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Abstract. We consider the scattering problem for the nonlinear Schrδdinger
equation in 1 + 1 dimensions:

idtu + {l/2)d2u = λ\u\2u + μ\u\p~ 1w, (ί,x)eR x R, (*)

where d = d/dx, λeR\{0}, μeR, p > 3. We show that modified wave operators for
(*) exist on a dense set of a neighborhood of zero in the Lebesgue space L2(R) or
in the Sobolev space if X(R). The modified wave operators are introduced in order
to control the long range nonlinearity /1|M|2M.

1. Introduction

In this paper we consider the asymptotic behavior in time of solutions to the
Schrδdinger equations with power nonlinearities:

idtu + {\/2)d2u = f(u\ (ί,x)eR x R, (1.1)

where u is a complex valued function on R x R, dt = d/dt, d = d/dx, and / is a
complex valued function on (C. A typical form of f(u) is the sum of two powers

f{u) = λ\u\q-χu + μ\u\p-ιu (1.2)

with p^.q^.1, λ, μeR.
There is a large literature on the equations of the form (1.1) from both

mathematical and physical point of view, see [1-4, 7-17, 19-26, 28-30]. Let Hms

be the weighted Sobolev space defined by
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where || | |p denotes the norm in LP = LP(ΊR). We denote by U(t) the free propagator
exp (i(t/2)d2). Concerning the Cauchy problem for (1.1), the following results are
well known.

(1) If 5>p^q^l, then for any φεL2 (1.1) has a unique solution
ueC(JR;L2)nL^+1)l(p'ι)(R;Lp+1) with dtueL^+1)tip'1)(jR;H'-M) and u(0) = φ

(2) Assume one of the following three conditions: (a) 5>p^q^l. (b)
p ̂  5 > q ̂  1 with μ ̂  0. (c) p ̂  q ̂  1 with A, μ ̂  0. Then for any ̂ eff1'0 (1.1) has
a unique solution ueCQR H^n&QR H-1-*) with κ(0) = φ ([2, 3, 8, 15, 16]).

(3) If p ̂  4 ̂  5 with λ, μ < 0, then (1.1) has blow-up solutions ([2, 10, 26]).
Concerning the asymptotic behavior in time of solutions and the scattering

theory, the following results are well known.

(I) If p ̂  q > (3 + y/ΐΐ)/2, then there exists ε0 > 0 with the following properties:
For any φ + eHx'° with | |φ+l l io+ WΦ+ ll(P+i)/P<εo (l l) has a unique solution

f1 '0) such that

\\U(-t)u(t)~φ+\\uo-+0 as t-+oo. (1.3) +

For any φ_eHι'° with | | φ _ | | 1 0 + | |φ_ | | (p+i) / p<β 0 (1.1) has a unique solution
w e C ( R ; # 1 0 ) such that

| |I/(-t)«(t)-<Mli i o->0 as t - * - o o . (1.3).

For any φeH1'0 with | |φ||i,o + IIΦII<p+i)/p<ε<> there exist unique φ+eH1'0

satisfying (1.3)±, where u is a unique solution of (1.1) with M(0) = φ ([9,19]).
(II) If p^.q>3 with λ,μ>0, then for any φeH1'°nH0>1 there exist unique

φ + eL2 such that
| | l / ( - ί ) ! 4 ( t ) - φ ± | | 2 - * 0 as ί - ± o o , (1.4)±

where u is a unique solution of (1.1) with u(0) — φ ([25]). Iϊ5^p^q>3 with
λ,μ>0, then for any φeH0Λ there exist unique φ + eL2 satisfying (1.4)± ([12]).

(III) If 3 ̂ $ ^ 1 with λΦ0,μ>0, then for any φeHuo\{0} there do not exist
any φ + eL2 satisfying (1.4) + . If 3 ^ ^ ^ 1 , 5>p^q with λφO, then for any
φeL2\{0} there do not exist any φ + eL2 satisfying (1.4)± ([7, 14, 23]).

