (4.9)

uniformly in X. On the other hand a simple calculation shows that

*" f J™ f J**/~: /.Λ *\ J^ffl V i **" 1 JL//I V i -^ ^ \ ^ V^U

^Jf + Sί^

which clearly implies

on D. This together with the estimates (4.9) proves (4.8). Π

Thus it seems to be a good idea to approximate the operator (4.1) by the
simpler one

00 I OO

A (frt\f(*\—n f ^T^-P(l+<5)t/2 f A~Λo(ω)J(s) — Pj —β J «s

0 T -oo

s-s , . , , , „ (41Q)

We claim that for ωeΩ the operator R = Λ(ω) — Λ0(ω) is Hubert-Schmidt. If we
restrict its integral kernel to the complement of D this follows from Lemma 4.1
and its analog for Λ0. We thus consider the kernel of R on the diagonal D. Writing

R = ] V(τ)dτ,
o

it suffices to show that the Hubert-Schmidt norm of the integral kernel of
V(τ) restricted to D is integrable. Direct calculation and use of Lemmas 3.4, 4.2
and 4.3 give an upper bound for this norm as a sum of terms of the following
form:

l/2

τ~2n

where <^Γ> = ^/l +X*, and the integers fc, j and n take the values given in the
following table:

k 4 5 5 6 2 3 3 4 2 3
j 0 0 1 1 -2 -2 -1 -1 -2 -2
n 1 1 2 2 1 1 2 2 2 2
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A simple change of variables in the integral (4.11) further gives the bound
2

, (4.12)

where the quadratic form H has the matrix

H=
(1 +

X(X,r)

Re<5)

The last inequality, which follows from Lemma 3.4, allows to estimate (4.12) by

Γ-C Re δ

with a finite constant C as long as j^k—l. This bound is integrable if
n- 1 <fc/2+ 1/4 and its integral vanishes like (Re<5)~ fc/2+"~5/4 as Re<5-»oo. A
look at the above table shows that these two conditions are indeed satisfied. The
same argument applies to dωR, thus R is analytic from Ω to the Hubert-Schmidt
operators on L2(R), and its norm vanishes like (Re<5)~1/4 as Re<5-> oo.

We are now able to compute the (left) symbol of the integral operator Λ0 (we
set ή = η°g)

°o j oo

p f — f
o τ -oo

1 + iv - (1 + δ)ή(s)-

J

jξ2 + 2ip(ω -f ήfξ) + p2(l -
(4.13)

One easily checks that this symbol is a bounded continuous function of s and ξ,
so one expects Λ0 to be a bounded operator. Assuming φeC00 this follows easily
from integration by part, under our more restrictive hypotheses one needs some
deeper results (see for example [CM], Chap. 1, Theorem 3), but this remains true.
On the other hand a simple computation shows that the symbol α(x, ξ) is in L2(R2)
if and only if the corresponding operator is Hubert-Schmidt on L2(R) with norm

IIOp(fl)||2

2 ( R 2 ) = f|α(x,ί)|2dx«. (4.14)

Thus since 1 — ή2(s) = 0(s~1) at infinity we easily check that the terms in 1 — ή2

in both numerator and denominator of (4.13) may be neglected without changing
the result. We just proved the

Theorem 4.4. The formula (4.1) defines an ̂ analytic map ωi—»Λ(ω) from Ω to the
bounded operators on L2(R). The operator Λ(ω) is pseudo-differential with a symbol
given by

s,ξ). (4.15)
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Moreover Op (r) is Hilbert-Schmidt and its norm satisfies

as Re δ tends to infinity.
It follows immediately that the operator A(ω) given by (2.17) is well defined, closed

and m-sectorial on L2(R), with a sector of the type < zeC| | Arg(z — s0)| < φ0 < - V.

Its domain is the Sobolev space W2'2(R) = {/eL2(R)|/"eL2(R)}. Furthermore
it defines an analytic family in the sense of Kato (see [RS] or [K]).

