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Abstract. If {p1(x\ ..., pq(x)} is a minimal integrity basis of the ideal of polynomial
invariants of a compact coregular linear group G, the orbit map

yields a diffeomorphic image $f = p(Rn) £ Rβ of the orbit space ΈZS/G. Starting from
this fact, we point out some properties which are common to the orbit spaces of all
the compact coregular linear groups of transformations of 1RΛ In particular we
show that a contra variant metric matrix P(p) can be defined in the interior of <?, as
a polynomial function of (p1, ...,pq). We prove that the matrix P(p\ which
characterizes the set έ?9 as it is positive semi-definite only for peP, can be
determined as a solution of a canonical differential equation, which, for every
compact coregular linear group, depends only on the number q and on the degrees
of the elements of the minimal integrity bases. This allows to determine all the
isomorphism classes of the orbit spaces of the compact coregular linear groups
through a determination of the equivalence classes of the corresponding matrices
P(p). For q-^3 (orbit spaces with dimensions ^3), the solutions P(p) of the
canonical equation are explicitly determined and the number of their equivalence
classes is shown to be finite. It is also shown that, with a convenient choice of the
minimal integrity basis, the polynomial matrix elements of P(p) have only integer
coefficients. Arguments are given in favour of the conjecture that our conclusions
hold true for all values of q. Our results are relevant and lead to universality
properties in the physics of spontaneous symmetry breaking.

1. Introduction

In theories in which the ground state of the system is determined by a stationary
point of a potential which is invariant under the transformations of a compact
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linear group (henceforth abbreviated in CLG) G, the characterization of the
schemes of spontaneous symmetry breaking rests on the determination of the
stationary points of the potential. Owing to the high number of variables involved
and the degeneracy of the stationary points along the orbits of G, this is generally a
difficult problem to solve, even if a polynomial approximation is used for the
potential.

A complete elimination of the degeneracies associated with the invariance
properties of the potential is obtained if one uses as basic variables of the problem a
set of polynomial invariant functions forming a minimal integrity basis for the ring
of polynomial invariant functions of the group [G, J1, 2, AS 1, 2]. In fact, it has
been proved that any invariant polynomial or C00-function V can be written as a
polynomial [H,N] or respectively C00-function [Scl] V of the elements of a
minimal integrity basis. The function V has the same range of V> but is not plagued
by the same degeneracies. Thus, Fcan be substituted for Fin the determination of
the stationary points [G, J1], provided one knows the range Sf of the values taken
on by the elements of the minimal integrity basis [AS 1,2]. The set S? has been
shown to be semi-algebraic and to yield a concrete model of the orbit space of G
[AS 1,2, PS 1,2], the geometric primary stratification of ϊf being strictly related to
the isotropy type stratification of the orbit space. The elements of a minimal
integrity basis can therefore be thought of, with some caution (there may be local
or even global algebraic relations among the elements of a minimal integrity basis),
as coordinates in orbit space.

As long as the potential is not specified, each point of P can be seen as the
representative of a possible ground state of the system, points lying on the same
stratum representing ground states whose invariance groups are conjugated
subgroups of G. The semi-algebraic set Sf yields therefore a geometric picture of
the possible configurations (phases) of the system after spontaneous symmetry
breaking.

Often, invariance properties are the only bounds which are imposed on the
potential beyond regularity and stability properties and/or bounds on the degree
when the potential is a polynomial function. If the symmetry groups of the
potentials of different theories share isomorphic orbit spaces, the potentials have
the same formal expression and the same domain when written as functions in
orbit space, despite the completely different physical meaning of the variables and
parameters involved in the definition of the potentials. Thus, the problems of
determining the geometric features of the phase space, the location and stability
properties of the minima of the potential, the number of phases and the allowed
phase transitions are identical in all these theories [AS 2, JMS, Sa2].

The main purpose of this paper is to prove in detail a universality property of
the orbit spaces of coregular CLG's (hereafter abbreviated in CCLG's), pointed
out in [Sa 2]. In particular, we shall show that a polynomial contravariant metric
matrix can be defined in the image Sf of the orbit space of every CCLG. The
polynomial equations and inequalities defining the semi-algebraic set ίf can be
obtained from semi-positivity conditions for the metric matrix [AS 1, 2, PS 1]. If
the linear group is coregular, the metric matrix can be determined as a solution of a
canonical differential equation [Sa2]. We shall analyse the structure of the
canonical equation and determine the initial conditions which must be imposed in
order to select, among all its solutions, those corresponding to matrices which are
positive semi-definite only in a semi-algebraic set with the same geometric
structure of the orbit spaces of the CCLG's.
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We have solved the canonical equation in all cases corresponding to 2- and
3-dimensional orbit spaces of compact coregular linear transformation groups
with no fixed points. The method of solution is straightforward; therefore, in spite
of the length of the calculations, which increases quickly with the dimensions q of
the orbit spaces, it is conceivable that there should be no difficulty, at least in
principle, in the solution of the canonical equation for higher values of q too.

The solutions we have determined share the following features:

1. For each choice of the number q of elements of the minimal integrity basis and
of their homogeneity degrees dx ^ d2 ^ . . . ^ dq = 2, there is only a finite number of
non-equivalent (with respect to minimal integrity basis transformations) solutions.
This implies that the number of non-isomorphic orbit spaces for all the CCLG's
whose integrity bases are characterized by the same numbers (du...,dq) is also
finite.

2. With a convenient choice of the minimal integrity basis, the polynomial
contravariant metric matrix has only integer coefficients.

3. Given the number q of the elements of a minimal integrity basis, only some sets
of homogeneity degrees (dl9...9dq) are allowed: there are selection rules.

We have solved the canonical equation also for q = 4,d1^5, running on a Vax 8600
an ad hoc Fortran program, which requires as input only the numbers dί9...,dq.
The results we have obtained cannot be written in a compact form and will not be
reported in this paper; we have checked, however, that they satisfy the three
conditions listed above.

The properties listed under items 1. and 2. have been conjectured in [Sa2] to
hold true for all q. For q ̂  3 and for q = 4, dt ^ 5 the validity of the conjecture has
therefore been checked.

The paper will be organized in the following way. In Sect. 2 we shall fix our
notations and recall some more or less known results concerning compact
transformation groups and the geometric approach to invariant theory, which will
be relevant for our subsequent analysis. In Sect. 3 we shall prove that a polynomial
contravariant metric matrix can be defined in the interior of the image £f of the
orbit space of a CCLG and derive the canonical equation for CCLG's. The main
properties of the canonical equation and of its solutions will be derived and
discussed in Sect. 4. Sections 5 and 6 will be devoted to a reformulation of the
problem for the action of the group G on the unit sphere of R". The initial
conditions to be imposed on the solutions of the canonical equation to make them
acceptable will be discussed in Sect. 7 and in Sect. 8 we shall give all the acceptable
solutions of the canonical equation for q S 3. In Sect. 9 we shall draw our
conclusions.

2. Mathematical Background

In this section, we shall first define most of our notations and recall some results
concerning invariant theory and the geometry of orbit spaces of CLG's (see for
instance [Br, Sc3] and references therein), then we shall introduce the first
definitions and the basic tools for our subsequent analysis.

Let G be a compact group of n x n matrices acting linearly in the Euclidean
space Rw. It will not be restrictive to assume that G £ SOJR). We shall denote by
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x = (xι,...,xn) a point of R", by g-x the action of geG on x and by
Gx={geG\g-x = x} the isotropy subgroup of G at x (the little group of x). As
explained in [AS 2], the assumptions of reality and orthogonality are not
restrictive for the physical applications described in the introduction.

As is well known, the isotropy subgroups Ggx, at all the points laying on the
orbit Ω(x) = {g x | g e G} through x, are conjugated to Gx: Gg. x = gGxg ~\\fgeG.
Therefore a whole class [H] of conjugated subgroups of G (called an orbit type),
can be associated to each orbit of G. All the points x e RM laying on orbits with the
same orbit type form an isotropy type stratum of the action of G in R", hereafter
called simply a stratum o/Rw. Strata are in a one-to-one correspondence with orbit
types and all their connected components are smooth manifolds with the same
dimensions.

The orbit space of the action of G in R" is the quotient space R"/G defined by
the equivalence relation between points belonging to the same orbit, endowed with
the quotient topology and differentiable structure. The images in orbit space of the
strata of Rπ will be called (isotropy type) strata of Rn/G; all their connected
components are smooth submanifolds of R** with the same dimensions.

Almost all the orbits of G, considered as points of Rn/G, belong to a unique
stratum Σp of R"/G, the principal stratum, which is a connected open dense subset
of Rn/G. The boundary Σp\Σp of the principal stratum of R"/G is the union of
disjoint singular srtrata. All the strata laying on the boundary of a stratum Σ are
openinΓ\Γ, if Σ\Σ + φ.