As we see above, a critical number of the L2-scattering theory is q = 3. In
the case p^q>3 with λ,μ>0, any solution u of (1.1) with u(0)eHuonHOΛ

behaves like free solutions U(t)φ± as t - + ± o o . This is because the dispersive
effect is stronger than the nonlinear effect as ί-> ± oo when q> 3. In the case
3 ^ q ̂  1 the nonlinear effect is dominant and any nontrivial solution does not
behave like free solutions. If we regard the nonlinear factor λ\u\q~ι + μ\u\p~Λ as
a potential, the L°°-norm of the potential is estimated as O(\t\~{q~1)l2) as
t-> ± oo since || u(ή||«, = O( | ί | " 1 / 2 ) when A, μ > 0. We then associate the borderline
g = 3 with the decay rate O(|ί |^ 1) of the potential. The same analogy works in
the higher dimensional cases or in potential scattering. In n-dimensional cases the
breakdown of scattering for the nonlinearity f{u) = W^^u occurs if and only if
q S 1 + 2/w. The borderline q = 1 + 2/n corresponds to the decay rate OflrΓ1) of
the potential |w|2/M, since ||κ(r)lloo = O(|i |"" / 2). For the potential V(x) = λ\x\~\
XGR", n ^ 3 , the existence and completeness of the usual wave operators
s-limexp(/ί(//0H- V))exp( — itH0) break down if and only if γS U where Ho =
ί-> ±oo

—(1/2)4 and A denotes the Laplacian in R" [18]. The corresponding decay condition
of the potential should be replaced by the estimate \\\x\~γ exp ( - HH0)φ || 2 = O( 111 ~y)
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for any φeL2 with the Fourier transform φeC£(JRn). The borderline y = 1 then
corresponds to the same decay rate OflfΓ1) as before. It is customary that
potentials of the decay rate O(\x\~γ) as |x|-• oo with y ̂  1 are called long range
potentials. In the long range case we know that the comparison dynamics U(t)φ±

should be replaced by a modified free evolution in order to take the long range
interaction into account.

Our purpose in this paper is to find a comparison dynamics for solutions of
(1.1) in the critical case q = 3. In order to state the main results we make the
following hypotheses and definitions. In the following we assume that the nonlinear
term f(u) takes the form

' - 1 ! ! (1.5)

with /leR\{0} and μeR. For φ + eL2 we define the phase functions S±(t,x) and
S£(t,x) by

Sfax)=^λ\og\t\\$±(Γ1x)\2

9 (1.7)

respectively, where A denotes the Fourier transform defined by

ψ(ξ) = (2π)" 1 / 2 f exp ( - ixξ)φ(x)dx.

For any function (ί, x) ι-» w(ί, x) we denote by w(ί) the function x i—• w(ί, x).

Theorem 1. L e i 3 < p < 5. T/zen ί/zere exists εί>0 with the following properties:

(1) For any φ + eH0'2 with | | φ + | | Q 0 < ε 1 (1.1) has a unique solution
wGC(R;L2)nLfoc(R;L°°) such that for any a with 1/2 < α < 1,

\\u(ή-exp(iS+(ή)U(ήφ+ \\2 = O(Γ% (l.S)+

= O(t~a) as ί-^+oo. (1.9)+

(2) For any φ_eH0'2 with | | φ _ | | 0 0 < ε 1 (1.1) has a unique solution
M6C(R;L2)nLfoc(R;L°°) such that for any α with 1/2 < α < 1,

| |M(ί)-exp(ίS-(ί))ί/(ί)Φ-| | 2 = O ( | ί r α ) , (1.8).

