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Abstract. We consider the space N of C2 twist maps that satisfy the following
requirements. The action is the sum of a purely quadratic term and a periodic
potential times a constant k (hereafter called the nonlinearity). The potential
restricted to the unit circle is bimodal, i.e. has one local minimum and one local
maximum. The following statements are proven for maps in JV with nonlinearity k
large enough. The intersection of the unstable and stable invariant manifolds to
the hyperbolic minimizing periodic points contains minimizing homoclinic points.
Consider two finite pieces of these manifolds that connect two adjacent homoclinic
minimizing points (hereafter called fundamental domains). We prove that all such
fundamental domains have precisely one point in their intersection (the Single
Intersection theorem).

In addition, we show that limit points of minimizing points are recurrent, which
implies that Aubry Mather sets (with irrational rotation number) are contained in
diamonds formed by local stable and unstable manifolds of nearby minimizing
periodic orbits (the Diamond Configuration theorem). Another corollary concerns
the intersection of the minimax orbits with certain symmetry lines of the map.

I. Introduction and Results

The main objective of this work is to bound the number of ways that stable and
unstable manifolds of minimizing orbits can intersect each other. We do this for a
class of maps whose members are close (in the C2-topology) to a standard map
with large k.

We will consider maps generated by the action:

h(x,x')=l/2(x-x')2

where
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V has a unique minimum xmin and unique maximum xmax,

F"(xmin) = l and F " ( x m a x ) = - 1 . (1.1a)

The first of these last two requirements can be achieved by normalizing the
constant k. The second requirement is to avoid inessential constants in the
exposition; the theory can be written up taking this constant into account. We
remark that the theory developed here can also be applied to multimodal
potentials, albeit with different conclusions. The generalization of the theory to
actions that do not have the form of a quadratic piece plus a "potential" is more
problematic since we have relied upon the "Laplacian" form of the map [e.g.
Eq. (2.1)]. However, it appears that serious problems only arise iϊdxdx.h(x9 xr) is not
bounded away from zero. In this article we have restricted ourselves to the simplest
case given by Eq. (1.1a).

We have:

jx^x + y + kV'{x)

and here / maps R2 to itself. We adopt the convention that Aubry Mather sets,
henceforth denoted by £ρ, correspond to the minima with irrational rotation
number of the functional

H= + £ h(xbxi + 1) (1.1c)
i= — oo

(see Aubry 1983; Mather 1986). The other minima of H are denoted by Epjq for the
periodic orbits, Ep/q+ for the advancing orbits, and Ep/q- for the receding orbits.
The map / can regarded as the lift to the universal covering of either a map of the
torus to itself or of the cylinder to itself.

We will now define the notion of separating curves (see Veerman and
Tangerman 1990), which will play a major role in the exposition. For each p/q +
or p/q — , separating curves y(p/q + ) or y(p/q —) are defined as follows. Let sί be a
point on Ep/q+ or Epjq-. Connect s1 to the neighboring points pί and p2 of Ep/q

along their invariant manifolds (see Fig. 1.1). Repeat this for all neighboring pairs
of points oϊEp/q. Note, that these curves and components depend on the choice of q
points sl9 ...,sq in Ep/q+9 respectively, Ep/q— In Sect. 2, it will be shown that we can
choose these points so that the separating curves are actually graphs over x
separating R2 in an upper component containing + oo and a lower component
containing — oo. We will also show (Sect. 4) that the Cantor sets EQ are contained
in the union of open, diamond-shaped regions whose boundary is formed by the
local invariant manifolds that are part of these curves (Diamond Configuration).

The following conventions will be adhered to throughout the article. Consider
the projections of the Aubry Mather sets on the x-axis. By a "gap" G in EQ,
ge{R, Q — ,β + }, we mean (see Katok 1982b) a pair of points in Eρ, whose
projections bound an interval that contains no point of the projection of Eρ. The
meaning of f\G) is then also clear. Denote the finite pieces of invariant manifolds
to EQ that connect the endpoints of a gap G in Eρ by W\G) and WU(G). We will say
that / satisfies the Single Intersection hypothesis if all Ep/φ Ep/q-, and Ep/q+ are
unique, and if, for a gap G in Epjq + or Ep/q _, WU(G) intersected with Ws (G) contains
a single point (which then has to be the minimax) besides the endpoints, see
Fig. 1.1.
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minimax y(p/q+)

gapinEp/q+

Fig. 1.1. Separating curves and gaps

gapinEp/q

There are two motivations for the present work. The first one is very prosaic. In
an earlier work (Veerman and Tangerman 1990), we posed the Single Intersection
hypothesis in order to prove a number of results concerning periodic and quasi-
periodic behavior in 2-dimensional area preserving twist maps. Given the complex
character of the hypothesis and the fact that all the support we could conjure up for
it was numerical, it seemed worthwhile to prove that this hypothesis holds for at
least a limited class of maps.