The orbit type [i/] of a stratum Σ is contained in the orbit types [ίίb] of the
strata Σb laying in its boundary, in the sense that every element of [if] is
conjugated to a proper subgroup of an element of [i/b]. The number of distinct
orbit types of G is finite and there is a unique minimum orbit type, the principal
orbit type, corresponding to the principal stratum.

A basic result of the geometric approach to invariant theory allows to build a
faithful image of Rπ/G in the following way.

According to a well known theorem due to Hubert [H] (see also [N] for finite
groups) and extended by Schwarz [Sc 1], any invariant polynomial [C00-] function
J F : R " - > R , can be expressed as a polynomial [C00-] function F:R*->R, of a
minimal finite set of polynomial invariant functions p(x) = (p1(x), ...,pq(x)),
yielding an integrity basis for the ring R[RM]G of the G-invariant polynomial
functions of x e RM:

F(p(x)) = F(x), xeR". (2.1)

Only in order to simplify the presentation of our results, in the following we
shall assume that G has no fixed points in R". In this assumption the degrees of all
the polynomials invariants are necessarily ^ 2 and one of the elements of the
minimal integrity basis, for instance pq, can always be identified with the quadratic
invariant ||x||2: „

P?M=L(*')2- (2-2)
1

The elements pa(x) of a minimal integrity basis can, and will always, be chosen
to be homogeneous polynomial functions of x. There is obviously a certain
freedom in the choice of the p%x)'s, however their number q and their degrees
d1,...,dq3,TQ only determined by the linear group G. In the following the elements
of a minimal integrity basis will always be ordered so that

d1^d2^...^dq = 2. (2.3)
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Hereafter, by a MIB we shall always mean a minimal homogeneous integrity
basis for which the conventions of Eqs. (2.2) and (2.3) are satisfied.

In order to translate the possible homogeneity properties of the invariant
polynomial q(x) into corresponding restrictions on the polynomial $(p), related to
q(x) by Hubert's theorem, we shall define the weight w(m) of a monomial m(p):

m(p) = c(pψ ... {pψ, 0 Φ c eR, (2.4a)

as the number w(m):

w(m) = Σadaka. (2.4b)
1

The weight of a polynomial q(p) will be defined as the maximum weight of its
monomials and the polynomial will be said to be w-homogeneous if all its
monomials have the same weight.

For q^2, the conventions of Eqs. (2.2) and (2.3) are not sufficient to fix a MIB
for a CLG. By Hubert's theorem two MIB's, {p(x}} and {p'(x)}, are connected by a
relation of the following kind:

p'«(χ) = P'«(p(x)), α = l , . . . , β - l ;

where the p/<x{p) are w-homogeneous polynomials in p1, ...,pq.
If {p(x)} is a MIB, the orbit map, p = (p\ ...,pq): RΛ-*]RΛ maps all the points of

Rn laying on the same orbit onto a unique point of Rή and induces a
diffeomorphism of Rw/G onto a semi-algebraic connected closed subset <9* = p(Rn)
of R .̂ As any semialgebraic set, the set ίf is the disjoint union of finitely many
connected semialgebraic differentiable varieties {Ej, called the primary strata,
such that the boundary of each Et is empty or the union of lower dimensional
primary strata, and each primary stratum is open in its closure. The orbit map
maps in a one-to-one manner the connected components of the isotropy type
strata of R" onto the primary strata of 9>\ the interior ίf of £? represents the
principal stratum, the boundary 9f\£f hosts the singular strata. The set Sf depends
obviously on the choice of the MIB.

When there are no algebraic relations among the elements of a minimal
integrity basis of G, the linear group G is said to be coregular.

Hereafter, unless differently stated, we shall limit our statements to CCLG's.
For such groups, each choice of a MIB corresponds to the choice of a global
coordinate system in the interior of R"/G and these are the only coordinate
systems we shall consider in the following.

A change of MIB (see Eq. (2.5)) induces a coordinate transformation in Rw/G
and in R*, for which we shall use the following simplified notations:

r-™. „-,,..„-,;

where p'a(p) is a w-homogeneous polynomial function which only depends on the
pδ's with weights db^da. The transformations on (p\ ...,pg), defined in Eqs. (2.6),
will be called MIB transformations (hereafter abbreviated in MIBT's).

The images P of all the one dimensional (q = ί) orbit spaces of the CLG's with
no fixed points reduce to the semi-axis px ^0. Therefore, in the following we shall
only consider the less trivial cases q ̂  2.
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The Jacobian matrix J(p) of a MIB transformation,

Jab(p) = Λ b

 = dbP'°(p)9 a,b = \,...,q, (2.7)

dp
is an upper block-triangular matrix. The diagonal blocks and the determinant do
not depend on p. Owing to Eq. (2.6), the last row of J(p) is fixed to be:

Jq

a(p) = δ*, a = ί,...,q. (2.8)

The set of all MIBT's forms a group. In the following we shall be interested in
polynomial tensor fields on R* with respect to the transformations of this group.
These tensor fields can be considered as natural extensions to R^ of tensor fields
defined in the interior of Rn/G.

Definition. Let τ be a rank n contravariant tensor field with respect to MIBT's. It
will be said w-homogeneous if, in any coordinate system, all its non-null components
are w-homogeneous polynomials which satisfy the following conditions:

n

w(τ α i •••"") — w(τbί "bn) = Σk (dak — dbj. (2.9)
1

The weight of each component of a w-homogeneous contravariant tensor field
is the same in all the coordinate systems in which the component does not vanish
identically and will be defined as the weight of that component.

Since the differential of an orbit map maps the tangent space to the stratum of
Rw at x onto the tangent space to the stratum of P at p = p(x) [Sa 1], the set S? can
be characterized by means of a matrix P{p\ defined in the following way [AS 1,2]:

Pa\x) = (dpa(x), dpb(x)} = Pab(p(x)), a, b = 1,.. .,q, (2.10)

where <, > denotes the Euclidean scalar product in ΊR" and, in the right-hand side
the matrix elements Pab(x), which are G-invariant polynomials, have been
expressed as polynomial functions of the elements of the MIB.

Equation (2.10) defines a polynomial matrix P(p) on R€. As shown in [AS 2] and
[PS 1], for a given MIB, the image P of the orbit space of a CCLG is the unique
connected semi-algebraic subset of Rή, where the matrix P(p) is positive semi-
definite. The fc-dimensional primary strata of P are the connected components of
the set

W{k) = {p e R« I P(p) ^ 0, rank P{p) = k}

they coincide with the images of the connected components of the fc-dimensional
isotropy type strata of R"/G. A system of polynomial equations and inequalities
defining [P~]ίf are given by any set of conditions assuring the [semi-]positivity of

Pip).
The correspondence between orbit spaces and matrices P is not one-to-one,

owing to the freedom in the choice of the MIB. In fact, if {p(x}} and {p'(x)} are
MIB's related to the same CCLG, then from Eqs. (2.10), (2.6), and (2.7) one obtains:

P'(PW=J(P)HP)JT(P), (2.11)

where T denotes transposition.

Definition. Two matrices P{p) and P'(p') satisfying Eq. (2.11), where p' = p'{p) is a
MIBT, will be said to be equivalent.
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We would like to stress that, in the definition just given, the two matrices are not
necessarily associated to the same CCLG.

Definition. The images P and 9^ in ΊR.q_of the orbit spaces of the CCLG's G and G
will be said to be isomorphίc if Sf1 = p'{^) and Eq. (2.11) is satisfied, pf = p\p) being a
MIBT. The orbit spaces of the CCLG's G and G will be said to be isomorphic if their
images in ΊBJ1 are isomorphic.

There is a one-to-one correspondence between isomorphism classes of orbit
spaces of CCLG's and the equivalence classes of matrices P just defined; thus, in
order to classify the isomorphism classes of the orbit spaces of all the CCLG's, it is
sufficient to classify the equivalence classes of matrices P(p).

3. Properties of the Matrix P(p)

In this section we shall exhibit a set of necessary conditions which must be satisfied
by the matrices P{p) of all CCLG's. They will be listed below under items P1-P5.
Conditions P1-P4 will be derived as more or less immediate consequences of the
definition of P{p) and of the homogeneity of the MIB. Condition P5 will be
expressed as a differential equation, whose form, for every CCLG, only depends on
the numbers q and du...,dq. The universality properties of the orbit spaces of
CLG's, proclaimed in the title of this paper, originate from this fact.

PI . Symmetry. The matrix P is a q x q symmetric matrix.

