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Abstract. The purpose of this paper is to provide a theoretical framework for
disordered spin systems on a lattice, similar to that of classical statistical
mechanics in the sense of Ruelle [Ru]. We prove the existence of a continuous
pressure functional on a large Banach space of random interactions (highly
generalizing the classical one) and formulate an analog of the variational principle.

0. Introduction

The statistical mechanics of disordered lattice systems, considered as a mathemat-
ical description of models of real materials such as e.g. real crystals, alloys of
magnetic and nonmagnetic metals, glasses and others, have to deal with new
phenomena and problems. For general reviews and connection to other domains
of physics, mathematics and biology see e.g. [4, 25, 36, 48, 11].

It was observed by Edwards and Anderson [15], that it is very useful to describe
such systems as a lattice model with random interactions. The randomness and
existence of competing interactions allow a system to behave thermodynamically
well even if the decay of interactions is very slow and its amplitude is a’priori
unbounded. The first rigorous proof of this fact has been given in [40, 337, where
the existence of a (nonrandom) thermodynamic limit of the pressure has been
proven for a random bond Ising model given by a hamiltonian function

Ho-E - 2 J”O-lO-J; i,JEZd (0.1)
i*j
with {J;;} being independent random variables satisfying for all i,je Z%, i%j,
EJ;;=0, 0.2
and for all neIN Y (0.22)
|EJH <nly"li—j| =" (0.2b)

with some constants 0<y< oo and  <a< 0.
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Note that for $ <a<1 we can have (non-classical) long range interactions

satisfyin
yime S Wyl= o0 03)
J

with probability one. Afterwards a simpler proof of that, based on use of
subadditive ergodic theorem, appeared in [20]. The generalization to the case
when (0.2b) is satisfied only up to n=4 has been given in [58]. It was observed in
[17] that in the special case when the free measure is symmetric one may apply the
subadditive ergodic theorem and show that actually the estimates of [58] are
sufficient to include the case when (0.2b) holds only for n <2.

The other example of a long range interaction (in the sense that an analog of
(0.3) is satisfied) is provided by the Sherrington-Kirkpatrick model [55]. In this
case, at high temperatures, the infinite volume pressure has been exactly computed
in [1, 31].

(For interactions with «> 1 one can find related results in [23, 57, 44]; see also
[12 and 49].)

Originally the consideration of random interactions satisfying (0.1)+0.3) was
motivated by RKKY interactions given by

Jy=Gynm,,  ijeZ! (0.4)
J J J

with {n;} independent occupation number random variables and G,; defined in
d=3 dimensions for i=j by

G. = ~4rli—jlcos(grli—j)+sin(grli—j)
v ji—ji*

The fact that G;; changes its sign was modeled by (0.2a). Obviously (0.3) is satisfied
for any translation invariant distribution of occupation variables not concen-
trated on the empty configuration. The original RKKY interaction is not
thermodynamically stable; however, as was proven in [32], there is a class of
reasonable interactions sharing its essential features. This class is contained in the
set of interactions given by (0.4) with

. (0.5)

L= iq(i—j)
1] (zn)d (- nj: 74 dqe G(Q) 2 (0.63)
where . ~

0=6(9)= Gl <o0. (0.6b)

In the present paper we generalise the above mentioned results concerning the
pressure, showing that thermodynamics is well defined, in the sense of existence of
a nonrandom infinite volume pressure functional, for a much larger class of
interactions.

A description of the simplest disordered systems with a Hamiltonian of the type

H=H,+2Y ho,, (0.7)

(where the magnetic field variables {h;};.z« are independent and identically
distributed, and 0 < A < c0) is not an easy task even for short range interactions. (By
a short range interaction we mean here the interaction for which the quantity on
the left-hand side of (0.3) is finite with probability one.) '

There are several interesting results concerning this case: The proofs of absence
of phase transition for one dimensional Ising models of type (0.7) with 1 <a have
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been given in [21, 39, 9, 8, 7]. This is in contradistinction to nonrandom classical
models where e.g.: for ferromagnetic models the phase transition occur for
1<a=2, see [14, 27].

The O(N) random models have been investigated in the series of papers [52, 53,
18, 16, 5], successively extending the region of nonbroken O(N) symmetry up to
interactions with a«=1 for d=1,2. Note that for the nonrandom case with
ferromagnetic couplings in two dimensions one has symmetry breaking for
1 <a<2[43] and symmetry remains unbroken for a > 2, whereas for d=3 one has
symmetry breaking even for finite range interactions [28].

For an Ising model with nearest neighbours random interaction at high
temperature or large magnetic field, the cluster property and uniqueness result has
been obtained in [3] by the use of a cluster expansion method. A very general and
strong method for studying the Ising models with short range interactions has
been developed in [26]. The authors consider the following important cases: a)
high temperature spin glasses, b) low temperature nearest neighbours random
field Ising models (RFIM’s) with sufficiently large covariance of the random
magnetic field (large disorder), c) low temperature predominantly ferromagnetic
spin glasses. For all these cases it is shown that the truncated correlation functions
have exponential tree decay with probability one. By this, for a) and b), they prove
the existence of a disordered phase and (strong) uniqueness of the corresponding
Gibbs measures, in regions full of Griffiths singularities [34] where the conven-
tional high temperature cluster expansion diverges.

The hardest problem was the RFIM’s with small covariance of the random
magnetic field at low temperatures. This was resolved for d =3 dimensions in [6],
(after preparatory important works [24, 37, 10]), where the existence of fer-
romagnetic phases in the low temperature region is shown. As argued in [24] for
d £2, the random magnetic field even with small covariance should cause disorder
at any temperature. Recently this has been rigorously proven in [2].

The Ising models with long range interactions [in the sense of (0.3)] of random
bound type have been considered in [29, 30] where existence of a disordered phase,
weak uniqueness and clustering were proven and in [58] where a kind of strong
uniqueness has been shown. (For related results for the Sherrington-Kirkpatrick
model, see [1,31].) The random site Ising model with long range interactions,
defined by (0.1) and (0.6), has been discussed in [32]. It was shown there that if the
temperature ! satisfies

BIGI, <1, 08)

then the corresponding spin system is in the disordered phase (in the sense that the
Edwards-Anderson parameter equals zero), where it has a decay of correla-
tions similar to that of the interaction. Moreover the infinite volume limit of
physical observables is independent of boundary conditions.

Although the description of the high temperature region for long range
interactions could seem to be quite complete, there are still a lot of interesting
questions concerning the disordered phase to answer. (For example the C*®
property of pressure implied by sufficiently strong tree decay of truncated
correlation functions. The other problem concerns the behaviour at any tempera-
ture but in a large magnetic field.)

The low temperature region for long range interactions is terra incognita (but
see [1]). To study this region and phase transition phenomena it is useful to have
an a priori definition of an infinite volume state of spin system. For short range
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interactions this is provided by the definition of Gibbs measure [13, 45,22, 53] and
concerning disordered systems requires no additional modification. For the case of
long range interactions it is not possible to use the Gibbsian description, since we
have no well defined local specification on the space of all spin configurations (for
some discussions see e.g. [ 58]). In the present paper we show that it is possible to
define an infinite volume equilibrium state for a random system by use of a
variational principle. Note that contrary to the non-random case [54, 38] it is
necessary to use it even for some interactions of finite body type (e.g. two point
interactions). We develop in a sense a fully fledged approach based on a
continuous pressure functional defined on a Banach space of random interactions.
Therefore one can hope to extend the theory of phase transitions given in [38] to
our case. This would be important, since up to now, the existence of generic spin
glass phase transitions remains unproven. (However there is evidence for that in
the mean field model of Sherrington-Kirkpatrick given in [1].)

Let us remark that as a matter of fact we have quite a poor understanding of
phase transitions for long range (in the classical sense) interactions besides the
ferromagnetic one. As a first step in the direction of the constructive description of
spin systems with long range interactions one can view the work [50], in which a
class of polynomially decaying interactions with a “small” long range part is
considered.

The organization of our paper is as follows. In the first section we introduce
notation and define the Banach spaces of interactions we want to consider. The
second section is devoted to the proof of existence of nonrandom continuous
pressure functionals defined on Banach space of “random bond” type interactions.
In Sect. 3 we get similar results for replica systems. Section 4 is used to formulate a
corresponding variational principle. In the last section we discuss the possible
reasonable extensions of long range “random site” type interactions (0.4) and (0.6)
and prove for some class of them the existence and continuity of the infinite volume
pressure for spin systems (including replica systems).