5. The Spectrum of the Operator A(ω)

This section is devoted to the study of the spectral properties of the operator A(ω)
that are needed in order to solve the linearized evolution equation (2.15). Loosely
speaking we will calculate the continuous spectrum of A(ω) and find a region

containing all its eigenvalues. Let us introduce the self-adjoint operator D = -ds
i

on L2(1R). We will say that an operator T on this space is Dα-bounded (respectively
Dα-compact) if

Γ(l+D2Γα / 2

is bounded (respectively compact). Our aim is to further simplify A(ω) by omitting
now relatively compact terms. Since a D2-compact operator will also be compact
relative to any D-bounded perturbation of σD2, we will in fact calculate modulo
D-bounded and D2-comρact errors. The first step is the

Lemma 5.1. Let l = χ _ ( s ) + χ + (s)bea smooth partition of unity on 1R such that the
sets

supp(χ±)nRτ

are compact. Then A(ω) = A0(ω) modulo a D2-compact error, where

A0(ω) = σD2 + χ_(s)A_(ω;D) + χ + (s)λ + (ω 9D), (5.1)

and

Furthermore the error E(ω) = A(ω) — A0(ω) is uniformly bounded as Re(5-> oo.

Proof. From (4. 1 5) and (5.1) we see that the error £ is a pseudo-differential operator
whose symbol is the sum of the three following terms:

eQ = - σκ2(s) - j£(s),

*± =χ±(s)(λ(ω'9s9ξ)-λ±(ω;ξ)).

The first term is bounded by our assumptions and Theorem 3.1, it is further
independent of ω. The D2-compactness follows from the Rellich criterion since 7^
and κ0 vanish at infinity (see [RS]). The two remaining terms are D2-
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Hubert-Schmidt, to see this we use Theorem 4.4 and Taylor's formula to get

w + '"<"> + «) +~(ω;s>a (5.2)

dt,

with the following expression for the remainder

r(ω; s, ξ) = χ + (s)r(ω; s, ξ) + χ + (s)(l - ή(s))2 f

where ήt(s)=l — t ( l — ή ( s ) ) . The first term in (5.2) is easily controlled since it
factorizes into a product of a bounded function of 5 which decays like s"1 at
infinity, and a uniformly bounded function of ξ and ω. Finally a look at r shows
that its L2-norm vanishes as Re δ -> oo (for r this follows from Theorem 4.4), thus
we can apply Formula (4.14) for the Hubert-Schmidt norm of a pseudo-differential
operator. Of course an analogous argument applies to E_, so the proof is
complete. Π

One important property of the approximant A0 is that it tends to definite
translation invariant limits at spatial infinity. However the fact that the left and
right limits

Λ τ (ω)ΞΞσD 2 + Aτ(ω;D) (5.3)

do not coincide makes it impossible to further subtract some residual D2-compact
part. The spectral analysis of the limiting operators A± is quite trivial, we have

specC4_(ω)) = spec(Λ + (ω)) = Σω = {σξ2 + λ + (ω; ξ)\ξe^}. (5.4)

This curve is easily seen to be asymptotic (at infinity) to the half-lines R+ ± i
as |£|-κx> (see Fig. 1), so it cuts the complex plane into open and simply con-
nected components pΛ(ω) one of which, say p0M> contains a large sector

C\< I Arg(z - s)| g φ < - > for some real s and φ.

Fig. 1. The curve Σω for ω = — lOp and σp2 = 1, the complement of pQ(ω) is dashed
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To disentangle the left and right parts of A0 we now use a nice tool introduced
by Da vies and Simon in [DS]: the twisting trick. Denote by # the (anti-unitary,
involutive) complex conjugation on L2(R), and define the transposition of linear
operators by

HΎ =

Since # and the hermitian conjugation both (complex)-conjugate the spectrum,
transposition clearly leaves it invariant and we conclude that the operator

l(ω) 0

0 Λτ(ω)y

on L2(1R)®L2(]R) has the same spectrum than A(ώ) (only the multiplicities are
modified). A simple calculation shows that

Al(ω) = σD2 + λ+(ω;D)χ_(s) + λ_(ω;D)χ + (s). (5.5)

Setting χ+(s) = cos2(θ(s)) with ΘΈC^ and defining the unitary operator

/ cosθ sinθλ

*Ξ \ — sin# cosθ/

on L2 φ L2, a little algebra gives

/ Λ + 0
* x

V 0 A.

with

sin#] — £ — cosΘA + s inθ-hs inΘA_ cosθ

— sinθA+ cosθ + cosΘA- sinθ [sinθ, A + ]sinθ + [cosθ, A_]cos# — £τ

Thus by (5.6) the spectrum of stf + tf is nothing but Σ1,,,. We claim that Jf(ω) is
D2-compact and uniformly D-bounded as Re^-^ oo. Postponing the proof of this
assertion let us show how it allows to get the spectrum of A(ω) under control.