P2. Homogeneity. The matrix elements Pab(p) are real w-homogeneous poly-
nomial functions of p and

w(Pab) = da + db-2; (3.1a)

moreover, the form of the last row and column of P(p) is determined by the
convention of Eq. (2.2):

P««(p) = p«*(p) = 2dap
a, a = 1,..., q. (3.1b)

P3. Tensor properties. The matrix elements of P{p) transform as the components of
a rank 2 contravariant tensor under MIBT's.

As recalled at the end of the preceding section, the image, P, of the orbit space,
obtained through the orbit map associated to the MIB {p(x}}, can be characterized
in the following way:

P4. Positivity. The matrix P(p), is positive semi-definite only on the closed
connected semi-algebraic subset £? cR*; in the interior Sf of ^ , the rank of P(p) is
q; on the boundary it is lower and almost everywhere equal to (^ — 1) [AS 1, 2,
PS1].

From PI, P4 and Eqs. (2.11) and (2.7) the following facts emerge:

1. The matrix P'(p')\p'=p'{P) is positive [semi-]definite if and only if P(p) is.

2. The matrix P(p) yields the contravariant components of a positive definite
metric tensor in Sf [Sa2].

3. The determinant of the matrix P(p) is multiplied by a positive constant factor
when the MIB is changed. It is therefore a relative invariant of the group of
MIBT's.
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In the following we shall adopt the standard convention of tensor calculus: sums
from 1 to q on repeated indices α, b,..., will be understood when this does not cause
ambiguities. We shall also use the notation da for the contravariant derivative:

da = Pab(p)ψ, a = ί,...9q. (3.2)

The last necessary condition on P(p) we shall need in order to derive our results
is the following:

P5. [Sa 2] Boundary conditions. If an irreducible polynomial factor ι(p) of detP(p)
vanishes on a (q — l)-dimensional component of the boundary of P, then it satisfies
the following equation:

daι(p) = λa(p)ι(p), a = ί,...,q, (3.3)

where λ(p) is a w-homogeneous contravariant vector field, depending on ι(p). We
shall call Eq. (3.3) canonical equation.

Proof of P5. The determinant of P(p) is a w-homogeneous polynomial function of p
and can be written as a product of (real) irreducible w-homogeneous polynomial
factors. According to P4, at least one of these factors, say ι(p\ has to vanish in a
(q — l)-dimensional component of the boundary / xϊf of £f. The algebraic set
Wx = {x EΊR" I ι(p(x)) = 0} is a component of the inverse image W= p~ 1(P\&?) CRM

of the boundary of P. The gradient of ι(p(xj) at a regular point x e Wt is orthogonal
to Wx at x. But the gradient at x e Wx of an invariant function is tangent to Wt at x
(see for instance [Br]). Therefore the gradient of ι(p(x)) at x e Wx must vanish and,
with the help of Eqs. (2.10), we obtain, for every xeWt:

, α = l , . . . , 4 , (3.4)
p = p(x)

whence:

) = 0 = 0, * = !,...,«, (3.5)

which is equivalent^ Eqs. (3.3), since ι(p) is irreducible.
Now, both det P(p) and its irreducible factors are relative invariants under

MIBT's. Therefore, if Eq. (3.3) is satisfied, λ{p) is a w-homogeneous contravariant
vector field. •

4. A Preliminary Analysis of the Canonical Equation

In the preceding section we started from the point of view that the group G and one
of its MIB's were given, so that the matrix P\p) could be explicitly constructed and
conditions P1-P5 where derived as necessary conditions.

In this section we shall analyse the properties of the polynomial solutions
[a(p%λ(p)2 of the canonical equation:

Pab(p)dba(p) = λa(pMp), a = l,...,q, (4.1)

under the following assumption:
I. The numbers du...,dφ and the matrix P(p) are given and satisfy conditions

P1-P4 of Sect. 3.
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For our subsequent analysis it will be advantageous to enlarge our analysis also
to complex solutions [a(p\ A(p)] : a(p), ̂ a(p)e<C[C€]. As usual, when referring to a
complex [real] polynomial, irreducibility will be meant on C [R] . When not
explicitly specified, our statements will be understood to hold both for complex
and real solutions.

We shall need the following definitions:

Definition. A solution [a{p\ λ(p)~] of the canonical equation will be said to be
irreducible if the polynomial a(p) is irreducible.

Definition. The solutions [a(p\ λ(p)] and [_a\p\ /ί'(p)] of the canonical equation will
be said to be prime if a(p) and a'(p) are prime.

The following theorem summarizes some relevant properties of the solutions of
the canonical equation.

Theorem 4.1. Let \β{p\λ(p)~] and Oi(pMi(p)] be polynomial solutions of the
canonical equation. Then the following statements i)-v) hold true:

i) a(p) is a w-homogeneous relative invariant and λ(p) a w-homogeneous contra-
variant vector field, with respect to MIBT's, and λq(p) = 2w(a) = const.

ii) The product ίca(p)aί(p),λ(p) + λί(p)'], Oφce(C, and the complex conjugate
\β{p\ λ{p)~] are also solutions.

(4.2a)
1

is a decomposition of a(p) into prime irreducible factors ιr{p\ then, for each
r = l, ...,/c, there exists a w-homogeneous contravariant vector field λr(p) such that
[ιr{p\ λr{p)~] is an irreducible solution of the canonical equation and

Σmrλr(p). (4.2b)
1

iv) // a(p) is irreducible, it is a factor of det P(p).

v) // a(p) E R [ R € ] is irreducible and vanishes ona(q — l)-dimensional component ffla

of the boundary of ϊf, then it has odd multiplicity as a factor of detP(p).

Proof of i). From Eq. (3.1b) and (4.1) we obtain

dqa(p) = Σa 2daP

adaa(p) = λ\p)a{p), (4.3a)
1

which assures that a(p) is w-homogeneous and

λq(p) = 2w(a). (4.3b)

Then, from Eq. (4.1) and the w-homogeneity of a(p\

w(λa) = da-2, a = l,...,q. (4.3c)

Moreover, using Eq. (2.11) it is immediate to check that [α'(p'), λ'{p')~] is a solution
of the canonical equation in the MIB p'=p\p\ provided that a\p') = a(p) and λ'(p')
= J(p)λ(p\ where J(p) is the Jacobian matrix of the MIBT.
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Proof of ii). The proof reduces to a trivial check, which makes use, of the fact that
P(p) is real.

Proof of iii). For each r let us set

φ) = σr(p)φΓ, (4.4)

where the polynomial σr(p) is prime to ιr(p). Then, from Eqs. (4.4) and (4,1),

mrσrd\=ιr(-daσr + λaσr);

since ιr(p) is prime to σr(p) this implies:

) = λa

r(p)ιr(p), r = U . . . 9 k ; a = l , . . . 9 q 9 (4.5)

where λr(p) is a w-homogeneous contravariant vector field.
Equation (4.2b) is an immediate consequence of Eqs. (4.2a), (4.5) and of item ii)

of this theorem.

Proof of iv). Let us first assume that a(p)e(C[(Cq'] is irreducible. Then, its gradient
da(p) is almost everywhere φ θ on γ~a = {pe(Eq\a(p) = 0} and from Eq. (4.1) one
easily realizes that the null space of the matrix P(p) is non-trivial for almost all
pef"a. This assures that detP(p) vanishes everywhere in "Γa and a(p\ which is
irreducible, is necessarily a factor of dct P(p).

If a(p) is real irreducible on R, but reducible on C, then it is proportional to the
squared modulus of an irreducible complex polynomial. Owing to item ii), this
polynomial and its complex conjugate are components of two irreducible complex
solutions of the canonical equation. From what we have just proved, they must be
both factors of detP(p).

Proof of v). Let γ be an oriented path, crossing $a at a regular point, p 0 , of Ma. If we
shift p along y, one and only one of the eigenvalues of P(p) changes its sign when p
crosses 0&a at p 0 , since rankP(p0) = q — ί and P(p) looses its semi-positivity outside
P. Therefore, detP(p) changes its sign at p0. Since, in our assumptions, the only
irreducible factor of detP(/?) which vanishes at p0 is a(p\ its multiplicity must be
odd.

An obvious corollary of item iv) of Theorem 4.1 is the following:

Corollary 4.1. The number of prime irreducible solutions \_ι{p\ λ{pj\ of the canonical
equation is finite and w(ϊ)^w(detP).

It will be worthwhile to note the following facts:

Remark 4.1. From item iii) of Theorem 4.1 we learn that all the solutions of the
canonical equation can be obtained from products of irreducible ones.

Remark 4.2. IϊpoeS?, then detP(p0) φ 0 and, from items iii) and iv) of Theorem 4.1,
for all solutions [a(p\ λ(p)\ of Eq. (4.1) α(p o)φ0 too. So we can require that all the
solutions of Eq. (4.1) be normalized to 1 at the same point p0. A convenient choice
for p0 will be indicated later on.