1. Definitions and Notations

Let I' be a countable set called a lattice. It is assumed that there is an infinite
abelian group of bijections of I, denoted by T and called a translation group. Let
{e,eT:1=1,...,d},deN, be a set of generators of T, i.c. each element ae T can be
written as

d
a= ; ne, (1.1)

withsome n,eZ, =1, ...,d. A translation of i e " by an element a € T is denoted by
i+a. A translation T,4 of a set ACT is by definition the set

TA={ieT:i—acd}. (1.2)

In general the translation group T need not act transitively on I'. We assume only
that there is a smallest finite set 4 CI', called an elementary cell of I, such that for
any a,a’' €T

axd = TANT,A=0 (1.3a)
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and
=\ T4. (1.3b)
aeT
Note that the choice of 4 can be in general nonunique.
Let % be the family of finite sets in I'. By | 4| we denote the number of elements
in A€ % and by 4 a smallest covering of 4 € # by elementary cells. ForieI and a
set ACI" we define a distance of ieI" from 4 by

d d
d(i,A)Einf{Z In): Tied,a= Y, n,e,}. (1.4)
=1 =1

The diameter of A€ % by definition equals
diam(A)= sup (d(i,j)+1). (1.5)
i,jed

i,je
An increasing and absorbing sequence %#,={4,€ % },.n is called a countable
base, i.e. we have 4,CA4, . for any ne N and for any 4 € & there is n, e N such
that 4CA, for any n=n,,.
Further we will use special countable bases called van Hove sequences. To
define them, let us first introduce for any NeIN, N>1 the sets

d
ANE{U T A:a= Y, nlelalnlléN}' (1.6)
=1
The boundary 04y of 4y is defined to be
0dy={iedy:I1<1<d,|n|=1 that i+ne ¢ Ay}. (1.7

Similarly one can define 04 for any A€ %.
From the definitions (1.5) and (1.6) we have

lim 104 =0. (1.8)

N—-w IANI B

For Ae% and NeN we set

d
Aﬁs{u T,Ay:a= Y mNe,neZ such that ’IZ,ANF\A#:(D} (1.92)
1

=1
and
d
AI;E{U T.Ay:a= Y mNe,neZ such that YI,ANCA}. (1.9b)
=1

The number of different cubes in the sum (1.9a) respectively (1.9b) is denoted by
n(Ay) respectively n(Ay).

A countable base #,={4,€F },.n is called a van Hove sequence iff for any
NeN Az

Fo ]AI;H

Let (2, 2)=(S, &)\, with (S, #)' being a standard Borel space, be the space of spin
configurations g. Typical examples of (S,<) used in statistical mechanics are
provided by: a) S a finite set, b) S= """ a sphere in R", with natural topologies
respectively. A spin o; at a site ie I is by definition the i'® coordinate function on
(2,2). For ACT let X, be the smallest g-algebra contained in X such that all the

=1. (1.10)



310 B. Zegarlinski

functions {o;:i€ A} are ¥ ,-measurable. If a function F is X ,-measurable we write
FeX,.

By p with various subscripts, we will denote probability measures on (22, 2). A
probability measure p,, defined as a product of probability measures on (S, &), is
called a free measure. For FeZX, by u(F) we denote the expectation value of F
computed with a measure u. For F;, F,€X a truncated correlation function is

defined b
y W(F 1, F3)=puF \F, — uF uF5 (1.11)

We introduce also another standard Borel space (J,_#) to describe an
additional randomness in the lattice system. Let E be a probability measure on
(J, #). We will use a similar convention as described above to denote the
corresponding expectations. It will be assumed that one can distinguish a family
{#4} ses Of sub-g-algebras in ¢, so that any functions F,e ¢,, F,e ¢, are
independent random variables on (J, ¢, E) if AnA’=. Let

Tsa—T, 1.12)

be a representation of the translation group by measurable bijections on (€2, X)
x (J, #). In particular we define the representation of translations on (,X)
(implicitly) by requiring

T,0,=0;,_, forall iel. (1.13)

We say that a probability measure u on (2, 2), respectively E on (J, #), is
translation invariant iff for any Fe X, we have

T w(F) = w(F(T- ,0)) = (F(0)) (1.14)

for all ae T, and similarly for E. Afterwards we will assume that the free measure
and the measure E are translationally invariant. For a sequence of functions

{F4} pe 5, We write 11m F, to denote its L,(E) limit (if exists). Let IM(Q x J,IR)
denote the space of Jomtly measurable functions on (2, 2) x (J, #).
Definition 1.1. An interaction @ is a function

F->MQxJ,R) (1.15)
satisfying for any X e &

byeZyx Iy. (1.16)

(Frequently it is useful to consider also complex valued interactions.) An
interaction @ satisfying for any ae T the condition

QTaX(Ja 6) = q)X(T—aJa T-—ao-) (117)

forall X e # and any J € J, 6 € 2, is called translation invariant. An interaction @ is
of finite range 0 <r(®) < oo iff for any X € & with diam X >r(®) we have &, =0,
and is of finite body type 0 <t(P)< oo iff @, =0 for all X e F, | X|> (D).

As follows from Definition 1.1, the interactions form a linear space. For further
purposes we would like to distingmsh the following Banach spaces of interactions:
The first one, denoted by ]Bc’(E) is a simple generalization of the classical space
considered in [54, 38] and is defined by

BYE)={®:|P|, <0}, (1.18)
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where we use the norm

IPllo= sup 2 sup [Py]. (1.19)
iel XE/ |X| 35.!’2

To include unbounded interactions we define a space
BYE)={®:|®|, <0}, (1.20)

where

D|,:=s sup [Dy|).
ol 3, i cup 0]

From this definition we see that IB°‘(E)CIB“(E) and in general IBBYE)\IB°Y(E) is
nonempty. The above Banach spaces still do not exhaust all “good” interactions.
To consider long range interactions, as those in (0.1)—(0.3), let us distinguish a class
of interactions @ satisfying the following conditions (C):

(Ci): For any X, X'e%, X+ X' and any o, ¢' €, the functions ®,(-, o) and
@4+, ¢’) are independent random variables on (J, ¢, E).
(Ci): VXe ,0€Q,

1.21)

E®y(-,0)=0. (1.22)
Then we define a Banach space
B*(E)={®:®€(C) and ||P|,, <0}, (1.23)

where the norm is given by

iel

1/2
@1, := sup (XEZ X <§gg|¢xl>2) . (1.24)

As one can easily see we have in general
BYE)nB*(E)+0 and BYE)+B"(E)*0, (1.25)

with = denoting the symmetric difference. (One may wish to introduce the
corresponding Banach spaces B(E), suitable for discussion of Gibbs measures, by

omitting the factors — in the corresponding norms.) Note that the random-site

IX]
long-range interactions (0.4) and (0.6) do not belong to B*(E)uIB"(E). Therefore we
have to consider one more space of interactions. We would like to define it here as
follows:

B(E)= { sup sup —-

AeF oef 'A|

y cDXl <oo,E—a.e.}. (1.26)

XcA

It is clear that the systems with interactions from the class IB(E) behave
thermodynamically well. However for some purposes this definition is too general.
We will discuss it in Sect. 5. (For some short discussion concerning nonthermody-
namically stable interactions, see [32].) If this will not cause confusion, we will
write B(E) to denote the various space of interactions defined above or given as the
sums of them. Then B,(E) will mean the subspace of translation invariant
interactions.
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For Ae % and @€ B(E) we define a hamiltonian function by

H (D)= X;A Dy, (1.27)
and a finite volume pressure _
1 _
pA(¢)E|7,'1niu0(e fal®), (1.28)

We wish to study the existence and properties of the infinite volume limit of the
sequence of pressure functionals

B,(E)s®>p,(P), AeF,. (1.29)

2. The Pressure Functional for Random Interactions /

In this section we study a pressure functional defined on a Banach space
B/(E)=BYE)+ B}(E). 2.1

The elements of this space are the pairs @ =(¢, p), denoted also as @ = ¢+, with
¢ e BYE) and p e BY(E). It is assumed that the interactions ¢p={¢x}x.» and p
={yyx}xes are mutually independent in the sense that:

For any X, X'e & and any o, 0'e Q the random variables ¢(-, o)

and px (-, 0') defined on probability space (J, #, E) are independent.  (2.2)
For ®eB/(E), ®= ¢+ we define a norm

121 :=ll.+ lwl,. (2.3)
A hamiltonian function is given by
H/(®)= XZC:A Dx=H 4(¢)+H 4(v) (2.4)

for any Ae &.
Let u, be a translation invariant product probability measure on (€2, ¢). A finite
volume pressure functional

B/E)>®-p,(®), AeF (2.5)
is defined by
pA(®):= l—jl—,lnuo(e-mn. 26)

The main result of this section is the following.