In that paper, we also needed to assume that limit-points with irrational
rotation number of minimizing orbits are recurrent, but that conjecture had been
stated before by Bangert (1986). These results will spin off from the reasoning we
set up to prove the Single Intersection hypothesis.

The fact that all minimax orbits have a point in common with a symmetry is
very important in current numerical work (Kook and Meiss 1988), and since it
follows from our reasoning, we have included it in this work.

The second, and perhaps more profound, motivation is that it appeared
interesting to study other structures than just orbits and their closures, the most
common objects for study. For example, details of how stable and unstable
manifolds intersect each other may at first seem an unsurpassably messy problem.
However, as results from the considerations in this work, not all aspects of that
problem are as nasty as one might imagine.

Section 2 contains as main result the statement that for large fc, we can draw
separating curves y(p/q + ) which are uniformly Lipschitz and similarly for the
family of curves y(p/q — ). In Sect. 3, we prove existence and uniqueness of certain
periodic orbits, and in Sect. 4 we do the same for certain homoclinic orbits. The
results of Sect. 4 also include the main statement of this work. In Sect. 5, it is proved
that minimaxes have a point in common with a symmetry line. It also contains
some results concerning the geometry of Aubry Mather sets (the Diamond
Configuration is proved). In Sect. 6, we obtain an estimate, in the case of the
standard map, for the lower bound of the nonlinearity k for which our main
conclusions hold. Finally, in the appendices we collect the linear algebra that we
need to state our results. Some of the facts collected there are well-known and we
make no claim to originality here: the collection is for the convenience of the reader
since not all the results are self-evident or standard knowledge. Some results in the
appendices admit generalizations (for example see MacKay and Meiss 1983).
However, we have opted to give the statements their simplest form still suitable for
our purposes.
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For future reference, we list the following:

(Lie)

(l.lf)

Finally, f ' 1 is generated by action (1.1a) with x and x' interchanged.

We will denote the norm max {|x£|} in Rn by | |m and the Euclidean norm by | |.

\Ax\
The operator norm sup m for an operator A is denoted by \\A\\m.

x \x\m

II. Orbits of Bounded Type

In this section, we define the notion of bounded type and prove that the class of
orbits we are interested in (the ones that live in the intersection of certain
fundamental domains of invariant stable and unstable manifolds) are of bounded
type.

Definition 2.1. Let {(xi,yHi}i'Jo-ζX> be an orbit of / The "type" t of this orbit is
defined as follows:

ί = s u p | x i - x i _ 1 + x i - x i + 1 | .
ieZ

Remarks. According to the definition of /, we also have

t = s u p \yt — y i + ί \ .
ieZ

The type of an orbit corresponds therefore with the supremum of the 2nd

differences of the xf and the supremum of the first differences of the yt. Note further
that if the sequence {{y^} ί * is bounded then so is the type of the orbit. For fixed k
all orbits under the map / have bounded type. Intuitively, one expects that as k
increases so does the type of the orbits that can occur.

Lemma 2.2. All well-ordered orbits have type no greater than one.

Proof. If the rotation number ρ of the orbit satisfies —1/2 ̂  ρ g 1/2, then being well-
ordered implies

from which the statement follows. For other rotation numbers, the above
inequality also holds by translational invariance. •

Define the projection π:R2-+R as follows:

π(x,;y) = x,

and denote the collection of orbits of fk with type Orgί̂ g T by Oτ.
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Fig. 2.1. The intervals /_ and J +

Lemma 2.3. i) For all % there is a K1(T)>0 such that for all k>K1(T), π(Oτ) is
contained in two disjoint open intervals in plus their translates. /_(&, T) containing
the minimum of V, and I+(k, T) containing the maximum of V.
ii) (Aubry 1983) Fork>K1(\\ the projection of well-ordered minimizing orbits are
contained in a single interval /_(/c, l) = {x| |F'(x)|<l/fc and V"(x)> —2/k} plus its
translates.

Proof. To prove the first part, note that according to (1.1), we have that orbits are
critical points of H. Therefore,

So,

\V(xd\<T/k,

see Fig. 2.1. The second part follows by observing that for minima one has

d2H

dx2 = 2 + kV"(x)>0. •

Note that the intervals decrease monotonically in size with k and T.
From this lemma, one concludes that all gaps of Ep/q+ and Ep/q-, except for one,

also project to /_. Call this exceptional gap Go. Define the curves:

U w+(Gd,
i > 0

U wί(Gd,
i>0

y(p/<?+)= U

y(p/«-)= U wϊ(

and note that these curves are separating.

Theorem 2.4. There is a K2 such that, if k>K2, then the separating curves y{p/q + )
and yip/q — ) defined as above are uniform Lipschitz graphs over x (with Lipschitz
constant ί+kmax\V"{x)\).