Remark 4.3. As a consequence of the last argument in the proof of item iv) of
Theorem 4.1, if \_ι(p\ λ(p)~] is a real irreducible solution which is reducible on (C,
then the algebraic set i/"ι = {pelRq\ι(p) = 0} has dimension ^q — 2.

We shall conclude this section by proving a proposition which will make much
easier the derivation of our subsequent results and the calculation of explicit
solutions of the canonical equation.
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Proposition 4.1. Let λ be a real w-homogeneous vector field on R* such that
λq = 2d + 0 is a constant. Then there exists a class A of coordinate systems {p} in
which λa(p) = 0, α = 1,..., g — 1. Any couple {p} and {//} of elements of A is related by
a MIBT p' = pr(p), in which the functions p"*(p)9 α = 1,..., g — 1, do not depend on pq.

Proof In our assumptions, λa(p) can only depend on the p*"s whose weight is
^ da — 2 and, in our conventions, this implies b > α. Let us first consider λq~ i(p). If
dq^1 is odd, then λq~ί(p) = 0. If dq_γ is even, then

(4.6)

thus the following MIBT:

p'a = p\ for α =

leads to A'«-1(p') = O.
Let us now assume inductively that λa(p) = 0, for a = k + 1 , k 4- 2,..., q — 1, while

The following MIBT:

p'a = p\ for l^oc^q,

where fefc(p) is a w-homogeneous polynomial of weight dk, leads to

A'V) = Aa(p), for αΦ/c;

λ'k(p') = λ\p) + 2ddqh\p).

With the choice

A*(P)= - ~\dzλ*(i>\...,v«-\z), (4.9)
zα o

we obtain /t'α(/?') = 0, for a = k, k+l9...,q — ί, as we liked. An iteration of this
procedure leads to a coordinate system {p"} in which λ"α(p") = O, α = l , ...,g — 1 .

To prove the last claim in Proposition 4.1, let us assume Λα(p) = 0, for
α = l , . . . ,g- l . A MIBT pf = p\p) leads to:

Therefore, /Γα(//) = 0, for α = l, ...,^ — 1, if and only if the /?'α(/?) do not depend
on pq. •

According to Proposition 4.1, for each solution [α(p), A(p)] of Eq. (4.1), we can
find a class of coordinate systems in which Eq. (4.1) reduces to

- l ; (4.10a)

(4.10b)

Definition. Lei [α(p), /l(p)] fee α solution of the canonical equation (4.1) in a given
coordinate system {p}; if λa(p) = 0 for all α = l, ...,q — 1, ίften {p} will be called an
a-basis.
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We shall not need the following result, we think however it may have some
interest. The symbol (,) will denote the Euclidean scalar product in KΛ

Proposition 4.2. Let [α(p), λ(pj] and \a'(jρ\ λr(p)~] be real solutions of the canonical
equation. Then the following conditions a) and b) are equivalent:

a) The polynomials a(p) and a'(p) are prime.

b) The covector fields da(p) and da'(p) satisfy the following orthogonality relation:

(da(p),P(p)daf(p)) = 0. (4.11)

Proof.
(a)->(b): Let us set

Γ(p) = (da(plP(p)da'(p)), (4.12)

where a(p) and a'(p) are prime polynomials. Making use of the canonical equation
and of the symmetry of P(p), we obtain for the w-homogeneous polynomial Γ(p) the
following two expressions:

Γ(p) = a{p) (λ(p\ da'ip)) = (da(p), λ'{p))a\p).

Suppose now Γ(p) + 0; then the polynomials a(p) and a\p\ which are prime, must
both be factors of Γ(p) and this implies

. (4.13)

But the weight of each term in the sum on the second member of Eq. (4.12) is

= w(a) + w(a') + (da + db-2)-da-db

which is inconsistent with Eq. (4.13), unless Γ = 0.

(b)-φ): Let

(4.14)

be a decomposition of a(p) and a'(p) into prime irreducible factors. In Eq. (4.14) the
mr's and the mj.'s are non-negative integers and the ιr run on a complete set J> of
prime irreducible factors of detP(p), normalized to 1 at a fixed point of if. Then,
from Eqs. (4.11) and (4.14) we obtain:

a{p)a\p) Σ mrt>Φr\'{pr\dφ\ P(p)dιΛp)) = 0. (4.15)
rr'

But, for r + r', the polynomials ιr(p) and ιr{p) are prime and, as just proved,
Eq. (4.11) holds for their gradients. Thus, Eq. (4.15) reduces to

a(p)a'(p) Σ mrm'rιr(p) ~ 2(dιr(p), P(p)dιr(p)) = 0. (4.16)
r

Now, for all pe£f and all r, the following inequalities hold (see Remark 4.2):
a(p)a'(p) + Q+ιr(p); therefore also dιr + 0 in Sf, since ιr(p) is a w-homogeneous
polynomial. Since in Sf> P(p)>0, we can conclude that, (dιr(p\P(p)dιr(p))>0. As a
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consequence, the sum in the right-hand side of Eq. (4.16) can vanish only Ίϊmrm'r = 0
for all r. This means that a(p) and a'(p) are prime. •

5. Reduction to the Unit Sphere

Owing to the linearity of the action of G, the isotropy subgroups of G at points
lying on the same straight line through the origin of R n coincide; thus an
essentially complete specification of the structure of the orbit space of the action of
G in R n is obtained from the orbit space of the action of G on the unit sphere
Sn~1 cR". In fact, there is a bijection Φ mapping the set {σ} of strata of Sn~ 1/G onto
the set {Σ} of strata of (R"\{0})/G, such that Σ = Φ(σ) is homeomorphic to σ x R + .

In our assumptions, in correspondence with each coordinate system in Rπ/G,
an image of the orbit space Sn~ι/G is yielded by the compact connected set Pπ:

p * = l } (5.1)

The projection /:

/ ί p 1 , . . . , ^ - 1 , ^ ) ^ 1 , . . . , ^ - 1 ) ,

induces a bijection of ^ onto a compact connected semi-algebraic subset ^ of
i

The set Pu is a diffeomorphic image of the orbit space Sn~1/G.
In this section the results obtained until now will be adapted to the action of G

on the unit sphere of Rn.
We shall denote by π a generic point of R 9 ~ *. The restriction of a polynomial

function F(p) to Π will be identified to a polynomial function of π = /(/?) and
denoted with the same symbol F:

F(π) = F(p)\peΠ, π = /(p). (5.3)

In the following, by a polynomial function ofπ = I{p) we shall always understand
the restriction to Π of a w-homogeneous polynomial function of p.

Analogously to what we have done for polynomial functions of p, we shall
define the weight wx(m) of the monomial m(π), π = (π1, . . . ,π^~ 1 ):

(5.4a)

as the number wx(m)\

Wi(m) = *LA*«- ( 5 4 b )
1

The weight w^a) of a polynomial a(π) will be defined to be the maximum weight of
its monomials and the polynomial will be said to be w-homogeneous if all its
monomials have the same weight.

Remark 5.1. The restriction of a w-homogeneous polynomial function a(p) to Π
does not define, in general, a vvx -homogeneous polynomial function α(π) and w^a)
= w(a) — 2kq, where kq is the exponent of the power of pq that factorizes in a(p).

In analogy with what we have done with P9 the semi-algebraic set ^ and its
stratification can be characterized through a matrix Q(n), defined in terms of the
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projections {ξ*(x)}a= i,...f g - 1 of the gradients of the elements {pα(x)}α= i,...,β-1 of a
MIB on the tangent space at x e R w to a sphere centered at 0:

^ x, α = l , . . . , ί - l . (5.5)
\X, X)

Let us set

^ α,j8 = l , . . . , « - l . (5.6)

Since Q{p(xj) is a polynomial function of p(x) it admits a natural extension, (5(p), to
R*. Using Eqs. (5.3), (5.5), and (5.6), for πelR9'1 we obtain

β q-l. (5.7)

It will be useful to note that Q(p) can be obtained from P(p) through the
following transformation:

Z ) P (5.8a)

where the left-hand side is expressed as a block matrix (0 denotes the 1 x (q — 1)
zero matrix) and

K(P) =

1 0 0 ...

0 1 0 ... -d2p
2/2pq

(5.8b)

0 0 0 0 1

Equations (5.8) assure that P(p) and Q(p) have the same positivity properties and

(5.9)

The matrix ^ ) , π e R r \ is symmetric and it is positive semi-definite only for
^ ; the rank of Q(π) is g — 1 in the interior of ^ and, on the boundary, it is

^(q — 2) and almost everywhere equal to q — 2.
The MIBT's on {p} induce on {π} the following MIB transformations, which are

simply obtained from Eq. (2.6) by setting pq = l=p'q:

π'α = π'α(π), α = l , . . . , g - l , (5.10)

where π/α(π) is a polynomial function of π elR**" *. The polynomial π/α(π) depends
only on the π^'s with weights dβ ^ Jα. As a consequence the Jacobian matrix J(π) of
the transformation,

J > ) = <Vr'α(π), α,j8 = l , . . . , ? - l , (5.11)

is a (g — l)x(^f — 1) upper block-triangular matrix and the diagonal blocks and
the determinant do not depend on π.