Theorem 2.1. Let E be a translation invariant ergodic probability measure on (J, 7).
Then for any ® € B/(E) then infinite volume limit

p(®)= lim p (@) 2.7)

exists and is independent of J € J, E-a.e. and the van Hove sequence %,. Moreover the
convex functional

B(E)> & p(®) 2.8)

satisfies the following continuity condition:
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For any @, @' e B(E), =¢d+y and &'=¢'+vy'

[P(P)—p(P) = ¢ — ¢’ +max([wl, ¥l v —v'll- 29

Remark. As follows from Definition (2.3) of the norm || - | in Banach space IB,(E),
the right-hand side of (2.9) can be bounded by

r.hs. 29)=[1 +max(| @), |9'N] @ -2 . (2.10)

Proof. First we show that {p } ;. 5, and {Ep,} 4. &, converge to the same limit and
then we prove the continuity property (2.9) using the corresponding continuity of
Ep,, AeZF,. Let Ae %, be such that for some NelN, Ay defined in (1.9) is

d
nonempty and let n(A4y) be the number of cubes {Ag‘,)—:— T, Ay a= Y nkNek}
k=1
satisfying
AVnAY =0 if 1F1
V=49 . (2.11)

By the fundamental theorem of calculus we have

_ Myl 1 P :
PA= T S L pa@)F [tk HAB0O), (212

where for t [0, 1] we defined &(t) by

&y if XCAY for some i=1,...,n(Ay)
1= . , 213
® {t(Dx otherwise 13)
d
we set cD(t)_ <P(t) and
 poleHa@O).)
Fa,o0( )= ’H‘O S~ Fa@w) - (214)

We will need to estimate the second term on the right-hand side of (2.12). Using the
representation

D(t)=p(1)+ (1), (2.15)
we write

! — U4, 00(H A(ds(t))) ! T Ha,00) A(¢(t))+ ! Mg, 00H A(‘P(t)) (2.16)

4| | ]
and bound the L;(E) norms of the terms from the right-hand side of (2.16)
separately. The result is given in the following lemma in which we use the notation
introduced above.

Lemma 2.2. Let L(N)eN be a function of N €N such that L(N)/N—0 and L(N)
— 00 as N> 0. Thereis a constant 0 < C < oo (independent of A€ F,and & B(E))
and a positive function &4(L(N)) converging to zero as L(N)— oo, such that for any
AeZ,,

! ; A\Ay| | L)
E‘WHA,m(:)HA(¢(t))I§< IA|N +C—5 >||¢u,,+s,,,(L(N)). 2.17)
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Moreover there is a positive function &,(L(N)), converging to zero as L(N)— o, such
that for any A e F,,

<|A\A1§I Lot

- 1
i = )Ilwlli+28w<L(N»+|A|—m Il

(2.18)

Remark. The functions ¢4(L(N)) and & (L(N)) are explicitly given below by (2.42)
and respectively (2.52).

Now using Lemma 2.2 and formula (2.12) we prove the convergence of the
sequence {Ep,(®)} .4, To do this, it is enough to show that the considered
sequence has the Cauchy property. Let us take a number 0 <e&. Then using (2.12),
translation invariance of the interaction @ and of the measure E we get, for any A,,

1 .
E ‘Hl‘ #A,cb(t)H AP =2

et 4051 147
k/N m/N
|Ep 4,(P)— Ep4, (D) = | |A | |A | ||EPAN(@)|
+ Ef)th lA IﬂAk @(t)(HAk(@(t)))

1
+ [dtE
(4]

1 .
m K, qb(:)(H A,..( (1)) - (2.19)

Since the sequence #,= {4, € # },.nis van Hove and, as follows from Lemma 2.3
given below, we have for any NeN,

IEp (@)= (@1l + 1wl (2.20)
so there is n,eIN such that for any k, m=n,,

{1('AA;k>IN| B |(|AA,;)IN1; Epy (@< @2y

From Lemma 2.2 the second and third term on the right-hand side of (2.19) are
bounded by

oo M= max {' |\AA|”' 11+ 2191+ o sz nwnw}
+ 0 11+ 2112) e L) + 2,1 (2.22)

Since &, is a van Hove sequence, we can find some N, e N and m, € N such that

20(no, N) < ; (2.23)

for all N> N, and ny=m,. This together with (2.21) shows that
|Ep4,(®)—Ep 4, (P)l <& (224

for all Ay, 4,,€ %y, k, m=m, with some sufficiently big m,eN, i.e. we have the
desired Cauchy property. Therefore the limit of the sequence {Ep ,(®P)} 4. 5, exists
and, as follows easily from the above considerations, is independent of the van
Hove sequence %,. (In particular one does not need to assume that %, is strictly
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increasing.) To show that {p (®)} ,. » converges to the same limit, let us note that
using the triangle inequality, we get

[y 1
—Ep|Zip,—— —— o
lpA pAI— pA IAI n(AN) 1=1,.,‘,n(Aﬁ)pA
[y
—1|-|E
—+ IAl l pAN'
T ) ©—Ep
n(Ay)=1,.7 n(AmpAN an
+|Eps—Epayl- (2.25)
Using Lemma 2.2 we see that
.. A5 1
lim IimE|p,——— — ol =0. 2.26
N-wo %o Pa [4] n(Ay) z=1,.;n(AmpAN (2.26)

Since &, is van Hove, so using (2.20) (Lemma 2.3 below) we get
|4y |
—— —1
4]

From the fact that lim Ep ,(®) exists and is independent of the van Hove sequence
chosen, we get %o

lim
ZFo

|Ep 4] =0. (2.27)

lim lim |Ep,—Ep,,|=0. (2.28)

N—-ow %o

Finally, using the ergodicity of the translation invariant measure E, Lemma 2.3
and the ergodic theorem for the commutative group of translations (see e.g. [42]),

we get
lim <

Fo

. —Ep,.| =0, 229
n(Ay) =1, Znazy pA) @2)

E-a.e. and so, using Lemma 2.3, also in L,(E). Combining (2.25) and (2.26)—2.29)
we conclude that

I;m E|ps(®)—Ep,(®)|=0, (2.30)
Le. p(®)= lim p (P)= lim Ep ,(P) (2.31)
.9‘_0 Fo

exist and is independent of the van Hove sequence %,,. The formula (2.31) defines a
(nonrandom) functional,

B,(E)>®+> p(®)eR (2.32)

which (as follows easily by Holder’s inequality) is convex, i.e. for any se€ [0, 1] and
any @, @' e B,(E),

p(s@+ (1 —5) D)< sp(P)+(1 —s)p(P'). (2.33)

The continuity property (2.9) of the functional p(®) follows from the following
lemma:

Lemma 2.3. Let &, & €B)(E), P=¢+vy, &'=¢'+v'. Then for any Ae F,
|EpA(P)— Ep(®) = ¢ — &', +max(wl,. [v'[) lv—vll,. (234
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Moreover
Elp D) = lpllu+ 21wl +o(4]712). (2.34a)

Proof of Lemma 2.2. We begin with the proof of (2.17). Using the definition of ¢(t)
given by (2.13) and (2.15), we have

1
"/ﬂ Uy, d)(t)HA(d)(t)) |/1| . > E i‘:g |Pxl - (2.35)

I cA,ieX
XCAN,1=1,...,n(AN)

The right-hand side of (2.35) can be written in the form

1 1 nwam) 1
rhs. 235)=— Y Esuplpyl+— ¥ ¥ Y —==E sup o
|A| XcA\AN ceN ‘Al 1=1 iedny XCA,i le
Soad"
= A(2.36)+ B(2.36). (2.36)
The first term from the right-hand side of (2.36) satisfies the estimate
A\A

4360 19l 237)

Since by our assumptions the interaction ¢ and the measure are translation
invariant, the term B(2.36) is bounded by

BQR3)<— Y ¥ 117|E sup )]

|AN| iedn ;{\’;J

= A(2.38)+ B(2.38), (2.38)

where for some L= I(N) e N we introduce the following partition of the right-hand
side of (2.38):

1 1
A(2.38)= — z X o E sup Pl (2.39)
|4l x|
d(i, 6AN)<L(N) X¢AN
and 1 1
B(2.38)= — —E 2.40
@®=py I L xEsuplexd. 249

aq, 6AN)>L(N) XCAN

The expression A(2.38) satisfies the bound

A(238)<‘A [{ie dy:d(i,04\) LN} - (¢l

N

<clgl, Y (241)

with some constant 0 < C < oo independent of ¢ € B*(E) and L(N), N e N. Using the
translation invariance of ¢ and E we bound B(2.38) by

B(2.38)< 5y l—)-(—lE sup |yl =e,(LN)). (2.42)

XeF
0eX,diamX > L(N)
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Note that from the assumption that ||¢||, < co it follows that the function ¢,(L(N))
goes to zero as L(N)— co. Combining (2.39)—(2.42) we get

B(236)<C||¢l| () +e4(L(N)). (2.43)

From this, (2.37) and (2.35)+2.36) we get

|A\4y]|
|

L(N

Ell—jl—lm,mnHA(&(t)), §< +C >u¢>|| +eLIN). (244

This ends the proof of (2.17).
We shall now prove (2.18). By definition of y(t) in (2.13) and (2.15) we have

1 1
] T Ha,00) H ,(p(1)) = | Al X AZ o .uA,d)(t)(wX)' (2.45)
XdAn,1=1,...,n(AN)

0

Each term on right-hand side (2.45) we write, using a Taylor expansion, in the form

1
Ea, 00 Wx) =M, 00,55 =0fWx) — 1t (,f) dSXluA,@(t,sx)(wX> Yx), (2.46)

where @(t, sy), sx €[0, 1] is defined by

D(t)y for Y+X
Px(t)+sypx(t) for Y=X.