Proof. It suffices to do the construction of y(p/q + ) only. We will therefore drop the
subscript " + " from Wu and Ws.
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For k > Kh(T), Df maps the cone field C defined as the set of all tangent vectors
(α, β) such that ocβ > 0 strictly into itself for all x e / _ (fc, T) (Goroff 1985). So let T = 1
and let K 2 = max{K1(l), Kh(l)}> the local unstable manifold to Ep/q contained in
\J Wu(Gι) lies on a Lipschitz graph

(x,y(x)) with jχ>b-

The image under / of such a graph over (a subinterval of) 7 _ is again a graph with

=

dxn + 1

Since V" is bimodal, we have F"(xe/_)>0. Therefore, the Lipschitz constant of
the graph satisfies L ^ l . So \J Wu(Gi) lies on a Lipschitz graph.'=°

The complement of the cone field C is mapped into itself by Df * [see Eq. (1.1)]
as long as xn-_ί=xn — ynel_. In fact, the cone field C = {( — oc,β)\β>a>O} is
mapped into itself by Df'1 for xn^ιel.. Therefore, local stable manifolds in
(J Ws(Gi) whose inverse images (under /) lie in /_ form a graph (x,y(x)) with

i0

The image under f ' 1 of such a graph satisfies:

* ^ ! - _ f c F " ( x - y ) + dyJdXn (21)

so that

-kV"(xn-yn)-l< ψ=± < -kV'\xn-yn)<-1.
uXn-i

Since F;/(xw _ J > 0 if xM _ x = xπ — yn e I _, this proves that \J W\G^ is uniformly
i>0

Lipschitz (with Lipschitz constant 1 + k max | F"(x)|). Furthermore, using (2.1) once
more, for n = 1, one concludes that dyo/dxo is bounded. Therefore, [j Ws(Gi) is a
graph. • ^°

The following corollary will be instrumental in proving the Single Intersection
theorem.

Corollary 2.5. For k>K2(T), the projection of any orbit in [j {Ws

+{

or (J {Wl(Gύr\WL{G$ visits I+ only once. ieZ

ίeZ

Corollary2.6. All orbits in [j {Ws

+{G^r\Wl{G^} and all orbits in [j { ^
ieZ ίeZ

nWH.(Gi)} have type not greater than 1 (in fact, they are well-ordered).

Proof These orbits lie in y(p/q + ) and y(p/q — ). As before, we consider only the
former case and drop the subscript" + ". Every orbit must have a point, say (x, y\ in
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common with WS(GO) and with WU(GO). Since (J W\G^ lies on a forward

invariant graph and (J WM(Gt) on a backward invariant graph, it follows that the

entire orbit of (x, j;) is well-ordered. •

III. Periodic Orbits

For k sufficiently big, we set up the symbolic dynamics for periodic orbits of
bounded type. We prove that there is a one to one correspondence between
allowed symbol sequences and well-ordered orbits. Moreover, all these orbits are
hyperbolic.

According to Lemma 2.3, the projection of this set π(Oτ) is contained in
7_ 177+ + Z. Consider an orbit of type t in this set with projection {xf} ΐ ®. Let Xt be
the unique critical point of V(x) in the interval that xf belongs to. We will call {Xj
the symbol sequence of the orbit {(x^ j/f)}ΐ *. Define

(3.1)

The type of such an orbit is related to {sj by

t — m a x I
ieZ

where

<5j = 2 max {length (7 _), length (/+)}. (3.2)

Theorem 3.1. For each T there is a K3(T) such that for each k>K3(T), the
following holds: i) to each periodic orbit with type smaller than T corresponds a
unique periodic symbol sequence with type smaller than T+δj, and ii) to each
periodic symbol sequence with type smaller than T corresponds a unique periodic
orbit with type smaller than

Proof From the foregoing remarks it is obvious that i) is implied by Lemma 2.3.i.
Let {Xt} be an ^-periodic sequence of type t! corresponding to a rotation

number p/q. Equations (2.1) for the critical point of 77 can be rewritten in vector
form as:

2 -\

2 -

o -:
o -

0

0

2

- 1

0

- 1

2

+ k

v'(χQ)

-p

0

0

P

Now, define

From the assumptions on V(x) in the introduction, we may write:

ξi-v+(ξ) if Xtel-+Z9

(3.2)

(3.3)
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where ξ { eR,v_ and v+ are twice differentiable, and

\v(ξ)\ = O(\ξ\2

m).

[The sign convention is chosen so that sg(v(£)) = sg(£) for the standard map.] Now
Eq. (3.3) becomes:

- 1

0

0

0 - 1

0

- 1

0

- 1

-k (3.4a)

where

v( = v+ and ε f = + l if X^EI

vf = v_ and εt = — 1 if X ί e / + + Z .

Let Lq be the Hessian of i ί (1.1c) in the points Xi9 then with the obvious notation
(3.4a) can be written as:

Lqξ-kv(ξ) = s. (3.4b)

Corollary A.5 asserts that (K3(T)>4) the eigenvalues of Lq are greater than
\k — 4| so that L is invertible. Define

(3.5)

Fig. 3.1. Graph of f(x) = K + Cx2. At x = x*, the derivative of / is /. For y < x*, f(x) <xiΐK small
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We now observe that Theorem B.4 implies that

Thus ψ is a contraction (see Fig. 3.1) on the region A = [ — δ, δ~]q contained in Rq if

fc-4
0<δ<y<

2kC9

for k large enough. Thus the region A is mapped into itself. Therefore ψ has a
unique fixed point in A. By construction, this fixed point corresponds to a unique
orbit {xj of type t with \t -t'\ < δj. Π

Proposition 3.2. For k>K3(T)+l, periodic orbits in Oτ are hyperbolic.