Since there is no uniquely and widely accepted definition of the essential
spectrum (especially for non-self-adjoint operators, see in [LM] the article of
K. Gustafson for a review of all essential spectra used in the literature and their
inter-connections), we first give a precise meaning to this concept. For a closed
operator L defined on a domain D(L) of a Hubert space J f , the discrete spectrum
is the set σd(L) of all its isolated eigenvalues of finite multiplicity. We will call
essential spectrum of L the complementary set <τess(L) = spec(L)\σd(L). In our case
this clearly gives

= Σω,

σd(A±(ω}} = σd(£(ω) + Jf(ω)) = 0. (5.7)

We further recall that a sequence un in J f is said to be characteristic for the
operator L if it satisfies:

(i) uneD(L) for all n,

(ii) liminf| |ιU>0,
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(iii) w- lim un = 0 (weak convergence in 3tf\
n~* oo

(iv) lim Lun = 0 (norm convergence in Jf ).
n-*oo

We call limit-spectrum oϊ L the set

W(L) = {zeC|(L — z) has a characteristic sequence}

which has a variety oϊ other names in the literature (see [S], Chap. 11, where it
is denoted by σeΛ). The main interest of this definition is WeyΓs criterion (see [HV]
Theorem 2.1) which tells us that

(1) W(L) is closed,
(2)
(3)

and the fact that the limit-spectrum is invariant under relatively compact
perturbations (see [S]). From (5.7), (2) and (3) we clearly get

Now we claimed that JΓ is Z)2-compact, thus the stability of the limit-spectrum
and WeyΓs criterion (2) give

Consider now any of the connected components pα of the complex plane, WeyΓs
criterion (3) implies that it either belongs entirely to σess(j5r) or is completely disjoint
from it i.e., only contains discrete spectrum. One of this set, namely p0, clearly
intersect the resolvent set of a and thus cannot be in the essential spectrum. What
happens to the other components is not clear but fortunately also irrelevant for
our purpose. According to the identity of the spectra of dl and A the same
conclusions hold for the later, thus

c Σω c= σessC4(ω)),

p0(ω) nσess(A(ω)) = 0.

To localize the discrete spectrum we need some bounds on the resolvent of the
non-perturbed operator <$/Q. From the functional calculus of self-adjoint operators
we get

For α = 0 and zep0(ω) this clearly means

We will prove in the next section (in Lemma 6.1) that if Re (5 is large enough,
depending only of σp2, then Re (σξ2 + λ + ) > 0. For 0 < α ̂  2 this allows to get the
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estimate

(1 + ξ2)"2

λ+(ω;ξ)-z
< ξ2 a/2 1

dist(z,.£J l-α/2

U-α/2

for some constant C if zep0(ω) and Rez ̂  0. The claimed uniform D-boundedness
of tf , which clearly implies that of jf = qi~ltfqi (since ̂  is smooth), allows to
apply a standard perturbative argument (see [K], Chap. IV, Theorem 3.17 for
example) based on the resolvent formula associated to Eq. (5.6)

~ 1 (5.8)

to get the

Theorem 5.2. Let Σω be the curve defined by (5.4) and pQ(ω) the large connected
component of <C\Σω (i.e., that containing a half-plane of the form (Rez < r0}). Then
for ωeβ we have

dp0(ω) c Σω c σess(Λ(ω)),

PoM ™eSs(^M) = 0>

whereas on any set {ωeί2|Re<5 ̂  ε > 0} the discrete spectrum satisfies

dist(σΛΛ(ω)),ΓJgdβ<oo (5.9)

/or some constant dε.
Furthermore if ε is large enough, then for any zep0(ω)n{z|Rez gO} such that

dist (z, ̂ ω) > dε the estimate

o α/2

or some constant C and any 0 ̂  α ̂  2.

(5.10)

Turning to the proof of our claim, we first rewrite the operator Jf as a sum
of three terms

° τ
-EΎ

0 -cosθsmθ(A+-A_)
2 = -A^) 0

T —
/ cos#[y4+,cos0] + sin$[/ϊ_,smίΓ| — cos0[^+,sinθ] + sinθ[^_,cos0]\
I ^ >kk ^̂  >s I.
\-sin Θ[A+, cos ̂ ] -f cos Θ[A _, sin θ] [sin #, ̂  + ] sin θ+ [cos θ, A _ ] cos θ )

For the first term Jf\ the claim already follows from Lemma 5.1, to handle the
second we simply remark that the support of sin (θ) cos (θ) is compact and that
(A+ — A-} is a convolution operator with a uniformly bounded symbol, thus JΓ2

is D2-compact and uniformly bounded. Finally for Jf3 we only need to control
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the commutators

for ε = ±1. The first term in the right-hand side can be explicitly computed, it is
independent of ω, D2-compact and D-bounded (recall that 0'eC^). The second
commutator is in fact uniformly Hubert-Schmidt as a direct application of the
following lemma shows. Thus the claim is proved.