Inserting (2.46) into (2.45), we get the following estimate for the L,(E) norm of
(2.45):

D(t,sx)y = { (2.47)

E L_;H Pa, oH 4(P(1)| < A(2.48)+ B(2.48) (2.48)
with 1
ACA9=E| L 5 i oummoft) 249)
and
BOAY=E| 1 5 [ dsshamsnae ). 250

where )’ means restricted summation over X C A as on the right-hand side of
Xca
(2.45). The term B(2.48) is easy to estimate. We have
B(2.48)< ﬁ Z E (sup [wxl) (2.51)
Since the right hand side of (2.51) is of the same structure as the right-hand side of

(2.35), we can use the same arguments to get a similar bound as in (2.17), with ||y|2
instead of || ¢||, and the corresponding function

€

OeX,diamX > L(N)

1
& L(N))= ) x| E <SUP !wxl) (2.52)

instead of &,(L(N)).
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To estimate A(2.48) we use Holder’s inequality and find a bound on the L,(E)
norm of the interesting us integrant. First we write

2

1 ’
I‘/ﬁ Y;A Ha,00¢,sx= 0)(1PX)

> Z Ha, 0@, sx= 0)(1PX)ﬂA O(t, sy = 0)(1PY)

TP Eay
=A(2.53)+ B(2.53) (2.53)
with :
A(2.53)= W Zc (ﬂA,@(z,sx=0)1Px)2 (2.54)
and 1
B(2.53)= —— A7 x. Z .UA Ot,sx = 0)(1Px)#/1 @, 5y = 0)(1/)1() (2.55)
L5
For the E integral of (2.54) we have the bound
1
EAQR2S53) 2 — Y E 2<—— 2 2.56
( )— |A‘2 XZgA (i‘:g W’X') |A| ”w” ( )

To estimate the E integral of (2.55) first we expand each term as follows
KA, o¢,sx= 0)(1PX) K4, 0a,sy = 0)(1,0,,)

1
= <NA¢(:, sx=0,sy=0)(Wx)— (f) dsyl s, sx = 0,59 (Vx> ‘Py))

1
X (.“mp(r, sx=0,sy=0)/¥y)—1 (f) dSxPav(,sy = 0,50y 'l’x)) ) (2.57)
where for X &Y we defined
b(t), for Z+X,Y
D(t, Sy, Sy)z= 4 Ox(t)+sxwx(t) for Z=X . (2.58)

Gy(t)+sypy(t) for Z=Y

Now using the independence of the {yy}y.# variables and the condition Eyp, =0,
X e # from the definition of the space IB*(E) (and independence of ¢’s and y’s) we
see that for X &Y,

Epg o, 5x=0)Wx) ha, ot, sy =0 ¥y)
1 1
=t (j)dsﬁx’ ‘f) dsyE(l g, 0, 5% = 0,59 W3 WY) B, 02, 55,5y =0\ ¥ ¥x)) - (2.59)
The absolute value of (2.59) satisfies the bound

I2.59)<E (igg wal>2 -E (igg Iwyl)2 , (2.60)

where we used the independence of the yy and yy variables for X +Y.
Using (2.57)+2.59) we get

|EB(2.53)|<[| y Py E(sup |sz|>] (2.61)

cef
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This together with (2.56) and (2.53), by use of Holder’s inequality, gives us the
bound
A(248)<(EA(2.53)+ EB(Z 53))12

1
= e vl +| i E(sup Ile|> (2.62)

The second term on the right-hand side of (2.62) is the same as the one used to
estimate B(2.48) in (2.51) and so satisfies the same bound as discussed before.
Adding the bounds obtained for B(2.48) and 4(2.48) we get (2.18). This ends the
proof of Lemma 2.2. [

Proof of Lemma 2.3. Let @, &' €B(E), P=¢d+y and &'=¢'+vy'. For te[0,1] we
define

()= (1) + (1) (2.63)
with
ot)=td+(1—1)¢', vl)=tp+(1—1t)y'. (2.64)
For A%, let us define 1y~ a0
Ha,o0(-):i= W@T))- (2.65)

Then we have

1

PA®)—PAP)=— [dt 1 i fa,on(H A0 — ¢))—§dt [ Ha ow(Hap—v).

4]
(2.66)

The absolute value of the expectation of the first term from the right-hand side of
(2.66) satisfies the following estimate:

1

B\t o0lHA0— 9) S 19—, 267

where we used the definition (1.21) of the norm | - ||, together with some standard
arguments.

To estimate the absolute value of expectation of the second term from the right-
hand side of (2.66) we use (Fubini’s theorem and) the following equality based on a
Taylor expansion

1 r
”“ﬂA,zp(z)HA(w_U))—— Z B, 00(Px — V)
4] |4 x
1 ,
=|A_| Z #A,<p(z,sx=0)(1l)x—1px)

1
!A| Z deXuA o, sx)(lle Y, Px(t)

=A(2.68)+B(2.68), (2.68)
where for s, €[0,1] we defined
_ {2, for Y+X
2= {0 o for Yo 2
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Using the condition (C) from the definition of e B*(E) interactions and their
independence of ¢ € BYE) we see that

E(A(2.68))=0. (2.70)
To estimate the absolute value of B(2.68) we use the inequality

lita, 00(Wx — Wi WD) = (3‘;‘8 wa—w/xl> : (i‘ig lwx(t)l> @2.71)

(which follows from the Schwartz inequality by simple arguments). Using (2.71),
translation invariance of the interaction and the measure E together with Holder’s
inequality we get

E|B(2. 68)I<| Al % Z E (SUP lwx—vxl sup lwx(t)l)

IIA

2 7 E (s s —vilsup )

Sllw=v'lh - lw®lw
gmax(lw ., 1wl Iy —v'l.- (2.72)

This together with (2.70) gives the estimate on (2.68), the expectation of the second
sum from the right-hand side of (2.66). Combining this estimate with estimate (2.67)
we get (2.34). This ends the proof of the continuity (2.34).

To show (2.34a), let us set @' =0in (2.62)2.72). Using (2.66) together with (2.67)
and (2.68)2.72) we see that to finish the proof we need only to estimate E|4(2.68)|.
This is because the expectation of the absolute value of the second term on the
right-hand side of (2.68) satisfies the following simple estimate:

E|B(2.68)| =< [yl (2.73)

Let us now note that we have
BUAQEYI = 15 T Eltaos-ots)
l/:lz Z E.“A ot sx=0Wx " Ha 00,5y =0 Wy =A(2.74)+ B(2.74). (2.74)
The first term from the right-hand side of (2.74) has the following simple estimate:
E(4Q2.74) = — | A| ol 2.75)

To estimate B(2.74) we note that for X, Y< A, X+ Y we have
Ha,o0,sx=0)PxH4, 00,5y =0PY = {I‘A,di(t, sx,sy=0WxHA, @, 5x,5y=0)PY
+ (}) Ayl A, 0,55 =0.50) W3 W) Bt 0(t, 5.5y =0)¥Y

1
F A, A, sx, sy =0)¥x (]; dsxtha, o, sy =0, s50(Wys WX)}

1 1
+ (f) dS,YiuA,(D(t,sx=0,s'y)(1an Vy) (,g ds,X”A,(D(t,sY=0,s’x)(le’ VYx). (2.76)
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The expectation of terms in the curly bracket on the right-hand side of (2.76) with
the measure E equals zero. Therefore we get for X + Y,

IEfa, o, sx = 0WxHa, 00,5y =0y S E (sup 1Px>2 -E <SUP V’y)z . (2.77)

Hence
IBR.74) = w5 (2.78)

This together with (2.75) and (2.78), by use one of Schwartz inequality yields

1
E|A(2.68)|= (1 + Ml—l/z> lwl2. (2.79)

Combining (2.73) and together with (2.67) (for ¢'=0) we get

1
Elp @)=l +2]wll5+ W(llwll“— vl - (2.80)

This ends the proof of (2.34a) and so of Lemma 2.3. []

Let us now discuss the a.s. convergence of the sequence of finite volume
pressure functionals. For this purpose we will use the inequality (2.25) with
Ay e F, and N =N, chosen so that N,—_, 0,

=04 )n) 2w and (A )y, /4] =1 =4 0. (2.81)

Then we have (2.27), (2.28) and the E-a.s. convergence in (2.29) as k— co. Since we
know also that {Ep, };.y converges, so using (2.25), to conclude the a.s.
convergence of the sequence {p, },.x it is sufficient to show that