Proof. We use an identity proved by Greene (1979):

|TrD/«| = |detHess(i/) + 2|,

where

and

xo = xq and xt=xq+ί.

In the proof of the remark that goes with Proposition A.4 we prove that
Λi = 2 + fcF//(xf). So, for |2 + fc7"(x£)|>3, we have

| T r D m Π ( W - l ) > 2 . D

We note in passing that this does not imply that all periodic orbits in the map
are hyperbolic. On the contrary, elliptic orbits can readily be found for arbitrarily
large k (see, for instance, Leage and MacKay 1986). However, they have to have
type bigger than T in the proposition.

Corollary 3.3. Let obe a periodic orbit in Oτ, and let k>K3(T). Let its Hessian be
denoted by H. Then the number of negative eigenvalues of H equals the number of
points of o that project to I+. The other points project to /_.

Proof. This is an application of Theorem A.7 and of Theorem 3.1. •

IV. Homoclinic Orbits

By using the same technique as in the previous section, we now include points in
+ 00

(J {Wu(Gi)n Ws(Gi)} (as defined in Sect. 2) in the symbolic dynamics. Since these
i= — oo

orbits are not periodic, we have to adapt the theory of the previous section. We do
this here for homoclinic orbits. The result is that other than the endpoints Wu(Gι)
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n W\G^ contains a single point. We will make use of the constants Kt(T) defined in
the previous section.

We will make use of the following notation. A homoclinic m-advancing orbit
{xj to an orbit {zf} (not necessarily well-ordered) with z i + q = zί + p (here p and q
are not necessarily relative primes) is an orbit such that

z 0 , limx k —fcp = z 0 . (4.1a)

Lemma 2.3 implies that if its type is small enough it corresponds to a unique
symbol sequence {Xt} with there is an N such that

if

if
(4.1b)

The symbol sequence {ZJ is also called m-advancing. One defines receding orbits
in a similar fashion. Such an orbit is, for all n, a critical point of

Hn= Σ
i = - nq + 1

with endpoints fixed. Set x—Xi + ξi. With the same conventions as in Sect. 3, the
equations for a critical point become:

Mn,qξ-kvn(ξ) = sn
(4.2a)

The vector

*» — nq

0

0
\ζ>nq — n

is denoted by ηn. The matrix Mnq has size 2nq — m, and has

q

entries equal to zero in the upper right and lower left corners (corresponding to the
endpoints being fixed). Equation (4.2a) is equivalent with

where μn is the vector

Lnqξ-kvn(ξ) =

£ —£
^ —nq ^nq — m

0

0

(4.2b)

. By ξ* we will denote the solution of

\^nq-m+l ^>-nqλ

the "periodic" problem with symbolic sequence

Lnqξ*-kvn(ξ*) = sn.

(see Sect. 3):

(4.2c)

We say that the limit of a sequence of vectors {ξ(i)} exists if the components
converge fi.e.: lim (ξ(i))p exists for p fixedV

Theorem 4.1. For each T there is a K3(T) such that for each k>K3(T), the
following holds: i) to each homoclinic orbit with type smaller than T corresponds a
unique asymptotically periodic symbol sequence with type smaller than T+δj (δj as
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defined in (3.2),), and ii) to each asymptotically periodic symbol sequence with type
smaller than T corresponds a unique asymptotically periodic orbit with type smaller
than T+<57.

Proof. As in Theorem 3.1, if k is large enough Lemma 2.3 implies that each orbit
{xj corresponds to a unique sequence {Xt} (which proves i)).

To prove ii) we may assume that we have an m-advancing asymptotically
g-periodic sequence {Xt}. We have to prove that there is a unique orbit {xf} (with
symbolic sequence {Xf}) homoclinic to a periodic orbit {zf}ί^.

We first show existence of a homoclinic orbit with the given sequence. Consider
the periodic orbit corresponding the symbolic sequence {Xi}"l~Jn

nq+1. Call the
corresponding solution of Eq. (4.2c) ξ*(n). Since according to Theorem 3.1 the
components of ξ*(ή) are bounded by δD limit-points of the sequence {ξ*(n)} exist.
Such a limit-point corresponds to a homoclinic orbit with the required symbolic
sequence.

We next show uniqueness of the above limit-point. Let ξ(ή) be the solution of
(4.2b) [which is equivalent to (4.2a)], where we have the freedom to choose
|μn|m<2<5j. Recall that the only non-zero components of μn are the first and the
last. To see that the limit-point is unique, one observes that the vector
((ξ(n + r))_nq+i,...,(ξ(n + r))nq_m) satisfies Eq. (4.2b) for some bounded μn. On
the other hand, {(ξ(n + r))_nq+ί, ...,(ξ(n + r))nq_m) satisfies Eq. (4.2b) with μn = 0.
Thus Lemma B.2 implies that ξ(ή) is a Cauchy sequence. •

Remark. The existence of well-ordered advancing and receding orbits has been
proved by Katok (1982a, b) in a more general context.