ί \ 1/4

f | |w(τ)-exp(iS"(τ))l/(τ)^_[|*dτ I =O( | ί |~ α ) as ί -^-oo. (1.9)_
- oo /

Corollary 1. Let φ± and u be as in Theorem 1. Then:
(ΐ) For any a with 1/2 < on < 1,

\\u(t)-exp(iS±(t))U(t)φ±\\2 = O(\t\-*) as

where & = min(α,(p - 3)/2) if μ Φ 0 and & = α if μ = 0.
(2) For any α with 1/2 < α < 1,

I 2 111 =
\\\u(ή\-\U(t)φ±\\\2 = O(\t\-"/2) as ί ^ ± o o . (1.12)±

(3) ί f ||u(τ)||tdτj =O(\t\~^) as r - ± o o . (1.13)±
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Theorem 2. Let p>3. Suppose μ ^ 0 when p^5. Then there exists ε2 > 0 with the
following properties:

(1) For any φ+eH^nH1-2 with | | ί + | | 0 0 < β 2 (\\φ+ IL + dφ+ II. < ε 2 V
p ^ 5) (1.1) has a unique solution ueCQR; H10)nLfoc(R; WUx) such that for any a
with 1/2 < α < 1,

l/4

J ||M(τ)-exp( ί S
+(τ))[/(τ)^+|ςi,o5rfτJ = 0(r") (1.15)+

, where Wι-«> = {ψeL^ dφeL^}, \\ψ\\m,» = | | ^ | L + | | # I L .
(2) For any φ^eH^nH1-2 with | |£_ ||„ < e2(|| £_ ||„ + | |3^_ ||„ < ε2 ifp Z 5)

(1.1) has a unique solution ueC(R;H1-°)nLftJ]BL;W1-a:') such that for any cc
with 1/2 < α < 1,

1 \ 1/4

- oo /

Corollary 2. Let φ± and u be as in Theorem 2. Then:
(1) For any a with 1/2 < α < 1,

•) as ί ^ ± o o . (1.16);,

(2) l|w(Olloo = ^ ( U Γ 1 / 2 ) as ί->±oo. (l-17)d

Remark. (1) By the inequalities

w^see that \\φ±\\ao<ε follow from either | | 0 ± | | i < ε or \\φ±\\Otl<ε and that
\\dφ± IIoo < ε follows from either | | δ φ ± \\λ <ε or | |δφ+ | |0 > 1 <ε.

(2) In the case where φ± have compact support, the assumptions \\φ±\\O0<s and
l l # ± l l o o < ε m a y be replaced by the condition \$±(0)\<δ for some δ>0. This
follows from a slight modification of the proof given in the next section. Note that
φ± are continuous on R.

Theorems 1 and 2 show that in the long range case (1.1) has solutions which
behave like Qxp(iS±(t))U(t)φ± as t -• ± oo. The only difference from the short range
case p ^ q > 3 is the presence of the phase functions S±, which modulate the free
dynamics in order to take the long range nonlinearities into account. Since the
additional factors Qxp(iS±) have no contribution to the amplitude of the free
dynamics U(t)φ±9 the probability density |w(£)|2 and the amplitude |u(ί)| behave
like those of the free dynamics as t -> + oo, as described in part (2) of Corollary 1.
A similar property is well known in the Coulomb scattering [18].

By Theorems 1 and 2, the modified wave operators W±:φ± i—>u(0) are
well-defined maps from a neighborhood of zero in H0'2 to L2 or from a
neighborhood of the zero in Hi2nH03 to H1*0. The Cauchy problem is therefore
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solved so that the asymptotic behavior in time of solutions is described as (1.10)+
or (1.16) + when the initial data are in the ranges of the modified wave operators.
Of course our definition of the modified wave operators is only one of the possible
ones, as is in the scattering theory for Schrodinger operators with long range
potentials. We should mention here that from a different point of view Flato,
Simon & Taίlin [5] constructed modified wave operators in order to solve the
Maxwell-Dirac equations globally in time.