The matrix elements of Q(π) yield the components of a rank two contravariant
symmetric tensor field with respect to MIBT's on π,

Q{π'(π)) = J{π)Q{π)Jτ{π). (5.12)

The matrix Q(π) can therefore be used as a contravariant metric matrix in 5^.
The restriction of the canonical equation to Π can also be expressed in terms of

the matrix Q(π). To this end, let us note that a(p) cannot factorize pq, since pq is an
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irreducible polynomial that does not solve the canonical equation. Therefore
(recall Remark 5.1), in Eq. (4.3b) the weight w^a) of a(π) can be substituted for the
weight w(a) of a(p) and using also Eq. (5.7), the canonical equation can be rewritten,
for pq = 1, in the following form:

*Σβ Q^π)dβa(π) = [λ%π)-wM)dXMπ) = μ*(π)a(π), α = l, ...,q-\. (5.13)

In Eq. (5.13) no sum over repeated greek indices is understood. The same
convention will be followed in the rest of the paper. Equation (5.13) will be called
the canonical equation for the action of G in Sn~ι.

Remark 5.2. In the matrix elements of Q(π) the terms of dominant weight are the
terms dadβπaπβ; they cannot be cancelled by terms coming from matrix elements of
P(π), which have lower weight.

The characterization of the solutions of the canonical equation obtained in the
preceding sections can be easily translated into analogous results concerning the
solutions of Eq. (5.13).

In particular, from Theorem 4.1 we obtain the results collected in the following
theorem:

Theorem 5.1. Let [α(π), μ(π)] and [α'(π), μ'(π)] be polynomial solutions of the
canonical equation (5.13). Then the following statements i)-v) hold true:

i) a(π) is the restriction to R * " 1 of a w-homogeneous polynomial function a(p\
pelR.q, and w1(a) = w(a); μα(π) is a contravariant vector field.

ii) The product [cα(π)α'(π),μ(π) + μ'(π)]? O φ e e C , and the complex conjugate
\_a(π),μ(πj] are also solutions.

k

iii) If a(π) = γ[r ιr(π)m% mr e N, is a decomposition of a(π) into prime irreducible
1

factors ιr(n), then, for each r = 1,..., k, there exists a contravariant polynomial vector
field μr(π) such that [ϊr(π), μr(π)] is an irreducible solution of the canonical equation

k

and μ{π) = Σrmrμr{π).
1

iv) // a(π) is irreducible, it is a factor of detβ(π).

v) // a(π) E R [ R β " x ] is irreducible and vanishes ona(q — 2)-dimensional component
$a of the boundary of ^ 1 ? then it has odd multiplicity as a factor of detg(π).

Definition. // {p} is an a-basίs then {π} = (p1,...,pq~ *) will also be called an a-basis.

According to Proposition 4.1, two α-bases {π} and {π'} are related by
wt-homogeneous MIBT's. In an α-basis {π}, Eq. (5.13) reduces to the following
simpler form:

q , a = l,...,q-l. (5.14)
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6. Complete Active Factors

In this section we shall continue our analysis of the canonical equation for the
action of G in S""1. In particular we shall define the notion and point out the
properties of complete active factors of detβ(π). As in the preceding sections the
matrix P(p) will be assumed to be given and to satisfy conditions P1-P4 of Sect. 3.

Definition. The normalized (see Remark 4.2) factor a(π) of det Q(π) will be said to be
active if for some μ(π), the couple [α(π), μ(π)] is a solution of the canonical equation.
An active factor A(π) will be said to be a complete factor if it vanishes on the whole
boundary of ί?v

If A(π) is a complete factor, the set of its divisors includes all the irreducible
active factors.

Lemma 6.1. An active factor a(π) has at most one stationary point, π0, outside the set
of its zeroes. If π 0 is a stationary point of a(π) and a(π0) φ 0, then, in all a-bases,
π o = 0.

Proof Let α(π) be an active factor. If, in an α-basis {π}, α(π) has a stationary point at
π 0 then, from Eq. (5.14),

π«oa(πo) = 0 , a = l , . . . , q - l . (6.1)

Owing to the covariance of daa(π), in all coordinate systems the stationary point
will still be unique. •

A fundamental result for our subsequent analysis is stated in the following
proposition:

Proposition 6.1. Every complete factor A(π) of detg(π) has a unique absolute
maximum at a point π0, which lays in £fγ. In all A-bases, π o = 0.

Proof Since the polynomial A(π) is a complete factor of detg(π), it is positive in £fx

and vanishes on the whole boundary of Pv Being Pγ a compact connected subset
of R 4 " 1 , A(π)\πe^ι has a maximum at an interior point of 5^ and degenerate
minima on the boundary. But, according to Lemma 6.1, A(π) has at most one
stationary point outside the set of its zeroes, at the point π = 0 in all ,4-bases. •

The results stated in Proposition 6.1 offer a natural choice for the point where
to normalize all the active factors α(π). Hereafter, for every active factor we shall
require

α(0) = 1, in all α-bases. (6.2)

After differentiating Eq. (5.14) at π = 0, and defining the matrices D and H(π):

D*β = dβδ«β; Haβ(π) = dadβA(π); oc,β=l,...,q-l, (6.3a)

with the help of Lemma 6.1 and Eq. (6.2) we obtain, for every complete factor A(π)
in an ,4-basis {π}, the following expression for the Hessian matrix at π = 0:

H(0)=-wί(A)Q~1(0)D, (6.3b)

so that H(0)<0, in agreement with Proposition 6.1.
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Proposition 6.2. Let A(π) be a complete factor of detQ(π). Then, in all A-bases the
matrix (5(π) is block diagonal atπ = 0 and in a subclass Λ0of A-bases (2(0) = 1. Two
elements of Ao are related by a w ̂ homogeneous MIBT whose Jacobian matrix J(π)
is orthogonal at π = 0.

Proof Let us define the cofactor matrix ζ)*(π):

§*{π) = §~\π)άztQ{π), (6.4a)

and

det(2(π) = σ(π)i4(π). (6.4b)

Then, in a generic ^4-basis {π} we obtain from Eq. (5.14)

σ(π)daA(π) = - *i(A) "ΣI QZfcWβi* (6.4c)

After differentiating Eq. (6.4c) with respect to πy and taking the antisymmetric
part in the couple of indices ay, we obtain

0 = δaσ(π)dyA(π) - 3yσ(π)dxA(n) + ̂ ( ^ ( π ) (da - dy)

+ Wi(A) 9Σβ (δ&Uπ) - ^ » V (6-5)

At π = 0 Eq. (6.5) reduces to

(4-<*v)&V(0) = 0, (6.6)

which implies

^αy(0) = 0, for daΦdy. (6.7)

In the coordinate system we have chosen, the matrix β(0) is block diagonal.
In order to prove the existence of the subclass Ao of v4-bases in which (5(0) = H,

let us denote by @ = {d{ί\ ...,d{r)}, d{1)> ...>d{r\ the set of all distinct weights
dl9..., dq_ i9 and let π ( i ) = (π1 + Π ι - \ ..., πHι) denote a vector whose components are all
the πα with the same weight d(i\ i = l , . . . ? r , where q — 1 =nr>nr_1 > ...>no = 0.
Then the general form of a linear MIBT can be written, in matrix notation,

(6.8)

where J ( ί ) is an arbitrary regular (flf —Wi-i)x(Wj —Wj-i) real constant matrix.
From Eqs. (5.12) and (6.8),

β'(0) = J(0)fi(0μΓ(0) = diag(J ( Oβ ( O(θμS). (6.9)

Now, J(i) can always be factorized in the following way:

J ( 0 = O ( 0 K ( 0 O; 0 , i = l,...,r, (6.10)

where 0{i) and 0'{i) are real orthogonal matrices and K{i) is a regular real diagonal
matrix. Moreover, since β(l)(0) is real symmetric and positive, O'{i) and K{i) can be
chosen in such a way that K(I)O[0g(l)(0)OjjK(l) = i , and, consequently, β'(0) = 1,
whichever is the orthogonal matrix 0 ( ι ) .Π
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7. Allowable Matrices P(p)

In the preceding sections we started from the point of view that the matrix P(p) was
known in a given MIB and analysed the properties of the solutions of the canonical
equation in WLq and in ΊRq~i=I(Π).