(4wl 1
A, = - wl 1 2.82
k pAk ‘Al nk 1=1,Z“.,nkpdl(v:‘ ( )
converges E-a.s. to zero as k— 0.
We need to show that for any ¢>0,
lim E (sup Ak>e> =0. (2.83)
m— o kzm

We will give here a simple proof of this fact, based on estimates of Lemma 2.2, at
the cost of imposing some growth condition in k of the van Hove sequence {4}, c -
First of all let us note that

1
E(sup Ak>s> <= Y E(4y), (2.84)
kzm

k=zm
and by (2.12), (2.16) and Lemma 2.2 we have
E(4,) < AQA7),+ A(2.16),, (2.85)

where A(2.17),, respectively 4(2.16), denote the corresponding expressions from
the (2.17) respectively the right-hand side of (2.18) computed with 4= 4, and
N = Nk‘

By imposing a growth condition in k on the van Hove sequence {4}, We see
that we can choose the corresponding function L(N,) from Lemma 2.2 so that the

'A"\l(;k’i_ )Nk', Lﬁ[\i") and e,(L(N)) (given by (2.42)) and &,(L(N,)) (given by

sequences



322 B. Zegarlinski

(2.52)) are summable. This together with (2.83)+2.84) and (2.82) show the E-a.s.
convergence of the sequence A, given in (2.81). This ends the proof of E-a.s.
convergence of the sequence of finite volume pressure functionals {p 4, };cn-

Let us note that by our construction the van Hove sequence {4,};.n can be
chosen in such the way that the E-a.s. convergence holds for an uncountable set of
interactions @ described only by the behavior of the tails &, and &, of the norm of @.
In particular restricting ourselves to a closed subspace of finite particle interac-
tions, we see that one choice works for all the subspace. []

Let us finish this section by a remark, that as follows from the above proofs, no
essential changes are necessary to include the case when the variables {¢y}y. s
defining an interaction ¢ € BYE) are mutually dependent.

3. The Pressure Functional for Replica Systems

In the analysis of a disordered system an important role is played by the pressure
functional for replica systems. This is because the order parameter introduced by
Edwards and Anderson [15] to indicate spin glass phase transition, can be
formally defined as a derivative of such a functional. Therefore we include a
theorem concerning existence and properties of the thermodynamic limit for the
pressure of a replica system.

We will consider a lattice I' =T x Z, that is, we take copies I, of the lattice T
indexed by integers ke Z. We use & to denote the family of ﬁmte sets in . A
configuration space is now (3, £)=(Q, 2)?=(S, S)% and the correspondmg COOI‘dl-
nate functions (the spins) are denoted by o,,, m=(i, k); i€, ke Z. Let jig= u$%bea
free measure on (Q 2).Forde ]B,(E) we define an interaction @ on (3, £) x (J, #) as
follows:If Xe #,X el keZ,i.e. X={meT :m=(i,k),ie X} forsome X € Z, then
we set

B5(J,0)=Py(J, 0. 1) (3.1)

and ®3=0 for all other Xe#. In this way we get a translation invariant
interaction. We would like to couple the hyperplanes I, = {m=(i,k):ieT}, keZ,
by introducing a translation invariant interaction ¥ given by

I7}"{(0')5VA(‘T(-,l))--- Va0 iin-1) (32)

for X=Ax[1,....,i+n—1], neN and with a translation invariant bounded
(nonrandom) interaction V= {5X a+:iVa+»i€l} defined on (2, X); for other sets X,
by definition ¥3=0. For A% we take a set

A=Ax0, (3.3)
where O=[L, M]CZ, L<M, and define a hamiltonian function
Hy®,V)= Y &x+ Y T4, (3.4
XcAa XcAa

and a finite volume pressure

pi(®, V)= = Injige HA@®N) (3.5)
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Let us note the following equality

d ~ ~ 1 n
an pa(®, hV)|h=0 = {_A—| p +ZM BaVysd)" (3.6)
where p,(-) is a probability measure on (Q, 2) defined by
_ ol ")
pa )= i (3.7)

In particular taking n=2, V, , ;=0;, we get the Edwards-Anderson order param-
eter

dg-4= ‘Al Z (“Ao-l) hPA(‘D {ha(, 0o, k+1)})|h 0- (3-8)

In the replica picture the order parameter introduced above measures a
remanescence after decoupling of hyperplanes.

To get physical information about possible phase transitions we shall first take
a thermodynamic limit for the pressure functional and then to study its
differentiability properties. Now we have a little different situation than considered
in the preceding section, because the interaction in various hyperplanes is
described by mutually dependent random variables. Nevertheless we have the
following result.

Theorem 3.1. Let E be a translation invariant ergodic probability measure on (J, #).
Let @ € B/(E) and let ® be the corresponding interaction for the replica system given
on I’ by (3.1). Then for any interval O CZ the limit

Po(@, V)=1im p 1 (D, V) (3.9
Zo

exists and is independent of J € J, E-a.e. and the van Hove sequence &%,. Moreover
p(®, V)= lim p(®, V) (3.10)
0tZ

also exist and both functionals are convex and continuous.

Remark. i) Without any problems one can include more complicated random
interactions in the “Z direction” stochastically independent of those in I planes.

ii) For any Fixed 0 CZ it is possible to show a similar continuity estimate as in
Theorem 2.1 with the part of the right-hand side of (2.9) dependent on w’s
multiplied by a constant dependent on |0)].

Proof. First let us note the following stability bound
PAD)— V"< pa(®, V)< p(@)+ V" (3.11)

with V= sup V(o). (3.12)

Therefore we shall expect a correct thermodynamic behaviour. Below, we show
only L,(E) convergence of finite volume pressure functionals. The problem of a.s.
convergence can be discussed in a similar manner as the corresponding one in
Sect. 2.

Define A% =AY x I for m=(1, k), where {AQ:1=1,...,n(4y)} are defined by
N'™ covering of Ay and {I®:k=1,....k(Oy)}, I¥|=N is an N* covering of the
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interval Oy by disjoint intervals. Then we have

103l 1 S ] dtl )(HZ(%V(t)>>(3.13)

O k(O8) k=1, kem) 1) Ha-e.c

when

P(O)y= {Vy if YCAxI¥ for some k (3.14)

tV, otherwise
The second term on the right-hand side of (3.13) satisfies the estimate
d - n o I§ ‘0)}]
d Hy|--V <2 ——1|vy". 3.15

Now note that by analogous arguments as in the proof of Theorem 2.1 one can
show that for any I the limit

Pl%"(é’ 17) = lim Dax 1‘,{?(‘5, I'7)

= hm Ep .. 198, V) (3.16)

exists and is independent of the van Hove sequence #,. The corresponding
proof requires only a modification in the choice of the interpolating potential
Pylt, sz) as follows: e
. wylt) if X+ X x{k}, Y+X
Pxlt, sx)=

sxpx(f) otherwise (3.17)

(p(t) defined as previously) and similarly for Px(t, s, sy). Using (3.13), (3.15), and
(3.11) and translation invariance of the interactions and the measure E we get,
uniformly in A € %,, the bound

= > = o (1On] 10y | n N N
Elpsxd®V)=Paxd® VIS {15 =0 EPax @94 e v
A e O 1Ok o] 0]
(3.18)
This implies that the sequence {hm Paxol 18 Cauchy and finishes the proof of
AeFo

existence of the thermodynamic limit (and nonrandomness) of the pressure (3.10).
Since the convergence is locally uniform in the interaction, using the continuity of

po=limp, ., (Which can be proven analogously as in Lemma 2.3) we get
Fo

contlnulty of p(®, V). For this case we have no analog of the continuity estimate
(2.9). It is possible to have it for fixed y interaction, i.e. with respect to ¢ and V)
Convexity follows by standard arguments based on Holder’s inequality for the
measure fi,. This ends the proof of Theorem 3.1. ]

Remark. Once we have a convex continuous functional p(®, hV), he R we know
that it is differentiable with respect to h everywhere except possibly countably
many points. This is unfortunately not such useful information since for an
application we are interested in this property at the point #=0.
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4. The Variational Principle

In this section we formulate an analog of the classical variational principle (see
[54, 38]). By that we get an a’priori meaning of infinite equilibrium state of a
disordered system. This is especially important in the case of long range
interactions for which the use of a Gibbsian description is problematic. To be
concrete we keep the setting of Sect. 2, although the same can be done for replica
systems. In the classical formulation of the variational principle one uses the
notion of translation invariant states. For random systems we shall consider
families of probability measures on the space of spin configurations satisfying the
requirements of the following definition.