Theorem4.2 ("Single Intersection"). For all /c>max{K2,X3(l)}, we have that
+ 00

Λ= (J {Wu(G^nWs(G^} contains one minimum and one minίmax and no other
i = — oo

orbit.

Proof A homoclinic minimax {xt} is an orbit such that for all n big enough the
Hessian D2Hn has a single negative eigenvalue. By Theorem A.7 (and the fact that
the norm of vn is small), this implies that one diagonal term in the Hessian (4.2a)
is negative, or, equivalently, that there is a unique i such that J ^ e i + u Z . (A
minimum has only positive eigenvalues.) Thus existence and uniqueness of the
1-advancing well-ordered minimum and minimax follow from the previous
proposition. (These orbits have type not exceeding 1.)

From Corollary 2.6, one concludes that all orbits in A have type not greater
than one. Suppose now that there is an orbit in A for which the Hessian in the
previous proposition has more than one negative eigenvalue. Theorem A.7 applies
again. (Strictly speaking, we have to modify the theorem, because the anti-diagonal
elements in the matrix vanish. But that is as straightforward as it was in the proof of
the proposition.) Thus the alleged homoclinic orbit {xt} lands at least two times in
/+. But this contradicts Corollary 2.5. •

Remark. This theorem (and other results relying on hyperbolicity and uniqueness
of orbits with bounded type) generalizes to irrational rotation numbers. The
generalization of Eq. (4.2) is given in the proof of Proposition 5.3.
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V. Symmetry Lines and Diamonds

In this section, we prove that for the standard map each minimax orbit, whether
periodic or homoclinic, has a point in common with a reflection line. In addition,
we prove some results concerning the topology of Aubry Mather sets. These latter
ones were conjectured to hold for all k (Veerman and Tangerman 1988a).

Define

m

Suppose further that V\x) = — V'( — x) and that x = 0 is contained in / + (the latter
can be achieved by conjugating by a translation in the x-direction). An example of
a map that satisfies these requirements is the standard-map. Then x = 0 is a so-
called symmetry line (in the example of Sect. 6, we have the symmetry line at
x = l/2). That is: S satisfies

and

and it leaves the line x = 0 invariant (Greene 1979). In this case, we have the
following theorem.

Theorem5.1. For k>K3(T\ we have that the projection of an orbit in Oτ with
symmetric symbol sequence is invariant under reflection in x = 0.

Proof. We start with the observation that / " ί is generated by the action h(xf, x) as
remarked in the introduction. Therefore, if {x J ί j£ is a critical point of

+ 00

H= X ft(xi5xί+1) with rotation number ρ, then {x_ f}ΐ* is a critical point of
ι = — oo

+ 00
H'= £ h(xi+u xt) with the same rotation number. Further, if {xf} is a critical

i — — oo

point of H (orbit of /) and has a symmetric symbol sequence, then, by reflection,
{ — xi} = {πS(xi,j;i)} is a critical point of Ή! (orbit o f / " 1 ) and the same symbol
sequence as {x_J. But by uniqueness of these orbits, it follows that {xj must be
invariant under reflection (x_ί = — x, ). D

Corollary 5.2. For k>K3(ί% each order preserving minimax orbit has a point in
common with the symmetry line.

Proof A minimax has only one point in /+ (see Theorem A.7). Call this point x0.
Order preserving implies that the symbol sequence is symmetric. The result now
follows from the previous theorem. •

Remark. The fact that minimum orbits have no point in common with the line
x = 0, is, of course, directly implied by Lemma 2.3ii (for large k).

Proposition 5.3. Let x be a limit-point of minimizing periodic points such that its
orbit does not have a rational rotation number. For k>K(l), its orbit is recurrent.

Proof Since the proof is very similar to that of Theorem 4.1, we only give an outline
of the proof. We know that any orbit contained in the limit / minimizing well-
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ordered orbits is again minimizing and well-ordered (Mather 1986). Such an orbit
must therefore have a rotation number which, by assumption, is irrational. Its
ω-limit set Eρ is a recurrent set. Suppose that the orbit {x?}±™ of an orbit
constructed that way is non-recurrent. Such an orbit must live in a gap in Eρ and its
symbol sequence {Xf} ί £ is identical to the sequence {Xt} ί £ of either the left- or
the right endpoint of the gap. Furthermore, both endpoints are bi-asymptotic to
each other. So, we can set up an operator Lqn (where qn are, say, the denominators
of the convergents to ρ) and vectors sqn and μQn as in (4.2b) with the property that
lim|μβn| = 0. For the solution ξ* living in the gaps, we reach the same conclu-
sion, that is: the orbit is identical to the orbit of the endpoint of the gap. •

Now, suppose, that Ea is hyperbolic, then by arguments given in Veerman and
Tangerman (1990), there is an open interval of rotation numbers D containing α,
such that H= (J Eρ is a hyperbolic set. We can then define ε-local stable and

ρeD

unstable manifolds at each point of H which have bounded diameter greater than
<5>0. For the remainder of this section, let α irrational, r/s>oι>p/q.