Now, we have got all the elements we need to enlarge the analysis of the real
solutions of the canonical equation to the following situation. Using as input only
the numbers d1 ^ d2 ^ . . . ^ dq = 2, (q ̂  2), which fix the number and weights of the
elements of an arbitrary MIB of a generic CCLG, and conditions P1-P3 of Sect. 3,
which partially fix the form of the contravariant metric matrix P(p), we shall try to
determine the initial conditions to be imposed on the real solutions of the
canonical equation, in order to single out the contravariant metric matrices P(p)
which satisfy the following conditions A1-A2:

Al) The matrix P(p) is positive definite only in the interior points of a connected
^-dimensional closed semi-algebraic subset M of IRA

A2) The set ^ι=I(MnΠ) is compact.

Definition. A solution [P(p), A(p\ λ(pj] of the canonical equation and the associated
matrix P(p% will be said to be allowable, if P(p) satisfies conditions A1-A2.

All the allowable solutions of the canonical equation, for q^3, will be
determined in the following section.

From the results obtained until now, it is not difficult to realize that all the
allowable solutions of the canonical equation can be obtained, through MIBT's,
from a subset of the solutions of the canonical equation written in the following
form (see Eq. (5.14)):

q A(π)9 (7.1)

where we attach the following meaning to the symbols:

i) g(π) is a (q — 1) x (q — 1) matrix defined in terms of a q x q matrix P(p)\pq=i as in
Eq. (5.7). The matrix P{p) is assumed to satisfy conditions P1-P3 of Sect. 3.

ii) The matrix Q(π) is given and positive definite for π = 0; we shall assume (in
agreement with Proposition 6.2 and the fact that it is always possible to rescale the
p ,α = l , . . . , ί - l )

6(0) = D\ (7.2)

iii) A(π) is a real polynomial function of

A couple [Q(π), A{π)~\ will be considered to be a solution of Eq. (7.1) only if Q(π)
and A(π) satisfy also conditions i)—iii) above. A solution will be said to be complete,
if A(π) is a complete factor of det{5(π).

It will be worthwhile to recall that a complete active factor A(π) satisfies, in
particular, the following conditions:

A(π)\π=0 = l; (7.3a)

-2q. (7.3b)
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From the results proved in the preceding sections, we already know that, in
correspondence with every given allowable matrix P(π), there is at least one
complete solution of Eq. (7.1) in an ,4-basis. In the following section we shall show
that all the complete solutions of Eq. (7.1) are indeed allowable solutions for q ^ 3.
We have checked that the same result holds true for q = 4, dί ^ 5 too; we do not
know if its validity extends to all natural values of q, below (see Theorems 7.1 and
7.2), however, we shall show that the restrictions coming from conditions i)—iii)
following Eq. (7.1), are indeed quite restrictive, if used in the aim of selecting,
among all the solutions of the canonical equation, the allowable ones.

Theorem 7.1. // Q(π) is defined by the conditions i)-ii) following Eq. (7.1), the set
&ί = {πe1Rq~ί\Q(π)^0} is a compact semi-algebraic (q — l)-dimensional subset of

Since the proof of Theorem 7.1 is quite long, it will be postponed to the
statement of Theorem 7.2; this includes in its assumptions the validity of the
following condition iv), which is clearly a property of all the allowable solutions of
the canonical equation:

iv) If ρ(π) is an irreducible non-active factor of detQ(π) and

then the restriction of Q(π) to i^Q can be positive semi-definite at most on an
algebraic subset of Y*Q of dimension ^q — 3, where also Λ(π) = 0.

For q ^ 3 and q = 4, dγ ^ 5, we have checked that condition iv) is a consequence
of the structure of Eq. (7.1) and of the conditions i)—iii) following it. This is likely to
be true for all values of q but, by now, we have not been able to find a general proof
of this conjecture. In the following Theorem 7.2, therefore, condition iv) will be
accepted as an additional assumption.

Theorem 7.2. // [_Q{π\A{π)\ is a complete solution of Eq.{lΛ) satisfying also
condition iv), there is a unique (q - \)-dimensional compact connected semi-algebraic
subset ̂ C R 9 " 1 , where β ( ) ^ 0

Proof of Theorem 7.1. The continuity of β(π) and condition ii) assure that J x is
non-vacuum and has dimension (q -1); moreover, the condition (5(π) ^ 0 can only
define a closed subset of R g ~ \ Therefore, in order to prove the compactness of mx

we need only prove its boundedness.
A necessary condition for the semi-positivity of Q(π) is clearly the following:

α = l, . . . ,4f-l. (7.4)

We shall prove that these conditions can only be satisfied in a bounded subset of

The general form of βαα(π) allowed by our present assumptions is the following:

T, α = l, . . ., 9-l, (7.5a)
k 1

where

/c = (/c1,...,/c,_1)6NS"1 (7.5b)
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and the real coefficient α^α) may be φ θ only if the weight of the associated
monomial is an even number that does not exceed the weight, (2da — 2), of Pαα(p):

(7.5c)

Let us denote by N ( α ), the set of all the solutions k e N§ ι of Eqs. (7.5c), by \a\ the
maximum absolute value of the numerical coefficients in all the diagonal matrix
elements Pa\n\ and by v the maximum number of elements jn every N ( α ), i.e. the
maximum allowed number of non-zero monomials in every Pαα(π). Then, defining
also

| = v|α|, (7.6)

from Eqs. (7.5) and (7.6), for every arbitrarily fixed point π elR* \ we obtain the
following trivial majorizations:

9 - 1

(7.7a)

where

fc(

0

1;α) = l , α = l , . . . , ί - l , (7.7b)

and fc(1;α) = (fc(

1

1;β),...,Λ<1if) denotes the choice of fceN(α) for which the product
q- 1

f]^ |π^|Λ/ϊ assumes the maximum value (for the given π). The apex 1 on the
1

exponents kB

1;a) will be used to enumerate the successive steps of an iterative
procedure, whose starting points are Eqs. (7.7) and the following Eq. (7.9).

Since Eq. (7.5c) implies

and, therefore,

for

(7.8a)

(7.8b)

for ot = q — 1, Eqs. (7.7) yield the following necessary condition for the semi-
positivity of βαα(π):

1/(2-k

(7.9)

For q = 2, the right-hand side of Eq. (7.9) is a constant and the theorem is therefore
proved. For q > 2 the exponent ( 2 - k^l\~ 1})~\ in Eq. (7.9), is positive and \πq~ x | is
majorized by a product of rational powers of \π% B = l, ...,q — 2, whose total
WJL-weight is strictly lower than the weight of \πq~ 1 | . Here, and in the rest of the
proof of Theorem 7.1, we make use of a natural extension of the notion of
Wi-weight to the case of rational powers of the πα's.
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If now, in the last member of Eq. (7.7a) the expression forming the right-hand
side of Eq. (7.9) is substituted for \πq~ 1 | , the product will be majorized by a product
of rational powers of \πB\, # = 1,..., g —2, of non-larger weight:

(πη2 + γ\B\πB\k(^\ α = l , . . . , ? - 2 , (7.10a)
o

where we have defined

(7.10b)

Now, for oί = q — 1 Eqs. (7.8) imply

r / ϊ 2-fc ( 1 i 9

1 " 1 ) 2-fc ( 1i*Γ1 )

and, consequently, the non-negative rational numbers fc^2;α) satisfy the following
inequalities, analogous to Eqs. (7.8):

9Σβdβrfia)£Ua-2, α = l , . . . , ί -2; (7.11b)

kψΛ)<29 for β^a = l,...,q-2. (7.11c)

Following the same procedure as above, from Eqs. (7.7a), for α = g — 2, q — 3,...,
we can get majorizations successively for \πq~2\, in terms of { |π β | } 0 ^ β ^_ 3 , for
| π β ~ 3 | , in terms of {\πB\}OύB^q-.4, and so on. At the mth (1 ̂ m^q-ί) step

^ - ( π " ) 2 + Π i . l « J Ί k - m ! " ) . α = l , . . . , ί - m , (7.12a)

where we have set

him- l;q-m+ ί)h(m- l α)
^(m;α)_iL(m-l;α) , ^B ^g-m+1 R —0 1 Q — m (
KB ~KB ^ Ί_Um-l;q-m+ί) ' D — U, 1, . . . , ί/ m. y

Ί_Um-l;q
L κq-m+l

For a = q — m, we obtain from Eqs. (7.12):

q — m— 1

|π«- " |^ Π B | π T - m ; ί ~ m ) / < 2 ~ f c - - ~ m > ) , m = l , 2 , . . . , 9 - l , (7.13a)
0

where the non-negative rational numbers fcjf;α) satisfy the following inequalities:

qΣβdβψ
a)^2da-2, oc = l,...,q-m; (7.13b)

fef;α)<2, for j8Sα = l, . . . , ί-^m. (7.13c)

Consequently, in Eq. (7.13a), the weight of the left-hand side is strictly lower than
the weight of the right-hand side.