Definition 4.1. A family g={o,},., consisting of probability measures on (2, X)
is called measurable iff for any function F € M((Q, 2) x (J, #)) the function

J>J-0o(F) 4.1)

is measurable, and is called translation invariant iff it is measurable and for any
aeT the random variables o(F) and o(T,F) defined on the probability space
(J, #,E) are identically distributed. [

The important examples of translation invariant families can be obtained by
considering the infinite volume limits

py=limpy, (4.2)
Fo
e pofe™4)
()= W, (4.3)

defined for some interaction @ € B,(E), and the limit on right-hand side (4.2) is
understood in the topology given by the semimetrics

dg, w1y, 1) = Elpy(F)— py(F)l, (4.4)

where Fe M((2, 2) x (J, #)). For concrete examples, see e.g. [30, 58] (see also
other references mentioned therein). Another example of a translation invariant
family of measures will be constructed in a course of proof of Theorem 4.8
below.

We would like to consider families §={g,},.; whose clements are locally
equivalent to the free measure, i.e. such that: For any 4 € % there is a (nonnega-
tive) density function o e L,(u,) satisfying

Qn;A( )= #0|EA(Q(JA-))- 4.5)

This is sufficiently general to include the families given by (4.2).
If this condition is satisfied, we define an entropy S ,(¢,) of a measure g; in a

volume A€ % by
Sales)= —polf" Ingf"). (4.6)

If 0y, , Lo, We set Sy(0;)=—o0, and for A= by definition S4(¢,)=0. The
entropy has the following properties:

Lemma 4.1. i) (negativity)
Sale)=0, (4.7)
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ii) (decrease) If A, A'e F and ACA’ then

Sy<8y, (4.8)
iii) (strong subadditivity) For any A, A'e F
Spoalen)+ Sanaen=Salen)+ S 4ley)- 4.9)

A standard proof can be found in [54, 38].
Define a finite volume entropy density s,(¢;) by

A0 = 7 S.es). (@.10)
]
Let us note that if 4, is a product of uniform probability measures on {—1, +1}
then a simple application of logarithmic Sobolev inequality [35] for the measure
1o shows that the absolute value of s 4(g;) is bounded by one. (More generally, if y,
is a translationally invariant product measure on a space M* with M a finite set,
then |s(e;)| is bounded by a constant.) We have

Proposition 4.2. Let E be a translation invariant ergodic probability measure on
(J, #)and let 3={g,} .y be a translation invariant family of probability measures on
(2, 2). Then the thermodynamic limit

s(e,)=lim s ,(¢,) (4.11)
Fo

exists and is independent of JeJ, E-a.e. and the van Hove sequence Z,.
Motivated by the above proposition we introduce the following notation:

s(9)= lim s 4(0;)= lim Es (g;) - 4.12)
Fo Fo

Proof. Let us first note that from the decrease property of entropy, we see that the
proofis trivial if for some 4 € %, we have g5 ,. Therefore we need only to consider
the opposite case. Using the decrease property from Lemma 4.1, we have for any
AeF,,

45| x|

T @)= sale) = T sax(es)- (4.13)

Since %, is van Hove, so for any Ne N, |45|/|4]—1 as 41T and it is sufficient to

show that lim s, (o) exists, is nonrandom and independent of #,. By subadditiv-
F

ity of entropoy, Lemma 4.1iii), we have

1
(0))S — . N
SAN(QJ)—— n(Aﬁ) 1= 1)_;,;(/1;) SAN(QT()J) (4 5)

Hence using an extension of the Kingman’s subadditive ergodic theorem (see
[47, 46, 41]) we conclude that

se)= lgn Saz(en)= li;n Spz(0) 2 — o0 (4.16)

exists, is translation invariant and therefore by ergodicity of. E is constant E-a.e.
Simple comparison arguments show that (4.16) is independent of N chosen and
consequently of the van Hove sequence #,. Afterwards we will need also the
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following proposition which can be shown similarly as Theorem I1.23, p. 41 in
[38].
Proposition 4.3. The function

0=1{0s}scs>s(2)
is affine, ie. for any two families §,={0"};cy and §,={0%},;cy and any
te[0,1],
s(tey +(1 —1)e) =ts(ef") + (1 —1)s(ef”).- (4.17)
It is also upper semicontinuous (with respect to the topology defined by the metrics
(4.4)).

The last quantity necessary to formulate a variational principle is the energy
density. For §={0,},c;, ?€B(E) and a finite set 4€ %, let us define it by

eA(0n ®)= l—j—l o (H (. ). (4.18)

We can write it in the form

4.19)

XeF
ieXcAa

[
cden®)= 1 5 QJ( 5 o @)

Using this, translation invariance of the interaction @ € B,(E) and the family g
={g;} ;s together with translation invariance and ergodicity of E, one may wish
to take formally the infinite volume limit to get a quantity

e(és ¢) = EQJ

Z | Xl Dy(J, )) (4.20)

As one can see this is totally correct if @ € B{(E). However, if an interaction has a
nonzero component from the space B}(E), then it is hopeless to have the right-
hand side of (4.20) finite in general. Therefore we would like to restrict ourselves
from now on to the translation invariant families ¢={g,},.; for which the
functional

1

B,E)>®—Eg,| Y — &4(J, ") 4.21)

xez |X|
OeX

is continuous. The space of such § is denoted by BF(E). It is useful to understand

how this space is big. To see that we prove the following

Proposition 4.4. Assume that the translation invariant family fi={y,},. is given by
K= li_m Ha,as (4.22)
Zo

where u, , are the finite volume measure defined by (4.3) with a potential
P eB/(E). Then the family fi={u;},., belongs to BF(E).

Proof. Let @'€eB(E), ¢'=¢'+ v’ and for any X € Z, sy€[0,1] an interpolation
potential @'(sy) is given by
@y if Y+X

sy®@y if Y=X 423)

D(sy)y= {
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It is clear that if the limit (4.22) exists, then for any fixed X € %, the limit of the
sequence {{i, ; .} 1c 5, Whose elements are defined as in (4.3) but with a potential
@'(sy), also exists. Moreover the expectations for the corresponding measure

MJ,SX = lgn AuA,J,Sx (4‘24)

are differentiable with respect to sy e[0,1].
Let us now consider the functional

1
B(E)> ®Epy | 5 o @, -)) , (4.25)

OeX

where @ = ¢ + 1, ¢ € BYE) and y € By(E). The continuity with respect to the ¢ part
of the interaction is standard (and is in fact independent of u;). To see the
continuity with respect to v we write

1
UWx =MWy sx=0Px T+ (j; dSX.u'J,sx(lp/Xa VYx) (4.26)

[where y’ corresponds to the interaction @’ used to define y; ,, in (4.24)].
Using this and the mean zero condition for the’s interactions we see that

1
4.
E(#J ’{,;‘f X 'Px) =E Z IX] fdsxllj sx(Wx ¥x) .- 4.27)

Now similar arguments as used in Sect. 2, based on definition of the y's and
Holder’s inequality, show that

1
Ey, (XGZ”J m VYx

OeX

Syl - llwl- (4.28)

This ends the proof of Proposition 4.4.
We come back to the thermodynamic limit of the energy density. From the
consideration (4.18)4.21) we conclude

Proposition 4.5. If §eBf(E), 6={¢,};.y for a translation invariant ergodic
measure E then

lim e 4(¢;, ®)=e(@, D), (4.29)
Fo

E-a.e. independently of the van Hove sequence %,.
The next step towards our variational principle is provided by the following fact
Proposition 4.6. Let A€ % . Then for any ® € B/(E) and any ¢ € B}¢(E),

sale)—ealer PU)=pAPU, -)), (4.30)

and therefore N N

4 S(0) (@, 2)Sp(@). @31)
Proof. The inequality (4.30) follows from the definition of related quantities by
application of Jensen’s inequality (see [54,38]). The inequality (4.31) is a
consequence of (4.30) and the existence of the thermodynamic limit for p 4, s, and
e, proven respectively in Theorem 2.1, Proposition 4.2 and Proposition 4.5.
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As is known the equality sign in (4.30) holds iff §={o,},., is a finite volume
equilibrium family of states defined by

—Ha0U, )

Hole

ol @)

Therefore one may wish to use (4.31) and give an a’priori meaning of infinite
volume equilibrium family of states in the following way.

Qri=pg ()= (4.32)

Definition 4.7. An (infinite volume) equilibrium family of states for a random
lattice system is by definition a family g, B¥(E) satisfying

$(0p) —e(8q, P)=p(®P). (4.33)
Our main result of this section is the theorem justifying this definition.