Theorem 5.4 ("Diamond Configuration"). // k>max{K2,K3(ί)}, Ea is hyperbolic
and for r/s and p/q close enough to α, EΛ is contained in a region K which is the union
of diamonds" and whose boundary is formed by local stable and unstable manifolds
to Ep/q and Erjs only.

Proof By Theorem 2.4, y{r/s-) and y(p/q + ) can be constructed so that they are
Lipschitz graphs. Lipschitz graphs satisfy the hypothesis of the Monotonicity
theorem (Condition 2.4 in Veerman and Tangerman 1990). This theorem then
states (Veerman and Tangerman 1990) that if K is the open set defined by:

K is "below" y(r/s-),

K is "above" y(p/q + )

(here "above" and "below" have their usual meaning since y(p/q +) and y(r/s —) are
Jordan curves), then Ea is contained in K.

Assume that xeEa lies in a region not bounded by local invariant manifolds (see
Fig. 5.1). Then there must be a stable segment that intersects an unstable segment

Fig. 5.1. Ws(y) intersects Wu(x) in the points a and b
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more than once. But that is in contradiction with the fact that stable segments have
slope less than — 1 while all unstable segments have slope between 0 and 1. •

VI. Estimates for the Standard Map

In order to form some idea about the size of the constants Kt for which the most
important conclusions hold, we evaluate K3(l\ needed in Theorems 3.1, 5.1, and

5.4 as well as Theorem 4.1, for the standard map (i.e.: V'(x) = —- ). We limit
V 2π /

these considerations exclusively to minima and minimaxes.
In Sect. 2, one immediately has from Lemma 2.3 that

K1(T) = 2πT.

xe/_(/e, T)<=> ^

and

, | x l / 2 | < l / 4 .
K

Further, we have from Theorem 2.4 and from Goroff (1985) that

K2 = max {^(1), Kh(l)} = Kh(l) = 2(1 + nψ2.

The constant X3(l) in Sect. 3 is slightly more problematic. From the proof of
Theorem 3.1, we obtain that K3(T) must be greater than T+3 (Theorem B.4),
greater than 4 (Theorem A.5), and big enough for Eq. (3.5) to define a contraction.
In the reasoning below, we verify that (3.5) defines a contraction for k>2π.

Lemma 6.1. For order preserving minimizing and minimax orbits (periodic and
homoclinic) \\kL'ι\\^l.

Proof. For minimizing orbits, the results follows from Theorems B.4 and B.5. For
minimax orbits, there is a unique IeN such that λj<0 and £7 = 0 (Corollary 5.2).

Proposition B.3 is now still valid with min replaced by min and so are its
i i Φ J

Corollaries B.4 and B.5. •

Theorem 6.2. In the case of the standard map K3(ί) equals 2π.

Proof We have (see proof of Theorem 3.1)

It is sufficient to prove that for k > 2π the map xp

is contracting on any region Δy defined by \ξ\m<y< 1/4 and maps that region into
itself.
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Since

ψ is indeed a contraction on Δγ for 7 < 1/4. In addition,

The graph of -+x—-—sin2πx (see Fig. 3.1) is increasing and intersects the
k 2π

diagonal only if fc^2π. If fc^2π, Δy is mapped into itself for y<l/4 and close
to 1/4. •

VII. Concluding Remarks

While our results are valid only for large fc, we believe that an extension of these
results should be valid for all k. Here is some of the evidence. The Single
Intersection property is observed for all fe, and can also be proven by perturbative
techniques (Simo, personal communication) for small k (though not uniform in the
rotation number). The hyperbolicity of Aubry Mather sets (which is an essential
ingredient in this work) is observed numerically as soon as the invariant curve has
broken up (Li and Bak 1986). We expect that the structure of the invariant
manifolds that we outlined in Theorem 2.4 is very regular for all k: it is not
necessarily uniformly Lipschitz, but it will probably consist of finitely many
graphs, which may be sufficient to prove many of the results of this and previous
works. The way to achieve such results might be to try to prove them for high
iterates of the map we considered in this paper and apply renormalization
arguments.

We expect that some of the results concerning stable and unstable manifolds
discussed in this and previous works also generalize to the dissipative standard
map. It is easy to extend Eq. (2.1) to that case (just multiply the first term by the
dissipation). One could then paraphrase the reasoning in the appendices of this
paper by considering a system of such equations (bearing in mind, of course, that in
this case not all rotation numbers are realized). The result concerning Convergence
of Turnstiles in Veerman and Tangerman (1990) would provide us with detailed
knowledge as to how unstable manifolds pile up in this case.