We now describe how to find the modified asymptotics for the long range case.
By the analogy with the Coulomb case it is reasonable to except that there is a
solution u such that | | |u(ί)| - \U{t)φ±\ | | 2->0 as £->±oo for some φ±. By the
formula U(t)φ± = M{t)D{t){M{i)φ±)\ where M(ί) = exp(ix2/2t), and (D{t)φ)(x) =
{it)~ll2\jj{t~ιx\ we have that \\\Ό{t)φ±\-\D{t)φ±\\\2->^ as ί->±oo. Hence
|||u(£)| — \D(t)φ±\\\2-+0, as ί-» ±oo. This leads to the observation that u tends to
the solutions u+ of the equations

±=λ|ίΓMί±(rt^ (1.18)

as ί-» ±oo. We are thus reduced to looking for approximate solutions for (1.18)
which are written explicitly in terms of φ + . This is the reason why the factors
exρ(i5±) appear in front of the free dynamics U{t)φ+ in the theorems. In fact, the
first candidates Qxp{iS±{t))U{t)φ± do not give a satisfactory approximation for
(1.18). Rather, a good approximation is given by the second candidates

v±(t) = εxp(ίS±(W(t)M(-t)φ± =

which are shown to satisfy (1.18) up to the rate O(\t\~2(\og\t\)2) in the iΛnorm
as ί-> ± oo, essentially because of the facts that φ± are involved in v + (t,x) in the
form φ±(t~1x) and that the phase factors exp(ίS±) give an appropriate cancellation
for the long range potentials A | ί Γ 1 | 0 ± ( r 1 x ) | 2 + μ | ί Γ ( l > " 1 ) / 2 | φ ± ( ί " 1 x ) | p " 1 . The
second candidates v+ have another advantage that || υ±(ή - exp (ίS±(ή)U{t)φ + || 2 -> 0
as £-• ± oo. This suggests that we should start with v±, construct a solution u of
(1.1), and then go back to the first candidates exp(iS±(t))U(t)φ + .

We prove the theorem in the next section. The proof proceeds in three steps.
The first step is to solve the integral equations

u(t) = v±(t) + i J U(t- τ)(/(u(τ)) -(idτ + (\/2)d2)v±(τ))dτ (1.19)±

t

in neighborhoods of t = ± oo by a contraction method. To this end we define
a function space and a suitable metric so that the space is complete and the
right-hand sides of (1.19) ± are contraction maps of u in the space. That space is
constructed as a closed ball centered at υ±. The proof uses the space-time estimates
of the Strichartz type for the propagator U(t). We remark here that the solutions
of (1.19)± also satisfy (1.1) near t = ± oo. The second step is to extend the solutions
to the whole real line. We use the well known results on the Cauchy problem
described as above to obtain global solutions. In Theorem 2 the restriction μ ^ 0
comes from obtaining the described a priori estimates from the conservation of
the energy. The last step is to prove the estimates described in the theorems.

In the sequel different positive constants might be denoted by the same letter
C, and if necessary, by C(*,...,*) in order to indicate the dependence on the
quantities appearing in parentheses.
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2. Proof of the Theorems

In this section we prove Theorems 1 and 2. In the following we only consider the
case t > 0. The other case is treated analogously. We start by recalling the following
lemma concerning the space-time estimates for the integral operator

00

(G»)(t)=Jt/(t-φ(τ)dτ.
ί

Lemma 1 ([2,15, 26]). Let (q,r) satisfy 2^q^oo,4^r^oo,and 1/2- 1/q = 2/r.
Let I = (t0, oo) with t0 > 0. Then G\v\-+Gv is a bounded operator from L{Γ, L2) to
U(I;Lq) with norm uniformly bounded with respect to t0. Moreover, if u 61/(7; L2),
then Gι;eC([ίo,αo);L2).

We next give preliminary estimates for an approximate solution v+(t) =
Qxp(iS+(t))U(t)M(-ήφ+ =exp(iS+(t))M(t)D(t)φ + . We define the remainder term
F by F(t) = idtv+(t) + (l/2)S2Mt) -/(MO).