Theorem 4.8. Let E be a translation invariant ergodic probability measure on (J, #)
and let ® € B,(E). Then

p(®)= sup {s(g)—e(@, P)}. (4.34)
2 B(E)
Proof. Let @ € B/(E). We shall to show that for any £> 0 there is a family g € B¥(E)
such that . .
p(P)=5(0)—e(@, P)+e. (4.35)

We construct these families § explicitly.
For NeN,let {4y} yen be acovering of T by disjoint N-cubes. We define first an
infinite volume periodic family 4*V = {u{M},.; by setting

PEMIZ 0= |2 0 (4.36)

and assuming the spins in different N-cubes to be independent.
To get a translation invariant family we average each measure u§*™ over a cube
Ay, i.e. we define g™ ={u™M},_, by setting

1
W= o ST, (437)

where the sum runs over aeT, a= Z ne;, |n;] =< N, and Cy denotes the number of

these translations. What is 1mportant for us, is the fact that iV)e B¥E). The
conditions of Definition 4.1 are obviously satisfied, whereas the continuity of the
corresponding functional (4.25) follows by similar arguments as in the proof of
Proposition 4.4. Now we use Proposition 4.2 and Proposition 4.3 to get

S(A™) = Es g (Hay, 1) - (4.38)
We note also that by a choice of a sufficiently big N € N the energy density e(iV, @)
1
g (H 4 (P
'A | A ( a ( ))

and Ep,, (®) respectively. To see that one applies the same type of surface energy
estimates as in the proof of Theorem 4.1. These together with the finite volume

equality
San(ay, ) —€ay(Bay, 1 PJ5 ) =P 4 (D) (4.39)
give us (4.35) and so ends the proof of Theorem 4.8. [

and the pressure p(®) can be arbitrarily well approximated by E
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With this we end the consideration of systems with interactions from the
Banach space B,(E)=B{(E)+ B}(E).

5. Long Range Random Site Interactions

This section is devoted to a discussion of lattice systems with interactions @ € IB(E),
i.e. satisfying

@| = sup su
12 AEE“SMI

1 <o, E-ae.. (5.1

Let B,(E) denote the subspace of translation invariant elements from IB(E).

At the beginning we would like to show that there are reasonable interactions in
B,(E), which do not belong to the space IB,(E) considered in Sects. 2—4. A class of
such (long range two point) interactions has been considered in [32], where a
complete description of corresponding lattice systems in the high temperature
region was given. Here we present some possible generalizations of these
interactions. Afterwards we discuss the thermodynamic limit for pressure. In the
considered case our results are less satisfactory in general (some problems have
been already encountered in [32]). As we will see in the present situation the replica
systems are better. Let us introduce the occupation number random variables n
={n;:(J, #)—{0,1}};.» assumed to be independent and identically distributed.
For Xe %, let £4:(2,2)x(J, #)—R be a function dependent only on all spins
{0,:ie X} and such that

¢xln, 0)=ny&y(n,0), (52)
where ne= 1 ;. (5.3)
ieX
Let a representation of the translation group T be given by
Tn;:=n;_
e 54
T,0;:=0 i-—a} G4

We assume that the functions (5.2) satisfy

Ex+1aM, 0)=Ex(T_ 0, T_ 1 ,0) (5.5
for all aeT and some LeN.
Let G: T-R, 1
Gp=Gla—b):= — d,ge' “HG 5.6
b ( ) (2TC)d (-1!,1:)‘1 dq (q) ( )
with 0=16@)I= 16l < o0, (5.7)

and where for a— b._ Z ( b)e; we set g-(a—b)= ¥ q(a b). To
=1,.

show that ]B,(E)\lB,(E) is nontr1v1al we would like to dlstmgmsh the following
examples of interactions.

Example 5.1. For Le N we define an interaction ©® ={0Oy}y.s by

o _{Gab5X+La6X+Lb if Y= (X+La)&)(X+Lb)
o

8
otherwise (58)

Using (5.4) and (5.6) we see that the interaction @ is translation invariant. []
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Note that in particular, if the spins o;€{—1, +1}, then taking in the above
example ¢y =o; for {i} =X, we get Ising models. To include S¥ models one can
generalize Example 5.1 as follows:

Example 5.2. Let {EQ},-, .y be the functions defined in (5.2}5.5). Let

.1 ey A
e I ) (59)

with a matrix G(q)={G*(q)} satisfying in the sense of quadratic forms

— Mg)5* <G*(q) < Mg) ™ (5.10)
with some 0 <A< co. We will set
|Gll= sup (inf{1€(5.10)}). (5.11)
ge(—m,m)

Now we define a translation invariant interaction by setting
Oy= Y, Gy &R LS 1o (5.12)
aa

for Y=(X + La)u(X + Lb) and zero otherwise. []

We want also to indicate one more example in which we allow spins from
different type of sets to interact.

Example 5.3. Let G(q) = {G**¥X)(q)}% %%~ be matrices satisfying in the sense
of quadratic forms

— Ax(q)0% Oy x < G XNg) S Ax(@)0" dxx: (5.13)
with some 0< A4(q) < oo such that
||G|| = sup (inf ¥ (lx(q)e(5.13))> <o0. (5.14)
qe(—n,m)d XeF

Let G4 XX) be the Fourier transform of G“***X)(q). Assume
sup (€|, < co. (5.15)
a, X

Then we define

Y GE R L%
Oy:= &0 (5.16)

for Y=(X+ La)u(X'+Lb)

and zero otherwise.
To get a concrete realization of such an interaction one can for example choose

e {0t
with some G**(q) from Example 5.2 and a number te N. [
We have the following proposition:
Proposition 5.4. Let ¢ e B(E). Then for all O interactions
O +¢peB,E). (5.18)

Moreover there are interactions © belonging to B(E)\IB/(E). [
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Proof. First we show that @ interactions satisfy (5.1).
We have, using the definition of @

Y Ox

XcA

1 e o XX N
P EC T It s
a X+LaCA

X' +La'CA

sup /IX(Q) (EQ% 1) (5.19)

a,X: X+LaCA ge(—mn,m)d

a,

IIA

Hence

lZ O
XcAa

which proves (5.1) for interactions @.
Since obviously also ¢ e BS(E) belongs to B,(E), we have (5.18).

<G| sup 1ER12 - 141, (5.20)

(Remark. Note that restricting to a base #,CF we could get (5.1) for any
& e BY(E).) To show that IB,(E)\IB,(E) is nonempty, it is sufficient to take @ defined
with a matrix G satisfying

Z |Gab]=ooa (521)

aeT

and any &y such that E¢y .6, 0. O

A simplest explicit example of a matrix G satisfying (5.21) and (5.6)(5.7) one
gets by taking

Glg)= H q(,) = 2(g¥ < g®)-1 (5.22)

defined with some 0<|q{|<=. Then we have

4 sing(a—b)
Gy iDI a—b) (5.23)
Some other examples can be found in [32]. The interactions @ given by a matrix G
from (5.23) are weakly decreasing with the distance |a — b| and taking positive and
negative values in an oscillatory way. Such interactions are thermodynamically
stable and have all the important features of RKKY interactions, therefore can be
used to describe models of alloys of ferromagnetic with nonferromagnetic
materials (e.g. Fe with Au).
To give a better idea how reach the class of functions G satisfying (5.6)+(5.7) is,
we would like to give also the following two examples:

Example 5.5. [60, p. 116]
For any q,+0 the sequence

. cos(goli—jllogli—jl)
Gli—j)= LB
li—jl
i,jeZ, |i—jl=1, has a bounded (continuous) Fourier transform whenever

a>o,=%. [

Another example showing that the value o, =1 is sharp, is the following
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Example 5.6. [60, p. 119]
For any g,+0 the sequence

cos(goli—jl logli—jl)

li—jl'"?(logli—jl)
i,jeZ, |i—jl=2, has a bounded (continuous) Fourier transform G(q) whenever
y>1. O

These examples show that the class of random side interactions considered in
the present section is essentially the same as the class of random bond interaction
introduced a long time ago by Edwards and Anderson. It would be interesting to
understand better this connection and in particular to recover in the case of
random side interactions the results corresponding to those mentioned in
the introduction for random bond interactions.

To see that the introduced interactions are reasonable we would like to
consider the thermodynamic limit for the pressure. Let us note that using the
condition (5.1) one can always choose a countable base %, in general dependent
on the interaction @ + ¢ € B/(E), such that

P(@+¢)=1imp,(6+¢) (5.24)

Gli—j)=

exist and is nonrandom E-a.e. Using the condition (5.14) one can also show that
this limit is the same for any two equivalent bases #,={4,€ % },.n and F;
={A,e F},.n Where equivalence is defined by requirement that
|4, 4
nlin:) N 0. (5.25)

To get a well defined pressure functional we should show the independence of
the thermodynamic limit for the pressure of the van Hove (or Fisher) countable
base #,. However, as indicated in [32] there are some problems to get it, even if
one considers some special examples of interactions. Roughly speaking they are
connected to the fact that “a surface energy” (describing the interaction of 4, cube
with its exterior) need not be small in absolute value (nevertheless the system
remains stable due to “compensation in the mean” of interactions coming from
different cubes). As noticed in [32] there is no problem if one considers interactions
possessing a spin flip symmetry or interactions breaking this symmetry, but at high
temperature.