The iterative procedure ends up with the following relation:

where the majorization

can be justified in the following way.
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One first proves, inductively that

k^Sd™-\ α = l , . . . , ί - l . (7.15)

In fact, Eq. (7.15) is true for m=l, owing to the definition in Eq. (7.7b). Let us
assume it holds true for a given m. Then, making use in Eq. (7.12b), for B = 0, of the
following immediate consequence of Eq. (7.13b):

- , <x = l9...,q-m9 (7.16)

one obtains

h(m;q~m)Um;a.)

r (m+l;α)_ Um a) _, ^0 ^q-m
0 ~ K 0 -Γ ? h(m;q-m)

Once Eq. (7.15) has been checked, using also Eq. (7.16), for α = l one gets
Eq. (7.14b).

At this point, it is clear that, owing to Eqs. (7.14a) and (7.13), the matrix Q(π) can
be positive semi-definite only if all the \π% α = l , ...,#—1, are bounded by
constants, depending only on du...,dq-v This achieves the proof of the
boundedness of M. •

Proof of Theorem 7.2. Let us consider the open set
+ 1 (7.17)

Its closure &X is clearly contained in the set ̂ 1 ? defined in Theorem 7.1 and is
consequently compact.

The set (%X is also connected. This fact results from the following arguments. In
the interior points of each connected component of 3tf, the matrix Q(π) is positive
definite and the determinant of Q(π) and A(π) (see item iii) of Theorem 5.1) have
constant sign. On the boundary & = Mϊ \3ί\ oiM^ the matrix Q(π) is ^ 0 and has
almost everywhere rank q — 2. Therefore, owing to condition iv), A(π)\a vanishes
identically, like detβ(π)|^, since A(π) is a complete active factor of detβ(π).

In the interior of each connected component of §tt9 therefore, A(π) has a
stationary point. According to Lemma 6.1 this can only occur at π = 0. This allows
us to conclude that 3%X has only one connected component. •

We would like to stress that we have not proved that Mγ = Mγ since we have no
reliable arguments to exclude pathological situations in which there exist algebraic
subsets of dimension ^(g-3) and φJ*, where (5(π)^0 and det β(π) = 0. This
depends on the fact that we could not prove that the algebraic set of the zeroes of
an active factor necessarily intersects the boundary of ̂ . As already pointed
out, however, we have checked that all the solutions of Eq. (7.1), for q ̂  3 and for
q = 4, dx^5, are not affected by these pathologies. These would suggest the
conjecture that this is a general property of the solutions of the canonical
equation satisfying only the initial conditions i)—iii) following Eq. (7.1).
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8. Allowable Matrices P(p) for q^3

In this section we shall provide an explicit form of a representative for each
equivalence class of allowable matrices Q(π) for q ^ 3. All the allowable matrices
Q(π) can be obtained from the matrices we shall list by means of general MIB
transformations.

The procedure to solve the canonical equation is very lengthy for q ^ 3, but
requires only standard analytic manipulations, therefore we shall limit ourselves to
resume under the following items 1 .-3., the main steps of our calculations for q = 3
in these cases we have obtained complete results.

1. We wrote down βα/?(π), ct,β=l,...9q — l9 and A(π) as the most general
polynomials satisfying Eqs. (7.3) and the conditions i)—iii) following Eq. (7.1). In so
doing, the dependence on a variable πα, was written explicitly only when, for
dimensional reasons, its maximal exponent could be determined independently of
the particular values assumed by du ...,dq. This was possible, for instance, for all
the variables of maximum weight.

2. When possible, we exploited the freedom in the choice of an 4-basis in order to
pick up a coordinate system in which the form of (5(π) is particularly simple. This
was achieved by choosing the arbitrary parameters of a general wx -homogeneous
MIBT so that the highest possible number of unknown coefficients in the
polynomials Qaβ(π) were fixed to conveniently chosen values.

3. We used the following properties a)-d) of the solutions of the canonical
equation in an ^4-basis to determine all the terms of degree ^ 2 in the general form
of A(π): a) ,4(0) was determined from Eq. (7.3a); b) dimensionally allowed linear
terms were ignored in A(π\ since it must be maximum at π = 0; c) the quadratic
terms oίA(π) were determined from Eqs. (6.3), in terms only of Q(0) = D2 and w^A);
d) since A(π) is the restriction to ΊRq~1 of a w-homogeneous polynomial function of
pelRβ and ,4(0)= 1, w^A) must be even.

The simplified forms of Q(π) and A(π), obtained after the operations described
under items 1., 2., and 3., were substituted into Eq. (7.1). The resulting system of
coupled algebraic and/or differential equations could be solved only in terms of the
integer parameters da, α = 1,..., q.

In particular, for # = 2,3, we obtained the following results:

Case q = 2. The following theorem has been proved in [Sa 2]:

Theorem 8.1. The orbit spaces of all the CLG's whose MIB's are formed by only two
elements with given weights, dί9d2 (d1^d2 = 2), are ίsomorphic.

For completeness let us rederive this result in the Sn ~ 1/G setting of the problem.
This will allow us to illustrate the procedure described in items 1.-3. above.

Proof For q = 2, the matrix β(π) reduces to a scalar function of the unique
component x of π. The most general form it can assume, in agreement with
conditions i) and ii) following Eq. (7.1), is the following:

G() l( (8-1)

where the unknown parameter ξ can be φ 0 only if dί is even.
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Since the irreducible factors of Λ(x) are factors of Q(x) and the most general
form allowed for A(x) by Eqs. (7.3) and Eqs. (6.3) is the following:

one finds { = 0. D Λ(x)=l~x\ (8.2)

We get therefore ^ = {p6R 2 | (p 2 ) < f l -(p 1 ) 2 ^0} and ^ = [-1,1] .

Case q = 3. This is the lowest value of q for which the canonical equation is not
identically satisfied. To make the formulas more readable, in the rest of this section
we shall use the notation (y,x), for the components of the vector π = (π 1,π 2).

For q = 3 the weight of A(π) is bounded below by Eqs. (6.3) and above by
Eq. (7.3b):

4 V ' 2d^(Λ)^2d+2d2<4d; (8.3)

therefore, A(π) can be written in the following form:

A(π) = 1 -wM) (y2/dχ + *2/d2) + y3s + y2xt(x)

+ yx2u(x) + x3v(x), (8.4a)

where s is a real constant and the wx -weights of the polynomials t(x), u(x\ and v(x)
can only range in the sets of values indicated in the following Eq. (8.4b). There and
in the rest of this section a polynomial with negative weight will be identified,
conventionally, to the null polynomial,

w1(t) = Wι{A)-2di-d2-2nt, nf = 0,l,...;

wί(u) = wί(A)-dί-2d2~2nu, 1̂  = 0,1,. . . ; (8.4b)

wι(v) = w1(A)-3d2-2nv, nΌ = 0,ί9....

Since A(π) is the restriction to R^~x of a w-homogeneous polynomial of p eR ή ,
from Eq. (8.3) it follows that only three values are allowed for w^A): w1(A) = 2du

2d1 + d2,3d1 in the first two cases some of the coefficients in Eq. (8.4a) must vanish
for dimensional reasons.

The most general form of β(π), satisfying conditions i)-ii) following Eq. (7.1), is
the following: ^ ) ^

^ ) ^ ( 8 . 5 a )

where p i i(π) = d\[ya{x) + xb(x) +1]

P x)-]; (8.5b)

In Eq. (8.5b), c, /, and g are real parameters and a(x\ b(x), and e{x) are polynomial
functions of x. The weights of these quantities can only range in the following sets
of values:

() d 2 2

(8.5c)

= 2d

= d2

= d1

= 2d

ι-d2~2-2nb,

-2-2ne >

-2-2n,,

2-d1-2-2nf,

nb

nc

ne

nf

eN0;

e N ;

eN0;

eN0;
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It is possible to get some further simplifications of the general form of P(π) with
a convenient choice of the coordinate system, as explained under item 2., only in
the following two cases A) and B):

A) d1 = d2.
In this case it will be advantageous to write the matrix elements Paβ(π) in the

following form:

P^(π) = dadβ(δ^ + yAf + xAf), α, β = 1,2, (8.6)

where Aι and A2 are real symmetric constant matrices and we are still free to make
the following linear MIBT's, without modifying the parameters which have
already been fixed in P(π):

'π, OeO2(ΊR).