It is also possible that an extension of this essentially linear construction
generalizes to four-dimensional symplectic maps, such as the ones studied by
Angenent (1988) or Kook and Meiss (1988) and requiring, again, that the necessary
nonlinearity parameter is sufficiently big. This way, one should be able to establish
the existence and the structure of such Cantor sets, in the way that is done in
Veerman and Tangerman (1989) and in Tangerman and Veerman (1990).

Finally, it should be noted that the uniform estimates on the periodic orbits
achieved in Sect. 3, enable one to take Hausdorff limits of such sets and construct
invariant Cantor sets for a given rotation number that have a prescribed fraction of
points in /+ (that is: the Hessian has a certain fraction of its eigenvalues negative).
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Appendix A

In this appendix, we analyze the eigenvalues of the Hessian matrix for large k.
The matrices we are interested in are those of Eqs. (3.4a) and (4.2a).
Let

(A.1)

' λt - 1 0

- 1 λ0 - 1

0 -δs

0 - 1

-δ 0 0 - 1

where δ = 1. Denote the n x n (n < q) upper left matrix by Mn and its determinant by
Δn. The above matrix with <5=0 will be denoted by Mq and its determinant by Δq.
For n ̂  q, denote the matrix obtained by deleting the first row and the first column
from Mn by M* and its determinant by A*.

The following recursive relations are immediate:

Lemma A.I. // Λ_! = 0, Δ0 = l, Λg = O, Λf = l, and Δ*x = \, then, for i ^

and

where

Proof. Expand the determinant on the last row. •

In the remainder of this appendix we will assume that |λ, | > 2.

Lemma A.2. \ΔJιU\lt\-l)\Δt-ι\> Mf l̂ dAd — 1)Mf-jl, and μ ^ ί μ j -

Proof. For Δt we have from Lemma A.1:

At
Ί

 Ai~2
ί

and the first statement is checked by induction. Similarly for Δf. The last statement
follows by symmetry. •

Lemma A.3. For all i, M ^ l , \ctAi — Δf|^(|λf| —

Proof. From Lemma A.I, we obtain

aΔ,-ΔT

For i = 1, one easily checks that this statement holds and one continues again by
induction. •

Proposition A.4. det(Lβ)Φ0.
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Proof. First suppose that at least one λt is negative. From the last equation of
Lemma A.I:

By Lemma A.2, the first term in the right-hand side dominates the other two. Thus
with \Aq-2\ smaller | ^ _ i | :

Now apply Lemma A.3. Suppose ί is the smallest integer so that λt<0. The
corresponding right-hand side in the proof of Lemma A.3 is greater than 3.

If all λt are greater than two, then from Lemma A.I,

Since

J 1 - J $ = Λ1>2,

it follows (by induction) that

Δq-Δ*.,>2.

From Lemma A.I we obtain that |det(Lβ) + 2j>2. Therefore

det(L,)Φ0. D

t I -1 0 +1 f f I eigenvalues of Mn - 1

\ \ ' ' ' T A W
j J l i t eigenvalues of Mn

Fig. A.I. The eigenvalues of Mn and Mn_ {

Corollary A.5. // μ is an eigenvalue of the Hessian then there is an i such that

Proof If not, then the previous proposition gives

det(Lg-μ/)Φ0. D

Lemma A.6. // \λt\ > 3,

, > for q>2.

Proof. The first relation follows immediately from Lemmas A.I and A.2. For the
second relation:

det(L,)_=κ-
where the individual terms can be estimated by using Lemma A.2. •
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Theorem A.7. // |λf| > 3, the number of negative eigenvalues (counting multiplicity)
of the Hessian Lq equals the number of negative terms on the diagonal.

Proof We will make use of the fact that the matrices considered are symmetric.
That implies that they are diagonalizable, have real eigenvalues and that different
eigenspaces are orthogonal. Moreover (see Wilf 1978), the eigenvalues of M f _,
separate the eigenvalues of M{ (and Mq_1 those of Lq) as depicted in Fig. A.I. (In
case M f has an eigenvalue with multiplicity p, then M f_ x has that eigenvalue with
multiplicity p — 1.)

Let μ" denote the ith eigenvalue of Mn. All of these eigenvalues lie outside the
interval [— 1, + 1 ] by Corollary A.5. Knowing the sign of the eigenvalues of Mn

determines the sign of all but one of the eigenvalues of Mn_ x (see Fig. A.I). So that
sign has to be determined by sg{ΔJΔn-ί} from which the theorem follows. •

Appendix B

In this appendix, we consider for k sufficiently big, the solutions of the following
linearized problems.

- The periodic problem:

Lqξ = s, (B.I a)

where ξ = (ξuξ2, ...,£<,) and \s\m<^T.