To consider the first case, let us assume that there is a measurable bijection

*:(Q2,2)>(2,2): Q30> 0% Q

such that for any 6 e Q
(c¥)*=0. (5.26)

Any interaction ¢ respectively @ satisfying

Px(0%)= T Px(0) }

respectively @ y(c*)= + O(c) (5.27)

is called #-symmetric for (+) sign in right-hand side (5.27) and is *-antisymmetric
for (—) sign, for all X € #. An interaction @ is called *-symmetric of type I iff
corresponding functions & are *-antisymmetric.
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We assume that the free measure u,, used to define a finite volume pressure, is
*-symmetric. This implies

po(F)=0 (5.28)

for any *-antisymmetric function F, i.e. satisfying F(c*)= — F(o0).

We will need to consider the equivalence classes of van Hove sequences defined
as follows: Two van Hove countable bases Fy={A,eF},.n and F;
={A, € F,},.n are called van Hove equivalent and we write &, ~ %, iff one can
choose a subsequence 7§ ={A; € ¢}, satisfying:

For any kelN and any 4,€% one can choose disjoint sets {T,A;
CAS}i=1,...,k(A,.) so that

AN\ U Tady

i=1,...,k(4n)

lim lim
k-0 n— o IA,,I

=0, (5.29)

and the same holds with #; replaced by %,.
In particular any countable base consisting of sets of the form

d
ANy, ..,Ny)= {T,A:aa Y niei,ln,-léNi}, (5.30)
i=1

where N;e N (i=1,...,d) are van Hove equivalent. They are also equivalent to any
van Hove base #,= {4, € #} ,.g such that for any ne N there exists a covering of
I’ by disjoint translations of 4, %,

Let #,,,={4,€ F },.x denote a countable base, called exponential, consisting
of sets A,=Ayz for some NoeN, Ny=2.

We would like to indicate the following result for ® interactions

Proposition 5.7. Let E be a translation invariant ergodic probability measure on
(J, #). Let ¢ e BS(E) be *-symmetric and let © *-symmetric of type I. Then the
thermodynamic limit for the pressure

p(O@+¢)=limp,(6+9) (5.31)

exist, is independent of JelJ, E-a.e. and of the van Hove sequence %, in any
equivalence class. For any interaction ¢ € B{(E) and O, if the infinite volume
pressure functional p(O@ + @) exists, it satisfies the following continuity property:

PO +¢)—p(O + )< |G-G| <iu}13 max (|9 + [1xl oo)>
+max (|G|, |G']]) sup || EP =N+l —¢lla, (5.32)

where G, &9 respectively G', & correspond to O respectively @'. []

Remark. If one restricts oneself to S¥ models one may show the first part of
Proposition 5.5 also for non-*-symmetric Gibbsian interactions ¢ e BS!(E) at high
temperatures, by use of arguments from [59] (generalizing [32]). This allows us,
which is important, to include a random external magnetic field.

Proof. We prove the existence and nonrandomness for the equivalence class of an
exponential countable base 7., = {4yz},n. In other cases the proof is similar. Let
Fo={A€ F }men be a van Hove sequence. For A€ %, let {AQ},- 1 .5 bEa
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covering of Ay. Then we have
AN) n(AN)
PA(O+d)= mln ® A% CXP{_ (HA_ ) HA%?)}
= 1=1
[yl 1 5
4] n(Ax) 1=1.. Znaz)
where H,,=H ,(O + ¢) for any A’ # and the measures 11, are the finite volume
measures defined for the interaction @ + ¢. Using Jensen’s inequality we get

A, (5.33)

Ayl 1
O+ o
pA( d))— |A| M(AN) =1, Zn(Aﬁ) pAn
1 n(An) n(An)
{A\ @ u J\Hy— Y Huo . (5.34)
1=1

The second term on right-hand side (5.34) we write as follows:
1 n4R) n(4R)
4] & maQ | Hy— Z H 4
=1 =1

1 n(AN) n(AN)
- S | i e
1 nN)

o @ ( () — z HA<'>(¢)> =A(5.35)+B(5.35). (5.39)

Since by our assumption the interactions @ and ¢, and the free measure u, are
x-symmetric, all the measures u,, are *-symmetric.

Now using the fact that @ is *-symmetric of type I we get
n4x)

A(5.35)=

] 1=®1 1a® 2 O x + Layox +Lb) (5:36)
with the summation Y’ going over the sets X € # and a,be T such that the
conditions

X+LauX+LbCAY (5.37a)

for some I=1,...,n(4y) or
X+LacAY and X+LbcAY (5.37b)

forsome [,I'=1,...,n(A4y), [+, are not satisfied. From (5.36), using the definition
of @ interaction with (5.13)+5.16), it is not very complicated to get that

1 n4R) n(AnN)
lim |— & l‘A“’( 4A0)— ¥ HAW(@)>
%o 4] 151 151
= lgn SJuP X0 x + Layox + Loyl = 0(N), (5.38)

where }*” means the summation restricted to X + La and X + Lb intersecting some
boundary 34 resp. 04, with some o(N)> 0, o(N)— y_, ,,0. (The conditions (5.11)
and (5.15) play in the above the crucial role.) The second term on the right-hand
side (5.35) has similar property by standard arguments.

Let now use these estimates together with (5.34) to show first that the limit of
{ED 4} 4c 5., €Xists. Integrating both sides with the translation invariant measure E
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and using the translation invariance of the interaction and the free measure (used
to define the finite volume pressure) we get in the limit as 4 ~I" through a
countable base &, that

lim infEp .= Ep,,, —o(N). (5.39)
Fo
Hence we get
lim infEp , > 11m supEp, . (5.40)
Fo

For an exponential base this implies that
p(@+ ¢)= lim Ep (O + ¢) (5.41)

exp

exists. Now we can use arguments based on (5.39) and (5.40) to show that in fact
p(O@+ ¢) is the same for equivalent sequences F,~ %, ...
Since E is translation invariant and ergodic,

lim
1% nAy) i=1.. Tincax
Therefore (5.34) also implies that
lim infp (@ + ¢) = Ep, (O + ¢p)—0(N), (5.43)
Fo

pA9=Ep,,. (5.42)
)

and so ]
lim infp (@ + ¢) = lim Ep (O + ¢)=p(O + ). (5.44)
fg 9'_0

This however allows us to conclude that
p(O@+ @)= lgn pAO + ) (5.45)

which ends the proof of the first part of Proposition 5.5. The continuity property
follows from the estimate

li \H (0 +§)—H (6 + )

IH O—0)+— [H(dp— '), 5.46
and use the standard arguments to estimate the second part from the right-hand
side of (5.46) and similar arguments as in the proof of Proposition 5.4 for the first
part on the right-hand side of (5.46). This ends the proof of Proposition 5.7. [

Remark. As observed in [32] one can show the existence and nonrandomness of
the thermodynamic limit of the pressure even for some long range random site
interactions violating (5.1) (given e.g. as in Example 1 but with G(q) = — (q,) for
some 0<g<m, and {{y=0}). In this case one can however expect to have a
pathological behaviour of the system as the interaction changes.

In investigation of spin glass phase transition an important role is played by
replica systems. In this case we consider the same symmetric interactions inside
each hyperplane I, and additionally couple the hyperplanes by the interaction of
the form

f/th Vasrao ) Varrdoe ke (5.47)
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for X = A+ L'a with some Ae %, A'eN and ae T, and for other sets X we put Vy
=0; heR. If we are interested in a spin glass phase transition we shall have to
study the differentiability properties of the pressure functional at h=0. The
interaction ¥ plays the same role as the external magnetic field in the study of
ferromagnetic phase transitions. We assume that the V,’{s are *-antisymmetric.
Then ¥ is *-symmetric. Hence the replica system has again *- -symmetry and we can
adopt the proof of Proposition 5.7 to get the following result in whose formulation
we use similar conventions as in Sect. 3.

Proposition 5.8. Let E be a translation invariant ergodic probability measure on
(J, #). Let @ + § be the interaction defined in T, k € Z hyperplanes and correspond-
ing to the translation invariant and *-symmetric interactions @+ ¢. Assume the
interaction V defined in (5.47) is translation invariant and *-symmetric of type I.
Then for any interval O CZ. the limit

PO+, V)=1im p,, (6 +8,7) (5.48)
Zo

exists, it is independent of J € J, E-a.e. and independent of the van Hove sequence F,
(inside an equivalence class of countable bases). Moreover

PO+, V)= mg B+, V) (5.49)
(‘)

also exists and both functionals are convex and continuous in the interactions. []

Remark. Contrary to the situation in Sect. 3, now we can have a good continuity
estimate for p(@ + ¢, V) given by the right-hand side of (5.32) plus the classical
norm of the difference of the corresponding ¥’s interactions.

Finally let us note that one may expect to have a very interesting behaviour of
systems with @ interactions in the low temperature region. As indicated in [59]
there is a large subclass of @'s [containing e.g. two point interactions with G given
by (5.23)] for which the spin system possess infinitely uncountably many non-
translation invariant ground states. Therefore one can expect to observe
interesting phase transitions (including the breaking of translation symmetry for
translation invariant nonrandom @ interactions).

Acknowledgement. The author would like to thank A.C.D. van Enter for a number of valuable
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