Lemma2. (1) If φ + eH°>2, then v+eCι(B.+;H°-2)nC(U+;L2ntf2"2) and
FeC(WL+;L2). Moreover, there exists C > 0 and Γ ^ 1 such that for any φ + eH°>2

and any t ^ T,

Φ + l | 0 ,2( l + IIΦ+ l lo pΓ 2) (2.1)

(2) Ifφ + eH1'2, then v+eC1(lS^+;H0'-ί)nC(lίi+;H10nH2~1). Ifφ + eHU2n
JFJ0'3, then FeCQBL+ H1'0). Moreover, there exists C > 0 and T^ 1 such that for
any φ + eHU2nH°>3 and anyt^T,

+ c r 3 ( l o g ί ) 3 \\φ+ \\13(\ + \\φ+ llgfr3). (2.2)

Proofs L e t ^ + efl0 2 and let S(ί,x) = x2/2ί + 5+(ί,x). Then't;+(ί,x) = (ϊί)"1 / 2 x
exp(fS(ί,Λ;))φ(ί~ xx). By a straightforward calculation we see that i +eC f̂lR+ /ί 0 ' " 2 ) !^
C(R + ;L 2 n// 2 '- 2 ) and F(t,x) = (ίtyίl2exp(iS(t,x))φ(Γίx), where

+ (l/2)Γ2d2φ + .

By Holder's inequality and the Gagliardo-Nirenberg inequality of the form
h^C||dVIIi/2IIΦIIL/2 (see [6]), we have

+ \\2\\φ+ \\>a-
ι + \\dφ+ \\l\\φ
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+ ll<KH2

αT
2 + ι μ + r w + i)

^ cr 2(iog tf | |32^+ | |2(1 + ιι $+\\l'-2)
for all ί ^ T with T ^ 1 sufficiently large. This proves (2.1) since || δ2φ+ | |2 ^ || 0+ ||0 > 2,
110+ llαo ̂  110 + llo.i Similarly, we have FeC(R + ;L 2 ) . We turn to part (2). By'a
straightforward calculation we see that ϋ + e C 1 ( R + ; H ° ~ 1 ) n C ( R + ; i ί 1 ' 0 n / ί 2 - 1 )
for φ+eHu2. Let φ+eHU2nH° 3. Then dF(t,x) = (ίtΓι'2exp(iS(t,x))ψ(Γιx),
where

α r ' logtφ(y)d\φ+ \2(y)

i(2μ/(p - 3))r<*- 1 / 2 ^ ^ ι

Accordingly, we decompose dF into four terms and denote them as I-IV. We
estimate the first term in I 2 in the same way as above:

for all t ^ Γwith T ^ 1 sufficiently large. The next two terms are estimated as

where we have used (2.1) and the inequalities \\d\φ+\q~i\\ao-^C\\δφ+\\m\\φ+\\q-2-^
C\\φ+ Ilo,2 IIΦ+ ΓoΓi2 for 1 ̂ 2 and \\φ+ | | 0, 2 ̂  ||< »̂+ | | 2 ( 3 1|φ + \\ι

2'
3. For the last term,

we have

+ \\l\\φ+ nς- 2 + \\δ2$+ \\3\\δ$+ \\6\\$+ H ^ 1 )
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μ + llo,3(l + \\Φ+ UPΓ2),
where we have used Holder's inequality and the Gagliardo-Nirenberg inequalities
(see [6]) || dφ || 6 g C || d3φ | | ' / 3 1 | φ\\ 2 j 3 , || d2φ || 3 ύ C || d3φ || *' 31| ̂  || ̂ . Collecting these
estimates, we obtain (2.2). Similarly, we have FeC(JR+;H\°). Q.E.D.