- The m-advancing homoclinic problem:

For all n:

Mn,qξ = sn + ηn, (B.lb)

where Mn^q = Mlnq_m as defined in Appendix A,

ζ \ ζ — nq+ 1> ζ — nq + 2' •? ^ 0 ? C l J •••? ζnq — m) ?

|(sπ)|w ^ T, and ηn = (d(n), 0,0,..., 0, C2(π)) with |f/Jm ^ C independent of n.
In the last problem the only parameter of interest is n. The sequence of vectors

{sn} is chosen so that if k>n, corresponding components numbered —nq + 1 to
nq — m of the vectors sk and sn are equal. We are interested in the sequence of
solutions {ξ(ή)} to (B.lb).

In both problems the object is to prove that the solutions ξ, respectively ξ(n\
have components of uniformly bounded size. Furthermore, the sequence of
solutions {ξ(n)} converges component wise.

Let λt be the diagonal elements of Lφ respectively Mn > ί, and let μt its eigenvalues.
Throughout this appendix, we will assume that |Af|> T + 3 .

Lemma B.I. At least one component of ξ satisfies: \ξι\ S
m i - 2

Proof Denote with d the dimension of the space acted on by the operator Lq (or
MnJ. Then:

id ΛΓΛT
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(The last inequality follows from Corollary A.5.) •

In the next lemma we consider the homoclinic problem. Denote by ξ*(ή) the
solution to (B.lb) with ηn = 0.

Lemma B.2 (Exponential Decay).

Proof. Denote the components of (ξ(ή) — ξ*(rή) by ί(n)j = ίj. The above equation
implies (except for the components i = — nq +1 and i = nq — m),

So if

then

Thus

This implies that the graph of |ίf| versus i is exponentially increasing (with a factor
at least 2 each time) as soon as it is not exponentially decreasing (with a factor at
least 2). Now consider the first and the last equations:

λ-nq+lt-nq+l^t-nq + l^ C l(n) >

There are now three cases to consider:

- The graph of |ί;| versus i is exponentially increasing with a factor at least 2. Then
we conclude that | i n e - m | ^C 2 (n)^ |^ n | w .
- The graph of \tt\ versus i is exponentially decreasing with a factor at least 2. Then
we conclude that l ί - ^ + J ^ C ^ n ) ^ ! ^ .
- The graph of |ίf| versus i is first exponentially decreasing and subsequently
exponentially increasing (with a factor at least 2). In this case we also have that
\tnq-J^C2(n)S\ηn\m and {t-^^C^njuMm-

In all cases we obtain that

Denote the component that satisfies the inequality of Lemma B.I by ξv

T T
Proposition B.3. // |^( < . —-, then \ξI+1\ < —min \λι\ — λ min |Λj | — 2

i ί

Proof. First we observe that for periodic orbits ξ0 = ξq and for m-advancing (or
m-receding) homoclinic orbits ξ~kq — ζkq-m converges to zero exponentially fast.
The former claim, of course, follows directly from (B.lb) which has periodic
boundary conditions. The second can be seen as follows. Since ξ must be a solution
of (B.Ia) for all n, we have that for n = 2fc, ζ-kq+i and ξkq_m+i satisfy the same
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equations for ie{ — (k— l)q, ...,kq}. Therefore, the argument in Lemma B.2
applies and ξ-kq — ξkq-m must go to zero exponentially fast.

Writing out the equation for ξi + ί, one has

We have that if

\ξt\>

Si+l — λiζi~ζi-l~Si'

and
mm\λi\-2

(B.2)

(B.3)

then

So

Si

ξl

< min |λ(| — 1

λ,-
ξl

Suppose now that the proposition does not hold. Since by assumption (B.3)
holds for /=1 + 1, we obtain that

\ξl + 2\>\ξl+l\

By straightforward induction (noting that ξo = ξq if the orbit is periodic, or
(ζ-nq — ζnq-nD *s exponentially small if the orbit is homoclinic), one then proves

T
that \ξj\ > — — , contrary to our earlier assumption. •

mm iΛfl — 2

Theorem B.4. Let X0 = Xq + p and X\= Xq+1 + p. // the sequence {X\}f=o has type
t^T, then the linear equations (B.I) with periodic boundary conditions have a unique

T
solution ξ with ξo = ζq and ξ1 = ξq+ι and \ξt\< .

m
mm |

j

Proof. By induction. Suppose \ξj\9..., \ξI+n\ satisfy the inequality. If |
not satisfy it then by Proposition B.3, \ξj\ does not satisfy it. •

does

Theorem B.5. Let {X^^fL ^ be an asymptotically q-periodic m-advancing sequence
(corresponding to an asymptotically q-periodic m-advancing orbit) with type t ̂  T,
then the linear equations (B.I) without periodic boundary conditions have a unique

T
solution ξ and \ξt\< . — - .

mm l^ l — 2
j

Proof. Now ξ e Rnq ~ m. Lemma B. 1 implies that there is at least one component of ξ
such that

m i n I Ail — 2
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According to Proposition B.3, all components ξt with ί>I satisfy the same
inequality.

For n large enough, we have that the difference between the first and the last
component goes to zero exponentially fast in n. Therefore, the first component
satisfies the inequality. Thus by Proposition B.3, all components satisfy the
inequality. •
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