Transformations of this kind lead to

P'α V ) = djβ(δ^ + y'Af + x'A'f), α, β = 1,2, (8.7a)

where

β β , α = l,2. (8.7b)

For

/cosφ — sin <

\sinφ cos</> /

one finds, in particular,

. (8.8)

Since there is always a value of </> for which A'^2 = 0, it is not restrictive to assume
that the coordinate system has been chosen, from the very beginning, so that

\2

B) ί ί ^ t
In this case, owing to the restrictions of Eq. (8.5c), we can set in Eq. (8.5b),

( ) Σ j j ;

(8.9)

/=o,
and we are still free to make the following MIBT's, without modifying the values of
those parameters which have already been fixed in P(π):

A straightforward calculation leads to

p> 12(π') = P1 2(π(π')) + mξx'mP22{π{π'))

(8.11)
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The coefficient of x'm in (8.11) vanishes for ξ — — em _x. Therefore, it is not restrictive
to assume that the MIB has been chosen so that em_! = 0, from the very beginning.

The solution of the canonical equation determines completely the remaining
unknown polynomials and constants appearing in Eq. (8.5b) and, after a
convenient rescaling of x and y, leads to the following classes of solutions:

I) wί(A) = 2dι; dl={ni + n2)d2/2; nι,n2e'ί>i; nι'iZn2; nι = n2, for d2 odd.

/>11(π) = d?[(n1-n2)x + n 1 n 2 ](n 1 -xΓ~ 1 (» 2 + * ) " 2 ~ 1 ;

P 1 2(π)=0;

n2)x\; (8.12)

det(5(π) = n"1

inn

2

2djdllnin2+(nί - n2)x~]A{π).

The number of non-equivalent classes of solutions for each fixed choice of (dl5 d2) is
equal to the maximum integer [djd2~\ contained in djd2, for d2 even; it is equal to
one for d2 odd.

II) w1(i4) = 2d 1 +d 2 ; d^im + ̂ k; d2 = 2k;

Pn(π) = di{m+l-x)m;

(8.13)

det ζ){π)=(m +1J"+MfdfAίπ).

For each fixed choice of (du d2) there is only one class of non-equivalent solutions.

III.1) w1(/4) = 3d1; d^Am; d2 = 3m; meN.

P22(π) = d2(2 + y); (8.14)

For each fixed choice oί(du d2) there is only one class of non-equivalent solutions.

III.2) wι(A) = 3d1; dι=6m; d2 = 4m; meN.

pι ι(π) = di(64 - Ay -16x - yx + 8x2)

(8.15)
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For each fixed choice of (dl9 d2) there is only one class of non-equivalent solutions.

; (8.16)

2(l 10592 - 144y2 - 2880%2 -y3- 30y2x +180yx 2

+ 28(bc3 +15yx 3 - 55x4 - x5)

For each fixed choice oϊ(dl9 d2) there is only one class of non-equivalent solutions.

9. Conclusions

In this concluding section we shall briefly stress, under items a)-e), some relevant
features of the solutions of the canonical equation (7.1) listed in the last section and
make a few comments.

a) For q = 3 and for each choice of the integer numbers d1^d2^:d3 = 2, there are
only finitely many non-equivalent (with respect to MIBT's) solutions of Eqs. (7.1).
The numbers and types of these solutions are reported in Table I, for dx ^ 7. In the
table, class I solutions are distinguished by the values of the integer parameters
(nun2) and the missing cases correspond to no solution.

b) The contravariant metric matrices P(p), obtained from the solutions we have
found, are positive semi-definite only in a semi-algebraic connected 3-dimensional
subset of R3, whose intersection with the plane Π = {peΊR3\p3 = \} is projected
onto a compact connected semi-algebraic subset ^ c R 2 . All the solutions for
q = 3 are therefore allowable solutions. The graphs of some of the sets <%i are
plotted in Fig. 1. All of them, but possibly the second, forth and sixth, correspond
to the images of orbit spaces of well known CCLG's.

c) Irreducible factors of det Q(π) which are not solutions of the canonical equation,
determine algebraic subsets of R2, whose intersection with 5^ has dimension 0.
This fact suggest that the assumption iv) in Sect. 7 might be a consequence of i)-iii)
and of the structure of the canonical equation.

d) The coordinate system can be so chosen that all the coefficients in the elements
of the contravariant metric matrix P(p) are integer numbers.

e) There are no solutions in correspondence with the integers d1 ^ d2 ^ 2 for which
the quotient djd2 does not equal an integer or semi-integer number, or 4/3, or 5/3
for even d2.

The solutions of the canonical equation we have found for q — 4 and dx g 5 also
agree with the statements in items a)-d) above. Even if we have no proof that our
results are independent of the particular range of values chosen for q and the d/s,
we believe they yield a reasonable support to the following conjecture [Sa 2]:
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Table I

2

3

3

4

4

4

5

5

6

6

6

6

7

7

d
2

2

2

3

2

3

4

2

5

2

3

4

6

2

7

Classes

1(1,1), II

1(2,1), II

1(1,1)

1(3,1), 1(2,2), II

III

1(1,1), II

1(4,1), 1(3,2), II

1(1,1)

1(5,1), 1(4,2), 1(3,3), II

1(2,2)

1(2,1), II, III

1(1,1), II

1(6,1), 1(5,2), 1(4,3), II

1(1,1)

n*

2

2

1

3

1

2

3

1

4

1

3

2

4

1

* (n = number of non-equivalent solutions)

Conjecture. For eαc/z choice of the integer numbers q and d1^...^dq^ι^2 there is
only a finite number of equivalence classes of allowable matrices P(p). Moreover, the
MIB can always be chosen so that all the coefficients in the polynomial matrix
elements Pab(p) are integer numbers.

We have not proved and cannot do it by now, that every allowable matrix P(p)
is the contra variant metric matrix of at least one CCLG; it is clear, however, that
the contravariant metric matrices of all CCLG's are allowable matrices P(p).
Therefore, there are no CCLG's whose MIB's have homogeneity degrees d1^d2

}td3 = 2 if d1 and d2 satisfy the conditions of item e); moreover if the conjecture
holds true, the orbit spaces of all the compact linear groups whose MIB's are
formed by the same number q of elements with the same weights (dl9..., dq) can be
classified in a finite (and small, if q and d1 is small) number of isomorphism classes
and, for each CCLG, the MIB can be chosen so that the contravariant metric
matrix is a w-homogeneous polynomial tensor with integer coefficients.

The class of finite coregular linear groups is formed by all the finite groups
generated by pseudo-reflections. All these groups have been classified and their
minimal integrity bases determined [ST]. The contravariant metric matrices of the
images of the 2- and 3-dimensional orbit spaces of all these groups can be found
among the solutions of the canonical equation we have listed in the preceding
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Class I

n 1 = 1

ί
V

1

y
n i = 3 Π2 = 1

Class II

\

^

^

^

^ ^

m = l

\

/

\

m=3

Class III

V\
1

-i
1
/\

\
X

Λ

V v
Λ

y
ΠI.l ffl.2 III.3

Fig. 1. Images in the plane (p2^1) of some possible 3-dimensional orbit spaces

section. To our knowledge, in the literature there is no complete classification of
general compact coregular linear Lie groups (for simple linear Lie groups see
[Sc2]).

For norc-coregular CLG's, the polynomial relations among the elements of the
MIB {p} define an algebraic variety ZcIRA The set £f is the unique connected
semi-algebraic subset of Z where the matrix P(p) is positive semi-definite [PS 1].
The approach to the determination of the orbit spaces of CCLG's we have
followed can lead to useful results also in this case. In fact, it can be shown that, if
the maximal ideal ,/z, associated to Z, is generated by a single irreducible
polynomial ι(p\ then ι(p) is a factor of detP(p) and must satisfy the canonical
equation. Therefore, some of the solutions we have classified in the last section
might correspond to non-coregular CLG's. If Jz has more than one independent
generator, however, the only thing one can say is that the contravariant derivative
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of any irreducible element of J>z must belong to Jz. Thus, the canonical equation
assumes a more complicated form and its solutions are not so easy to determine.
Work in this direction is in progress.

The results stated above have an immediate impact on the physical theories
mentioned in the Introduction. In fact, in these theories the potential V is usually
written as the most general polynomial function of given degree which is invariant
by G. When Fis expressed as a function V of the elements of a MIB, it has the same
form for all the CCLG's whose MIB's share the same weights dl9 ...,dq. Since we
have proved that there are only finitely many non-isomorphic orbit spaces
associated to these groups, for all the compact symmetry groups whose MIB's
have the same weights du...,dq, the problems of determining the ground state, the
possible phases, their stability properties and the allowed transitions to other
phases are reduced to a small number of identical analytical problems: the
universality properties discovered in the orbit spaces of the CCLG's give rise to
universality properties in the patterns of spontaneous symmetry breaking.
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