For αe(l/2,1), R > 0 , T ^ 1, and φ + eH° 2, we introduce

X = χ«(Γ) = IueC([Γ, oo);L2)nL\T, oo;L");

and define on X the metric d(ux,u2) = H|ut — w2lllx» where

With this metric X becomes a complete space. We define the map J by

(J«)(ί) = »+(ί) +1 J U(t - t)(/(a(τ)) - (iδτ + (l/2)a2)»+(τ))ί/τ

= v + (t) + i] U(t -τ)(/(u(t)) -/(» + (τ))-F(τ))dτ. (2.3)

Proof of Theorem 1. Let φ+eHϋa and let weX£(Γ). We have

l/4 /oo \l/4

^ ^ j = r 1 / * | | ^ + | | 0 0 , (2.4)
l/4 /oo \l/4 /» \ l/4

ί J +ί j||»+(τ)l|*iτj
^Rt-'+\\$+\\a>Γ

1ι*. (2.5)

We prove that J maps X^Γ) into itself and is a contraction in the metric on X
if T is sufficiently large and \\φ+ \\x is sufficiently small. By Lemma 1 and (2.3),

\l/4

|| (Ju)(t) - v + (t) |i 2 + ( f |1 (Λ)(τ) - » + (τ) ||*

)-/(»+(τ))| |2dτ + Cf ||F(τ)||2dτ. (2.6)
ί ί

By Holder's inequality, (2.4), and (2.5),

]\\f(u(τ))-f(v + (τ))\\2dτ
t

J 2 \v+(τ)\\l + II MWIIΓ' + H ' + W l i r ^ l l M W -
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l/2 /oo \ l / 2 \ / o o \l/2

(p-l)/4 /oo \(p-D/4

(5-p)/4

l/2

Γ ( p - 1 | a + \\φ+ ll^"1!"*"" J

ll2~2x + R"-1^-^-^-1^ + \\$+\\i+ WΦ+Vn'Γ^3"2). (2.7)

We note here that 1/2 - 2α < -1/2, (5 - p)/4 - (p - l)α < -1/2. By (2.1),

J | |F(τ) | | 2 dτ^ CΓ^og^ l lΦ+II^O + IIΨ+llSfΓ2) (2 8)

for all t ̂  T with T ̂  1 large enough. By (2.6), (2.7), and (2.8),

\\\Ju-v+\\\x^CR\\φ+\\l (2.9)

for Γ ̂  1 large enough. In the same way as above, for uuu2eXcc

R(T\

( l/4

supτα | |(M 1-M 2)(τ)| | 2,

which leads to

I I I J i i i - J i i i l L ^ C I I φ + I ^ I I l M ! - ^ ^ (2.10)

for T ^ 1 large enough. We see from (2.9) and (2.10) that if \\φ+ IL is sufficiently
small, J has a unique fixed point u in Xa

R(T). Therefore u solves the integral equation

u(t) = Ό + (t) + i ] U(t - τ)(f(u(τ)) - (ίdτ + (l/2)d2)υ+(τ))dτ (2.11)
1

for all ί ̂  T. Let t > t0 S Γ. Using (2.11), we obtain

U( - t)(u{t) - v+(ί)) = l/( - ίo)(«(ίo) - »+(ίo))

+ if l/(-τ)(/(a(τ))-(iδ τ + (l/2)d2)υ + (τ))dτ. (2.12)

Noting that

v + {t) = U(t - ίo)ϋ+(ίo) - i ί U(ί - τ)(idτ

ίo
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we deduce from (2.12) that u solves the integral equation

u(t) = U(t - to)u(to)u(to) -i]ϋ(t- τ)f(u(τ))dτ. (2.13)
ίo

It is well known that (2.13) has a unique global solution in C(R;L2)πLfoc(R;L°°)
and therefore the solution u of (2.11) extends to all times and satisfies (2.13) for
all ίelR. By a standard argument, u satisfies (1.1) in H~20 for almost all ίeR. We
now prove (1.8)+ and (1.9)+. By the inequality |exp(-ίx2/2ί) - 11 ̂  * 2/2|ί |, we have

\\u(t)-exp(iS+(t))U(t)φ+\\2

^ \\u(ή-exp(iS+(ή)U(ήM(-ήφ+ | | 2 + \\eχp(iS+(ή)U(ή(M(-ήφ+ -φ+)\\2

t)φ+-φ+\\2^CΓ« + Γι\\φ+\\oa. (2.14)