Lemma 5.3. Let the two functions χ(s) and λ(ξ) have first derivatives in L2(R), then
the commutator

is Hilbert-Schmidt on L2 with a norm bounded by

\ \ C \ \ m ^ \ \ χ ' \ \ L 2 \ \ λ ' \ \ L 2 .

Proof. The distributional kernel of C is easily calculated, it is given by

C(x, y) = (χ(χ) - χ(y))λ(χ -y) = i (A')A(χ - y)
\ χ-y

so that we can write

C = \\ Ktdt,
Δ -i

where the operator Kt has the integral kernel

Since the Hilbert-Schmidt norm of Kt can be explicitly evaluated

II ff II — II v' II II >!' II11 ί 11 HS — ! I A. 11 / 2 11 '' 11 r 2 ?

the result follows by integrating over ί. Π

6. Solving the Linear Equation

In this section we construct the solution of the linear perturbation equation (2.15)
by solving for / the relation (2.17) and Fourier transforming J^ack to the time
variable.^To do this we clearly have to invert the operator y|(ω) i.e., we need
0<£spec(,4(ω)). Let us first look at the weaker condition 0^σess(y4(ω)). The needed
estimate of the symbol of A+ is achieved by the following

Lemma 6.1. There is a positive constant R depending only on σp2 such that the
lower bound

(6.1)
D

holds provided Re δ > R.
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Proof. By rescaling ξ and σ we may always assume that p = 1. Let us denote by
w the square root that occurs in the denominator of λ + 9 then we can rewrite

Re A + = i

from which we get the bound

2|w|/

But the identity

w = Jξ2 + 2ί(ω + ξ) = J(ξ - iδ)(ξ + 2ί + W)

leading to |w| > Re 5, we further have

Re(σ<f + Λ + (ω;£))^K2 + Rew)

for sufficiently large Re δ. We now distinguish two cases, first we assume

1

1+5

and rewrite the square root in λ+ as

w =. with |ε |<
i + ξ

From this formula we easily get the estimate

= 2

\i + ξ\

By (6.3) this clearly leads to

+(ω;ί)) ̂ i(σ^2 - |i + ξ\ +i

Re (5

(6.2)

(6.3)

for sufficiently large Re (5. In the opposite case we have

l+δ

from which we get

1

Re £
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and thus by Theorem 5.2 and the fact that Re w ̂  0

Λ Red

for large Re δ, this complete the proof. Π

This lemma shows that if Re δ is large the point 0 belongs to p0(ω) and, by
Theorem 5.2, it is not in the essential spectrum of A(ώ). This remains true as ω
varies in Ωas long as Σω does not cross the origin. Thus the connected component
ΩF of {ωeΩ\QφΣω} containing a half-plane {Imω < c] has the properties

Next we consider the condition Qφσd(A(ω)). The lower bound (6.1) together with
(5.10) imply that if Re<5 is large enough the discrete spectrum of A(ω) is uniformly
bounded away from 0. Thus if R is large enough the operators A(ω)~ l and therefore
stf(ω)~l exist and are analytic in the region {ωeί2|Rec)>R}. Furthermore by
Eq. (5.8) the resolvent formula

holds in this region. Since JΓ a ~ 1 is compact by the results of Sect. 5, we may
apply analytic Fredholm theory (see [RS] ) to conclude that a ~~ 1 and thus also A ~ l

are in fact meromorphic in the domain ΩF with poles at the values of ω for
which Oeσd(A(ω)) and finite rank residues there. Thus we have the

Theorem 6.2. The inverse operator F(ω) = A(ω)~ 1 exists as a meromorphic function
from ΩF to the bounded Fredholm operators on L2(R). Its poles are all located \vithin
the region {ωeΩ\Reδ<R} for some constant jR, and have finite rank residues.
Furthermore the bound

(6.4)

holds outside of this region.