This proves (1.8)+. By the inequalities || C/(#lloo ύ ί~1/2H*/Ίli and
|exp(- ix 2 /2ί)- l |^2 |x | 3 / 2 - ε | ίΓ 3 / 4 + ε / 2 for0<ε<3/2, we have

(/>+||1, (2.15)

and therefore

l/4

Choosing ε > 0 so that ε < 2(1 — α), we have (1.9)+. We finally prove the uniqueness.
Let ui and u2 be solutions of (1.1) satisfying (1.8)+ and (1.9)+. In the same way
as in (2.14)-(2.16) we have uuu2eXa

R{T) for some R > 0, T ^ 1. In the same way
as in the derivation of (1.1) from (2.11) we see that uγ and u2 solve (2.11). By the
uniqueness of solutions of (2.11) we have u^t) = u2(t) for all t ^ T. By the uniqueness
of solutions of (2.13), we have u^t) = u2(t) for all ίeR. Q.E.D.

Proof of Corollary 1. Letφ+ and u be as in Theorem 1. By (1.8) + ,

( ί)-exp(i5 o

+ (0)^)Φ + l l2

^ \\u(t)-exv(iS+(t))U(t)φ+ | |2 + ||(

This proves (1.10) + . By (1.8)+ and the conservation law of the L2-norm
||tι(ί)| |2 = | |M(0) | | 2 for all ίeR, we have

g \\u{t)-exp{iS+{t))U{t)φ+ ||2-^0 as t-> +00,

and therefore ||w(ί)ll2 = l|w(0)||2 = | |φ+ | | 2 for all ίeR. Then, by (1.8)+
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+ \\exp(iS+(t))U(t)φ+\\2)\\u(t)-exp(iS+(t))U(t)φ+\\2

= 2\\φ+ \\2 \\u(ή - exp(iS+(ή)U(t)φ+ \\2 = O(Γ°)

as t-y + oo. This proves (1.11)+. Similarly, denoting by ( , ) the L2-scalar product,
we get

\\\u(t)\-\U(t)φ+\\\2

2 = \\u(t)φ+\\2

2-

= 2(|u(t)|, \u(t)\ - |exp(iS+(ί))[/(t)φ+

^2 | | M ( ί) | | 2 | | u( t)

as ί-> + oo. This proves (1.12) + . We have

so that by (1.9)+,

l/4 /oo \ l/4

^ ^ \ \ u ( τ ) - e x p ( i S + ( τ ) ) U ( τ ) φ + \\^\

\ l / 4

τ))l/(τ)(/>+||^τJ SCΓ« + CΓυ4\\φ+ \\0Λ.

This proves (1.13)+. Q.E.D.

For αe(l/2,l), K > 0 , T^ 1, and φ + eHίanH°^\ we introduce

Y = Y*R(T) = {ueX«R(T); dueXΛ

R(T), \\\u- υ+ \\\x + |||du - dυ+ \\\x £ R}

and define on Y the metric d(uuu2) = \\\u1 - w2|||y, where | | |u| | |y = |||w|||x +

Proof of Theorem 2. Let φ + GH'^nH0*3 and let ueYa

R(T). We have dυ + {t,x)
{it)"1/2 exp(ίS(t,χ))φ + (Γ xx), where

so that

II 3f?+(ί)IL ^ c r

(/> + ) (2.17)

for all t^T with T ^ l large enough, where M 1 ( φ + ) = | | ψ + | | 0 2(1 + | |φ+Hg"; 1 ).
Then, for all ί ^ Γ,

l/4 /oo \ l/4 /oo \ l/4

Moreover, ^ i ? r + C | | x ^ + | | ^ r ^ C M ^ j r l o g f . (2.18)

II «(f) II oo ̂  II«(«) - »+(«) II co + I!»+(ί) II =0
I / 2 2 (2.19)
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By (2.19),

]\\f(u(τ))-f(v+(τ))\\2dτ
t

•||u(τ)-»+(τ)||2dτ

^CR(R2tι-3Λ + Rp-1t1''"i+\\φ+\\l>r
a+\\φ+\\p

00-
ιri '-3)i2-ct) (2.20)

Again by (2.19),

\\δ(f(u(t))-f(v + (

C( II u(t) II „ + II»+(ί) I D II du(t) || x || u(ί) - » + ( ί ) || 2

which together with (2.18) implies

X// / \/ / \3/4

f ||διι(τ)||*έiτj K^2 J τ ) )

3/4 /oo \ 3 / 4

|ψ + | | ^ - 2 ) r 1 - α log ί (2.21)

for all t ̂  T with T ̂  1 large enough. By (2.2),

J || 2dx ^ Ct~ Hlog tfM2{φ +) (2.22)
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for all t Ξ> T with T ^ 1 large enough, where

M2(φ + ) = (\\φ+ | | l i 2 + \\φ+ | | O i 3 ) ( l + | | 0 + | | g f 1 - 2 ) + \\φ+ | | 2 , 3 0 + II (/> + | | 2 f Γ 3 ) .

It follows from (2.8), (2.20), (2.21), and (2.22) that if Γ ^ 1 is large enough,
Ju - V+EC([T, oo);H1 0)nL 4(T, oo; WUco) and for all t ^ Γ,

oo \l/4

J ll(J«-ϋ + )(τ)||tt.«dτJ

L + llxφ+IIJί-. (2.23)

We now distinguish between two cases: (1) p < 5. (2) /? ̂  5.
(1) When p < 5, we already know that J has a unique fixed point u in Xa

R{T).
From the argument above we show that if φ + G/ί1 '2^^//0 '3, then the solution u
belongs to Y*R(T).

(2) When p ^ 5, in the same way as in the derivation of (2.23) we have

III Ju1-Ju2\\\γ^C\\φ+\\O0(\\φ+\\cx, + \\xφ+ | | G O ) | | | t t 1 - i 4 2 | | | y (2.24)

for any ux,u2eYa

R(T\ By (2.23) and (2.24), if | | φ + IL + | | x φ + IL is small enough,
then J maps from YR(T) into itself and is a contraction on YR{T). Therefore J
has a unique fixed point ueYR(T).

In either case the solution u of Ju = u also satisfies (1.1) in H~lt0 for all t ^ T
by the same method as in the proof of Theorem 1 and u extends to all times by
the well known method of the Cauchy problem for (1.1) in the energy space Hlf0.
We now prove (1.14)+ and (1.15) + . In the same way as in (2.14) + , we obtain

\\d(u(t)-exp(iS+(t))U(t)φ + )\\2

+)\\2^\\dS+(tyoxp(^ - M ( - # + )||2

\φ+-M(-t)φ+\\2+\\dM(-t)'φ+\\2+\\dφ+-M(-t)dφ+\\2

l l o o l l ^ + I I S Γ 2 ^ " 1 1 1 0 + llo,2

which together with (2.14) proves (1.14) + . In the same way as in (2.15), we obtain
for 0 < ε < 2 ( l - α ) ,

\\δS+(t)

+ \\exp(iS + {t))U(t)dM(-tyφ+\\^ + \\exp{iS+(ή)U(t){dφ+-M(-t)dφ + )\\CΌ

II \\2 i |p-2w-5/4 + ε/2|| X | |
II oo I! Ψ + II oo )l II Φ + I I 0,2

\\0ι2
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This and (2.16) prove (1.15) + . The required uniqueness follows in the same way

as in the proof of Theorem 1. Q.E.D.

Proof of Corollary 2. Let φ + and u be as in Theorem 2. In the same way as in

the proof of (1.10) + , we have

\\d(u(t)-exp(iS+(t))U(ήφ + ) \ \ 2

which together with (1.10)+ proves (1.18) + . In the same way as in the proof of

(1.13)+, we have

MOIL ^ \\u(t)-exp(iS + (t))U(t)φ+ IL + \\exp(ίS+(t))U(ήφ+ |U

This proves (1.19) + . Q.E.D.
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