Before turning to Eq. (2.17) let us introduce some (Hubert) function spaces that
we will need. For any real c we define

Lc

2(R+) = {/6L1

2

oc(R+)|ert/(ί)6L2(R+)}

with the obvious norm. The Fourier transform is a unitary map from this space
into the Hardy space

°° 1
is analytic in <CC and sup J \g(ω + iη)\2dω < oo >,

η<c - oo J

where <CC = (z|Imz< c} and the norm is also obvious (see [SW] for example).
Finally we define the associated scale of Sobolev spaces
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where Wa>2 is the usual Hubert space

)EE {/eL2|(l + ξ2

For simplicity we shall assume that the perturbation q satisfies

for some real α ̂  0, β ̂  0 and c ̂  0. Its Fourier transform

q(ω)= J q(t)e-iωtdt
— 00

is then analytic in the half-plane <CC and satisfies the bound

for any c ̂  c. It follows that F(ω)q(ω) is analytic in <CCd, where

cd = sup {c < c\F is analytic in C^}

and by (6.4) its inverse Fourier transform

f(t) = IC J00 F(ω)q(ω)eiωt<jlω = e~c~' J F(ω + ic)q(ω + ic)eiωtdω (6.5)
ic— oo - oo

exists and satisfies

/e f] f| W*y

+1/2-ε/4>2(l&+)(S)Wβ+ε>2(l&).
y < c d 0 ^ ε ^ 2

By construction this is the unique causal solution of the linearized evolution
equation (2.15) in this space. If we now define

cess =: sup {c < c\F is meromorphic with finite rank residues in CJ,

then for any c between cess and cd Cauchy's theorem allows us to deform the
integration contour in (6.5) to the line {Imω = c} plus small circles around the
poles of F(ω) in the strip {cd ^ Im ω < c}. Each of this pole co,- contributes a term

fj(t) = *ίωjtfj = *ίωjtMj4(ωj) (6.6)

to f(t). Here Mj is the finite rank residue of JF at ω^ thus /> is well localized in
space uniformly in q in the sense of Ruelle (see [R]). The remaining integral which
we call f~c(f) then satisfies

/c~eΠ Π ^+1/2"ε/4'2(R+)®^+ε'2(R).
y < c 0 ^ ε ^ 2

Tip-splitting terms of the form (6.6) can be unstable, unfortunately they are very
difficult to control and should probably be computed numerically. On the other
hand the rate of exponential growth of the more interesting side-branching modes
is given by cess which is much easier to compute, we only need to solve

σξ2 + λ + (ω;ξ) = Q

for ω. Using the quantity w introduced in the proof of Lemma 6.1 we can rewrite



272 C.-A. Fillet

Imω

Reω

Fig. 2. The ω-plane in the case σp2 = 0.1, A(ω) is analytic outside the dark grey region and
Fredholm outside the light grey one. F(ω) is meromorphic below dΩF, and has no poles below
dΩD

this equation as

w 2σpξ2w -ξ2 = 0 with Re w ̂  0.

Solving this quadratic equation further gives

which after squaring and comparison with the definition (6.2) finally leads to

ω = -£ + iσ\ξ\*(Jl+σ2

P

2ξ2 - σp\ξ\).

This relation should be interpreted as a dispersion relation at infinity, since it
expresses the relation between the frequency ω and the wave number ξ in the limit
s-»oo. A look at Fig. 2 shows that in fact cess = 0, thus the needle-crystals are
linearly indifferent against side-branching modes. Note however that the contact
of the essential spectrum ΩF with the real axis is cubic, a fact that should be
relevant for the dynamics of the side-branching modes.

7. Conclusion

We tried to convince the reader that the calculation of the symbol of an integral
operator may be a valuable tool, especially when it is possible to get a more or
less explicit formula (this is almost always the case, at least in some asymptotic
sense, by the use of stationary phase techniques). In fact, the major use of this
pseudo-differential representation was done in the introduction, where we found
the right canonical coordinate transformation to simplify the symbol. This step is
of fundamental importance since it also selects the function space in which further
work is done. In cases where the physical interpretation does not fix this space, the
choice is generally very intricate and the insight given by the symbol may be very
helpful. Note however that we did not take full advantage of the situation since
we have not used any symbolic calculus. The reason is that we did not find the
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appropriate symbol classes in the mathematical literature. There usually no global
control on the x-variable is available. Since the development of a symbolic calculus
would have cost too much space, we decided to use a more pedestrain but far less
generalapproach (this is particularly true of Sect. 4 where a kind of Egorov theorem
should have been proved). We stress however that a symbolic calculus exists and
we hope it will allow, in the future, to get more detailed information on the
solutions of the perturbation equation (2.15), much in the spirit of the WKB-like
technique used by Langer in the study of noisy dendrites (see (LP, L3 or BBL]).

Acknowledgements. I am grateful to J.-P. Eckmann and P. Collet for introducing me to the
problem and for helpful discussions.
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